Alexander Dalgarno: from Atomic and Molecular Physics to Astronomy and Aeronomy Ewine F
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Alexander Dalgarno: from Atomic and Molecular Physics to Astronomy and Aeronomy Ewine F
RETROSPECTIVE Alexander Dalgarno: From atomic and molecular physics to astronomy and aeronomy Ewine F. van Dishoecka,1, Tom Hartquistb, and Amiel Sternbergc Massey, who offered Alex a fellowship toward aLeiden Observatory, Leiden University, 2300 RA Leiden, The Netherlands; bSchool of Physics a doctorate in atomic physics. Alex accepted and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom; and cSchool of Physics and made the switch to physics. This episode & Astronomy, Tel Aviv University, Ramat Aviv 69978, Israel highlights the importance of spotting talent at an early age. Alex himself excelled at nurturing early career researchers, and the AsSirDavidBateswrotein1988,“There is from the combination of his seminal insight “Dalgarno scientific family tree” contains no greater figure than Alex Dalgarno in the and unparalleled, boundless, and sustained 70 graduate students and 36 postdocs. Alex history of atomic-molecular-optical [AMO] productivity. His long career is described in guided and mentored all of them with the physics, and its applications” (1). Prof. Alex- his autobiographical article “A serendipitous utmost thoughtfulness and care. ander Dalgarno (Harvard) passed away peace- journey” (2) and in the books written in his After completing his doctorate in 1951, fully on April 9, 2015 at age 87 in the presence – honor (1, 3 5). Alex was offered a Lecturer position in Ap- of his long-term companion, Fern Creelan. Alex, a twin and the youngest of five plied Mathematics at the Queen’s University During a career spanning 60 years, Alex children, was born in London in 1928 and of Belfast. Together with David Bates, he built produced about 750 publications covering a grew up during the Second World War. -
Summer 2020 Re Visiting a Past Event
REINVENTING AMERICAN DEMOCRACY FOR THE 21ST CENTURY THE INTERSECTION OF DEMOCRACY & RELIGION A Nation in Crisis SUMMER 2020 RE VISITING A PAST EVENT Policy Perspectives on Police Use of Lethal Force As America reckons with its relationship to police violence, we are reminded that progress can be slow. It has been more than five years since the deaths of Michael Brown and Eric Garner. On February 4, 2015, the Academy convened a discussion at the University of California, Berkeley, led by Andrea Roth (Assistant Professor of Law, University of California, Berkeley School of Law) and Franklin Zimring (William G. Simon Professor of Law, University of California, Berkeley School of Law) about the hundreds of people who are killed each year by police, the racial disparity among the victims, and the incomplete data that make analyzing the problem so difficult. The conversation also covered the effectiveness of various avenues for police reform. To read the full transcript of this event (published in the Spring 2015 issue of the Bulletin) and hundreds of other Stated Meetings from the last twenty years, please visit amacad.org/bulletin. A video of this event and many others can be found at youtube.com/americanacad. For more information about Academy events, please visit www.amacad.org/events. SUMMER 2020 CONTENTS Features 16 Letters from Members Letters upon election are an Academy tradition. Letters of reflection are something new. 20 Online Discussions A series of virtual programs on topics related to the COVID-19 pandemic. CONTENTS 4 Our Work 4 Reinventing American Democracy for the 21st Century 9 New Issue of Dædalus Explores the Intersection of Democracy & Religion 12 A New Profile of Humanities Departments Members 25 Noteworthy 9 Departments 3 From the President 28 From the Archives ON THE COVER: Several hundred doctors, nurses, and medical professionals gathered on June 5, 2020, in St. -
An Interview with Ewine Van Dishoeck
Issue 52 j October 2018 . Dear Colleagues, Welcome to the 5th anniversary edition of AstroPAH! What better way to cele- brate this festive occasion with you than with a show of lasers as featured on our cover. This year’s Nobel Prize in physics went to Arthur Ashkin, Gerard´ Mourou and Donna Strickland for their ground-breaking work in creating tools made of light. As the cover reveals, this has been of utmost importance to multiple fields amongst which astronomy and chemistry. Noteworthy is that Donna Strickland is the 3rd woman ever to win a Nobel Prize in physics (and the 1st in over 50 years). We would further like to celebrate our anniversary with a tribute to our Kavli-price winner Ewine van Dishoeck, who was awarded this ”Nobel-price for astronomy” for her ”combined contributions to observational, theoretical, and laboratory astrochemistry, elucidating the life cycle of interstellar clouds and the formation of stars and planets” Enjoy our interview with her in the In Focus. Of course our newsletter itself is also ’In Focus’ with some nice numbers from your feedback, showing our impact in the community. Thanks to all of you who responded to our survey! We will take your feedback into account to improve our newsletter and continue to keep you updated on the rich field of PAH-related research. We also thank everyone who has sent their paper abstracts to us, in this issue and all previous ones. Once again, our abstract section is full of interesting papers on the- oretical, experimental, and observational studies of astronomical PAHs and so much more. -
D:\Dropbox\Phd Leiden University\Thesis\Thesis\Cover V7
Cover Page The handle http://hdl.handle.net/1887/58690 holds various files of this Leiden University dissertation. Author: Ligterink, N.F.W. Title: The astrochemical factory: A solid base for interstellar reactions Issue Date: 2017-12-18 Publications Published papers Protostellar and cometary detections of organohalogens • Fayolle, E.C.; Oberg,¨ Karin I.; Jørgensen, J.K.; Altwegg, K.; Calcutt, H.; Muller,¨ H.S.P.; Rubin, M.; van der Wiel, M.H.D.; Bjerkeli, P.; Bourke, T.L.; Coutens, A.; van Dishoeck, E.F.; Drozdovskaya, M.N.; Garrod, R.T.; Ligterink, N.F.W.; Persson, M.V.; Wampfler, S.F.; Rosina Team The ALMA-PILS survey: detection of CH3NCO towards the low-mass protostar • IRAS 16293–2422 and laboratory constraints on its formation Ligterink, N.F.W.; Coutens, A.; Kofman, V.; Muller,¨ H.S.P.; Garrod, R.T.; Calcutt, H.; Wampfler, S.F.; Jørgensen, J.K.; Linnartz, H.; van Dishoeck, E.F.; 2017, Monthly Notices of the Royal Astronomical Society, Volume 469, Issue 2 The (w)hole survey: An unbiased sample study of transition disk candidates based • on Spitzer catalogs van der Marel, N.; Verhaar, B. W.; van Terwisga, S.; Mern, B.; Herczeg, G.; Ligterink, N. F. W.; van Dishoeck, E. F.; 2016, Astronomy & Astrophysics, Volume 592 The ALMA-PILS survey: First detections of deuterated formamide and deuterated • isocyanic acid in the interstellar medium Coutens, A.; Jørgensen, J. K.; van der Wiel, M. H. D.; Muller,¨ H. S. P.; Lykke, J. M.; Bjerkeli, P.; Bourke, T. L.; Calcutt, H.; Drozdovskaya, M. N.; Favre, C.; Fayolle, E. C.; Garrod, R. T.; Jacobsen, S. -
Cover Page the Handle
Cover Page The handle http://hdl.handle.net/1887/20396 holds various files of this Leiden University dissertation. Author: Bast, Jeanette Elisabeth Title: Hot chemistry and physics in the planet-forming zones of disks Issue Date: 2013-01-10 Publications Refereed papers 1. Exploring organic chemistry in planet-forming zones Jeanette E. Bast, Fred Lahuis, Ewine F. van Dishoeck & Alexander G. G. M. Tielens; Submitted to Astronomy & Astrophysics (Chapter 5) 2. First detection of near-infrared line emission from organics in young circumstellar disks Avi M. Mandell, Jeanette E. Bast, Ewine F. van Dishoeck, Geoffrey A. Blake, Colette Salyk, Michael J. Mumma, M. & Geronimo Villanueva; 2012, The Astrophysical Journal, 747, 92 (Chapter 3) 3. Single peaked CO emission line profiles from the inner regions of protoplanetary disks Jeanette E. Bast, Joanna M. Brown, Gregory J. Herczeg, Ewine van F. Dishoeck & Klaus M. Pontoppidan; 2011, Astronomy & Astrophysics, 527, A119 (Chapter 2) 4. The abundance of SiS in circumstellar envelopes around AGB stars Fredrik L. Schöier, Jeanette E. Bast, Hans Olofsson & Michael Lindqvist; 2007, Astronomy & Astrophysics, 473, 871 Non-refereed papers Planet-forming regions at the highest spectral and spatial resolution with VLT- CRIRES Klaus M. Pontopppidan, Ewine F. van Dishoeck, Geoffrey A. Blake, Rachel Smith, Joanna M. Brown, Gregory J. Herczeg, Jeanette E. Bast, Avi M. Mandell, Alain Smette, Wing-Fai This, Edward D. Young, Mark R. Mor- ris William Dent & Hans Ulrich Käufl; 2011, Messenger, 143, 32 169 Publications Conference proceedings 1. New probes of the chemistry in the inner regions of planet-forming disks Jeanette. E. Bast, Avi M. -
Contributions to Atomic, Molecular, and Optical Physics, Astrophysics
October 28, 2009 13:56 WSPC - Proceedings Trim Size: 9in x 6in chapter˙r3 3 THE TRANSITION FROM MATHEMATICIAN TO ASTROPHYSICIST M. R. FLANNERY School of Physics, Georgia Institute of Technology, Atlanta, GA 30332-0430, USA E-mail: r.fl[email protected] www.physics.gatech.edu/people/faculty/rflannery.html Various landmarks in the evolution of Alexander Dalgarno from a gifted math- ematician to becoming the acknowledged Father of Molecular Astrophysics are noted. His researches in basic atomic and molecular physics, aeronomy (the study of the upper atmosphere) and astrophysics are highlighted. Keywords: atomic and molecular physics, aeronomy, astrophysics, Dalgarno- Lewis method, associative detachment, rotational excitation. 1. Some Distinct Landmarks As this “Dalgarno Celebratory Symposium” in honor of Alex Dalgarno’s 80th birthday continues, I would like to welcome you all to this morning’s session “Calculation of Atomic and Molecular Properties ”. This title is par- ticularly well suited to Alex’s philosophy because, in a recent reminiscence1 of his career, he mentions that, “ ... It is often said, by theorists, that physics is embodied in its equations, but I think it is to be found in the solutions to the equations”. And so, emboldened/accelerated by this realization, Alex embarked on making landmark advances in all of the following subjects: (1) Atomic and Molecular Structure (perturbation variational and expan- sion methods) (2) Interactions (polarization, dispersion, model, pseudo and long-range potentials) and (3) Collisions (near-resonant electronic transfer, excitation and charge transfer radiative transitions, rotational and vibrational excitation in molecules, spin-exchange). PROCEEDINGS OF THE DALGARNO CELEBRATORY SYMPOSIUM Contributions to Atomic, Molecular, and Optical Physics, Astrophysics, and Atmospheric Physics © Imperial College Press http://www.worldscibooks.com/physics/p675.html October 28, 2009 13:56 WSPC - Proceedings Trim Size: 9in x 6in chapter˙r3 4 to be covered today by this title. -
Division Vi / Commission 34 / Working Group Astrochemistry
Transactions IAU, Volume XXVIIIA Reports on Astronomy 2009–2012 c International Astronomical Union 2012 Ian Corbett, ed. doi:10.1017/S1743921312002876 DIVISION VI / COMMISSION 34 / WORKING GROUP ASTROCHEMISTRY CHAIR E.F. van Dishoeck VICE-CHAIR E. Herbst BOARD Y. Aikawa J.H. Black G.A. Blake P. Caselli J. Cernicharo G. Garay M. Guelin U.G. Jørgensen J.P. Maier K.M. Menten T.J. Millar S. Kwok F. Salama I. Sims A. Sternberg TRIENNIAL REPORT 2009-2012 1. Introduction The study of molecules in space, known as astrochemistry or molecular astrophysics, is a rapidly growing field. Molecules exist in a wide range of environments in both gaseous and solid form, from our own solar system to the distant early universe. To astronomers, molecules are indispensable and unique probes of the physical conditions and dynamics of regions in which they are detected, especially the interstellar medium. In particular, the many stages of both low-mass and high-mass star formation are better understood today thanks to the analysis of molecular observations. Molecules can also yield a global picture of the past and present of sources. Moreover, molecules affect their environment by contributing to the heating and cooling processes that occur. Molecular observations are currently being used to study the interstellar gas and dust in diffuse interstellar clouds, dense molecular clouds, protostellar objects, maser and star-forming regions, envelopes of evolved stars, protoplanetary disks, (exo-)planetary atmospheres and comets. In addition to our own Milky Way Galaxy, molecules and solid- state features are routinely detected in interstellar regions of external galaxies ranging from the nearby Magellanic Clouds to distant starbust galaxies at redshifts of more than 6. -
Pnas11052ackreviewers 5098..5136
Acknowledgment of Reviewers, 2013 The PNAS editors would like to thank all the individuals who dedicated their considerable time and expertise to the journal by serving as reviewers in 2013. Their generous contribution is deeply appreciated. A Harald Ade Takaaki Akaike Heather Allen Ariel Amir Scott Aaronson Karen Adelman Katerina Akassoglou Icarus Allen Ido Amit Stuart Aaronson Zach Adelman Arne Akbar John Allen Angelika Amon Adam Abate Pia Adelroth Erol Akcay Karen Allen Hubert Amrein Abul Abbas David Adelson Mark Akeson Lisa Allen Serge Amselem Tarek Abbas Alan Aderem Anna Akhmanova Nicola Allen Derk Amsen Jonathan Abbatt Neil Adger Shizuo Akira Paul Allen Esther Amstad Shahal Abbo Noam Adir Ramesh Akkina Philip Allen I. Jonathan Amster Patrick Abbot Jess Adkins Klaus Aktories Toby Allen Ronald Amundson Albert Abbott Elizabeth Adkins-Regan Muhammad Alam James Allison Katrin Amunts Geoff Abbott Roee Admon Eric Alani Mead Allison Myron Amusia Larry Abbott Walter Adriani Pietro Alano Isabel Allona Gynheung An Nicholas Abbott Ruedi Aebersold Cedric Alaux Robin Allshire Zhiqiang An Rasha Abdel Rahman Ueli Aebi Maher Alayyoubi Abigail Allwood Ranjit Anand Zalfa Abdel-Malek Martin Aeschlimann Richard Alba Julian Allwood Beau Ances Minori Abe Ruslan Afasizhev Salim Al-Babili Eric Alm David Andelman Kathryn Abel Markus Affolter Salvatore Albani Benjamin Alman John Anderies Asa Abeliovich Dritan Agalliu Silas Alben Steven Almo Gregor Anderluh John Aber David Agard Mark Alber Douglas Almond Bogi Andersen Geoff Abers Aneel Aggarwal Reka Albert Genevieve Almouzni George Andersen Rohan Abeyaratne Anurag Agrawal R. Craig Albertson Noga Alon Gregers Andersen Susan Abmayr Arun Agrawal Roy Alcalay Uri Alon Ken Andersen Ehab Abouheif Paul Agris Antonio Alcami Claudio Alonso Olaf Andersen Soman Abraham H. -
Chapter Vi Report of Divisions, Commissions, and Working
CHAPTER VI REPORT OF DIVISIONS, COMMISSIONS, AND WORKING GROUPS Downloaded from https://www.cambridge.org/core. IP address: 170.106.33.42, on 24 Sep 2021 at 09:23:58, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0251107X00011937 DIVISION I FUNDAMENTAL ASTRONOMY Division I provides a focus for astronomers studying a wide range of problems related to fundamental physical phenomena such as time, the intertial reference frame, positions and proper motions of celestial objects, and precise dynamical computation of the motions of bodies in stellar or planetary systems in the Universe. PRESIDENT: P. Kenneth Seidelmann U.S. Naval Observatory, 3450 Massachusetts Ave NW Washington, DC 20392-5100, US Tel. + 1 202 762 1441 Fax. +1 202 762 1516 E-mail: [email protected] BOARD E.M. Standish President Commission 4 C. Froeschle President Commisison 7 H. Schwan President Commisison 8 D.D. McCarthy President Commisison 19 E. Schilbach President Commisison 24 T. Fukushima President Commisison 31 J. Kovalevsky Past President Division I PARTICIPATING COMMISSIONS: COMMISSION 4 EPHEMERIDES COMMISSION 7 CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY COMMISSION 8 POSITIONAL ASTRONOMY COMMISSION 19 ROTATION OF THE EARTH COMMISSION 24 PHOTOGRAPHIC ASTROMETRY COMMISSION 31 TIME Downloaded from https://www.cambridge.org/core. IP address: 170.106.33.42, on 24 Sep 2021 at 09:23:58, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0251107X00011937 COMMISSION 4: EPHEMERIDES President: H. Kinoshita Secretary: C.Y. Hohenkerk Commission 4 held one business meeting. -
The Menzel Symposium on Solar Physics, Atomic Spectra, and Gaseous Nebulae
The Menzel Symposium on Solar Physics, Atomic Spectra, and Gaseous Nebulae U.S. DEPARTMENT , < - MERGE ational ^ Bureau ot 19*71 I idards olAMJAKk>* tflONAL BUREAU OF OCT 6 1971 UNITED STATES DEPARTMENT COMMERCE • Maurice EL Stans, Secretary NATIONAL BUREAU OF STANDARDS • Lewis M. Branscomb, Din; tor The Menzel Symposium on Solar Physics, Atomic Spectra, and Gaseous Nebulae in Honor of the Contributions Made by Donald H. Menzel Proceedings of a Symposium held at the Harvard College Observatory, Cambridge, Massachusetts April 8-9, 1971 Edited by Katharine B. Gebbie Joint Institute for Laboratory Astrophysics Institute for Basic Standards National Bureau of Standards Boulder, Colorado 80302 National Bureau of Standards Special Publication 353 Nat. Bur. Stand.( U.S.), Spec. Publ. 353, 213 pages (Aug. 1971) CODEN: XNBSA Issued August 1971 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 (Order by SD Catalog No. C13. 10:353) Price $1.75. ABSTRACT A symposium in honor of Donald H. Menzel 1 s contri- butions to astrophysics was held on his 70th birthday at the Harvard College Observatory, Cambridge, Massa- chusetts, 8-9 April 19 71. Menzel and his school have made distinguished contributions to the theory of atom- ic physics, solar physics, and gaseous nebulae. The work on planetary nebulae represented the first investi gations of non-equilibrium thermodynamic conditions in astronomy; the solar work extended these investigations to stellar atmospheres. The applied atomic physics laid the basis for what we now call laboratory astro- physics and, together with work on non-equilibrium ther modynamics, inspired the founding of the Joint Insti- tute for Laboratory Astrophysics. -
The Menzel Symposium on Solar Physics, Atomic Spectra, and Gaseous Nebulae
The Menzel Symposium on Solar Physics, Atomic Spectra, and Gaseous Nebulae U.S. DEPARTMENT , < - MERGE ational ^ Bureau ot 19*71 I idards olAMJAKk>* tflONAL BUREAU OF OCT 6 1971 UNITED STATES DEPARTMENT COMMERCE • Maurice EL Stans, Secretary NATIONAL BUREAU OF STANDARDS • Lewis M. Branscomb, Din; tor The Menzel Symposium on Solar Physics, Atomic Spectra, and Gaseous Nebulae in Honor of the Contributions Made by Donald H. Menzel Proceedings of a Symposium held at the Harvard College Observatory, Cambridge, Massachusetts April 8-9, 1971 Edited by Katharine B. Gebbie Joint Institute for Laboratory Astrophysics Institute for Basic Standards National Bureau of Standards Boulder, Colorado 80302 National Bureau of Standards Special Publication 353 Nat. Bur. Stand.( U.S.), Spec. Publ. 353, 213 pages (Aug. 1971) CODEN: XNBSA Issued August 1971 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 (Order by SD Catalog No. C13. 10:353) Price $1.75. ABSTRACT A symposium in honor of Donald H. Menzel 1 s contri- butions to astrophysics was held on his 70th birthday at the Harvard College Observatory, Cambridge, Massa- chusetts, 8-9 April 19 71. Menzel and his school have made distinguished contributions to the theory of atom- ic physics, solar physics, and gaseous nebulae. The work on planetary nebulae represented the first investi gations of non-equilibrium thermodynamic conditions in astronomy; the solar work extended these investigations to stellar atmospheres. The applied atomic physics laid the basis for what we now call laboratory astro- physics and, together with work on non-equilibrium ther modynamics, inspired the founding of the Joint Insti- tute for Laboratory Astrophysics. -
Computational Treatment of Electron and Photon Collisions with Atoms, Ions, and Molecules: the Legacy of Philip G Burke
Journal of Physics B: Atomic, Molecular and Optical Physics TOPICAL REVIEW • OPEN ACCESS Computational treatment of electron and photon collisions with atoms, ions, and molecules: the legacy of Philip G Burke To cite this article: Klaus Bartschat et al 2020 J. Phys. B: At. Mol. Opt. Phys. 53 192002 View the article online for updates and enhancements. This content was downloaded from IP address 193.60.240.99 on 23/09/2020 at 14:36 Journal of Physics B: Atomic, Molecular and Optical Physics J. Phys. B: At. Mol. Opt. Phys. 53 (2020) 192002 (21pp) https://doi.org/10.1088/1361-6455/aba473 Topical Review Computational treatment of electron and photon collisions with atoms, ions, and molecules: the legacy of Philip G Burke Klaus Bartschat1 , Andrew Brown2 , Hugo W. van der Hart2, James Colgan3,6 ,NSScott4 and Jonathan Tennyson5 1 Department of Physics and Astronomy, Drake University, Des Moines, IA 50311, United States of America 2 Centre for Theoretical Atomic, Molecular and Optical Physics, Queen’s University Belfast, Belfast, BT7 1NN, United Kingdom 3 Los Alamos National Laboratory, Los Alamos, NM 87545, United States of America 4 Engineering and Physical Sciences, Queen’s University Belfast, Belfast, BT9 5BN, United Kingdom 5 Department of Physics and Astronomy, University College London, WC1E 6BT, London, United Kingdom E-mail: [email protected] Received 6 April 2020, revised 26 May 2020 Accepted for publication 9 July 2020 Published 24 August 2020 Abstract This review summarizes the path-breaking contributions of Philip George Burke (1932–2019) to atomic, molecular, and optical physics, in particular the computational treatment of electron and photon collisions with atoms, ions, and molecules.