RESEARCH ARTICLE Elongation inhibitors do not prevent the release of puromycylated nascent polypeptide chains from ribosomes Benjamin D Hobson1,2, Linghao Kong1, Erik W Hartwick3, Ruben L Gonzalez3, Peter A Sims1,4,5* 1Department of Systems Biology, Columbia University Irving Medical Center, New York, United States; 2Medical Scientist Training Program, Columbia University Irving Medical Center, New York, United States; 3Department of Chemistry, Columbia University, New York, United States; 4Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, United States; 5Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, United States Abstract Puromycin is an amino-acyl transfer RNA analog widely employed in studies of protein synthesis. Since puromycin is covalently incorporated into nascent polypeptide chains, anti- puromycin immunofluorescence enables visualization of nascent protein synthesis. A common assumption in studies of local messenger RNA translation is that the anti-puromycin staining of puromycylated nascent polypeptides in fixed cells accurately reports on their original site of translation, particularly when ribosomes are stalled with elongation inhibitors prior to puromycin treatment. However, when we attempted to implement a proximity ligation assay to detect ribosome-puromycin complexes, we found no evidence to support this assumption. We further demonstrated, using biochemical assays and live cell imaging of nascent polypeptides in mammalian cells, that puromycylated nascent polypeptides rapidly dissociate from ribosomes even in the presence of elongation inhibitors. Our results suggest that attempts to define precise *For correspondence: subcellular translation sites using anti-puromycin immunostaining may be confounded by release of
[email protected] puromycylated nascent polypeptide chains prior to fixation.