Gas Hydrates in Sustainable Chemistry

Total Page:16

File Type:pdf, Size:1020Kb

Gas Hydrates in Sustainable Chemistry Heriot-Watt University Research Gateway Gas hydrates in sustainable chemistry Citation for published version: Hassanpouryouzband, A, Joonaki, E, Vasheghani Farahani, M, Takeya, S, Ruppel, C, Yang, J, English, NJ, Schicks, JM, Edlmann, K, Mehrabian, H, Aman, ZM & Tohidi, B 2020, 'Gas hydrates in sustainable chemistry', Chemical Society Reviews, vol. 49, no. 15, pp. 5225-5309. https://doi.org/10.1039/c8cs00989a Digital Object Identifier (DOI): 10.1039/c8cs00989a Link: Link to publication record in Heriot-Watt Research Portal Document Version: Publisher's PDF, also known as Version of record Published In: Chemical Society Reviews General rights Copyright for the publications made accessible via Heriot-Watt Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy Heriot-Watt University has made every reasonable effort to ensure that the content in Heriot-Watt Research Portal complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 23. Sep. 2021 Chem Soc Rev View Article Online REVIEW ARTICLE View Journal Gas hydrates in sustainable chemistry abc ad Cite this: DOI: 10.1039/c8cs00989a Aliakbar Hassanpouryouzband, * Edris Joonaki,† Mehrdad Vasheghani Farahani,†a Satoshi Takeya, e Carolyn Ruppel,f Jinhai Yang, *a Niall J. English, g Judith M. Schicks,h Katriona Edlmann,b Hadi Mehrabian,c Zachary M. Aman i and Bahman Tohidia Gas hydrates have received considerable attention due to their important role in flow assurance for the oil and gas industry, their extensive natural occurrence on Earth and extraterrestrial planets, and their significant applications in sustainable technologies including but not limited to gas and energy storage, gas separation, and water desalination. Given not only their inherent structural flexibility depending on the type of guest gas molecules and formation conditions, but also the synthetic effects of a wide range of chemical additives on their properties, these variabilities could be exploited to optimise the role of gas hydrates. This includes increasing their industrial applications, understanding and utilising their role in Nature, identifying potential methods for safely extracting natural gases stored in naturally occurring Creative Commons Attribution-NonCommercial 3.0 Unported Licence. hydrates within the Earth, and for developing green technologies. This review summarizes the different properties of gas hydrates as well as their formation and dissociation kinetics and then reviews the fast- Received 12th February 2020 growing literature reporting their role and applications in the aforementioned fields, mainly concentrating on DOI: 10.1039/c8cs00989a advances during the last decade. Challenges, limitations, and future perspectives of each field are briefly discussed. The overall objective of this review is to provide readers with an extensive overview of gas rsc.li/chem-soc-rev hydrates that we hope will stimulate further work on this riveting field. This article is licensed under a 1. Introduction interchangeably). Gas hydrates are at the centre of research within sustainable chemistry because of their innovative applica- Gas hydrates are ice-like solid compounds that naturally form tions in a wide range of scientific and industrial contexts, such as Open Access Article. Published on 22 June 2020. Downloaded 6/24/2020 2:33:35 PM. (or can be formed) under certain conditions of pressure and permanently storing CO2 present in flue gases by forming gas temperature (P–T) within a gas/water mixture where water hydrates under oceans. The early era of gas hydrate-related molecules hydrogen bond together forming a crystalline lattice research was primarily dominated by flow assurance, minimising and are known as hydrates or clathrates (terms are used hydrocarbon/gas pipeline blockage by hydrate formation. However, in recent years the upsurge of research in the field a Hydrates, Flow Assurance & Phase Equilibria Research Group, Institute of was stimulated by expanding the application of hydrates to GeoEnergy Engineering, School of Energy, Geoscience, Infrastructure and Society, energy recovery, CO2 capture and storage, gas separation, water Heriot-Watt University, Riccarton, Edinburgh, EH14 4AS, UK. desalination, gas storage and transport, refrigeration, etc. More E-mail: [email protected], [email protected] recently the potential for methane escaping from hydrate- b School of Geosciences, University of Edinburgh, Grant Institute, West Main Road, bearing sediments and reaching the atmosphere has received Edinburgh, EH9 3JW, UK c Department of Chemical Engineering, Massachusetts Institute of Technology, significant attention due to the high greenhouse warming Cambridge, Massachusetts 02139, USA potential (GWP) of methane. d TU¨VSU¨D National Engineering Laboratory, Scottish Enterprise Technology Park, Recent experimental results backed by theoretical calculations East Kilbride, South Lanarkshire, G75 0QF, UK reveal significant potential not only to continue to improve flow e National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan assurance but to dramatically increase the scope of gas hydrate- f U.S. Geological Survey, Woods Hole, MA, USA based applications, which requires enabling technologies and g School of Chemical and Bioprocess Engineering, University College Dublin, elucidation of a new master plan. This could not be achieved Belfield, Dublin 4, Ireland without concerted collaborative effort among researchers from h GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, different fields of chemistry, physics, geology, engineering, energy Germany i Fluid Science & Resources, School of Engineering, University of Western Australia, industry, humanities, etc., standing as the key to unlocking the 35 Stirling Highway, Perth, WA 6009, Australia contribution hydrates can make to a cleaner atmosphere and † E. J. and M. V. F. have equally contributed to the review article. support economic and sustainable development. This paper This journal is © The Royal Society of Chemistry 2020 Chem. Soc. Rev. View Article Online Review Article Chem Soc Rev aims to complete the missing links between recent experimental Building on these early studies, the evolving gas hydrate-based and theoretical efforts in chemistry, and highlight areas of applications have led to many advances in various fields, research that will require multi-disciplinary research and colla- allowing a wider range of scientific community to contribute boration. The idea of clathrate-based applications in a diverse in this area of science. range of sectors is of interest to all of the scientific community As outlined in Fig. 1, this review summarizes different and the GWP is a concern to society as a whole. In particular, properties of gas hydrates (Section 2) and their formation and scientists studying low-carbon and unconventional energy have dissociation kinetics (Section 3) from chemistry and physics much to benefit from advances in gas hydrate technologies perspectives. It then focuses on strategies for protection which can reduce costs and improve efficiencies within the and removal of hydrocarbon pipelines from gas hydrates multibillion-dollar oil industry either through the substitution (Section 4), presence of natural gas hydrate reservoirs in the of conventional fossil fuels or optimising extraction. earth and potential strategies for their extraction, as well as This paper reviews a substantial body of the theoretical, extraterrestrial hydrates (Section 5). The role of gas hydrates in experimental, and industrial research, advances and lessons in CO2 capture and storage (Section 6) is discussed next, followed the gas hydrate field, over the last decade. The review includes by a treatment of gas hydrates in sustainable development the current state of the art understanding and advances in (Section 7). Throughout the review, each subsection covers technical developments, which are combined with expert per- the related challenges and directions for future investigations spectives and analyses. It is important to note that the purpose of hydrate-based technologies. of this review is not to analyse in detail every contribution but to highlight the latest advancements, focus on the most pressing issues preventing further understanding of clathrate 2. Gas hydrates’ properties hydrates, and importantly realising the practical applications of hydrate-based technologies for sustainable chemistry. The The unique properties of gas hydrates under various conditions Creative Commons Attribution-NonCommercial 3.0 Unported Licence. review assembles the different gas hydrate-related subjects of temperature and pressure have numerous practical applica- relevant to sustainable chemistry, appealing to an even broader tions in science and technology, and they also influence the community of readers. There are several excellent detailed earth’s natural cycles. One example of these natural cycles is the reviews on different subsections of gas hydrates in the existing widespread escape of methane from natural reservoirs during literature. Rather than duplicate these here, these reviews are certain climate warming events in
Recommended publications
  • Carbon Dioxide Adsorption by Metal Organic Frameworks (Synthesis, Testing and Modeling)
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 8-8-2013 12:00 AM Carbon Dioxide Adsorption by Metal Organic Frameworks (Synthesis, Testing and Modeling) Rana Sabouni The University of Western Ontario Supervisor Prof. Sohrab Rohani The University of Western Ontario Graduate Program in Chemical and Biochemical Engineering A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Rana Sabouni 2013 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Other Chemical Engineering Commons Recommended Citation Sabouni, Rana, "Carbon Dioxide Adsorption by Metal Organic Frameworks (Synthesis, Testing and Modeling)" (2013). Electronic Thesis and Dissertation Repository. 1472. https://ir.lib.uwo.ca/etd/1472 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. i CARBON DIOXIDE ADSORPTION BY METAL ORGANIC FRAMEWORKS (SYNTHESIS, TESTING AND MODELING) (Thesis format: Integrated Article) by Rana Sabouni Graduate Program in Chemical and Biochemical Engineering A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy The School of Graduate and Postdoctoral Studies The University of Western Ontario London, Ontario, Canada Rana Sabouni 2013 ABSTRACT It is essential to capture carbon dioxide from flue gas because it is considered one of the main causes of global warming. Several materials and various methods have been reported for the CO2 capturing including adsorption onto zeolites, porous membranes, and absorption in amine solutions.
    [Show full text]
  • The Royal Society of Chemistry Turns Its Focus on Researchers with Better Search and Measurement Tools
    The Royal Society of Chemistry turns its focus on researchers with better search and measurement tools The Royal Society of Chemistry offers a publishing platform providing access to over a million chemical science articles, book chapters and abstracts. Like many publishers of high quality peer-reviewed content, they are under pressure from their community to innovate quickly and harness digital technology in new ways that add value, simplicity and easier access to the research workflow. About Will Russell is responsible for some of the new technical developments • pubs.rsc.org at the Royal Society of Chemistry. “Although we do a lot of in-house • rsc.org development, we need to understand where developments can be • Location: Cambridge UK with improved by working with partners,” he says. “I really believe in the additional editorial teams in Beijing, benefit of strategic technology partnerships with an external partner. China, Bangalore India and There is the speed of getting a key utility to the market and this offers Washington D.C. USA us a tremendous business advantage.” • Scientific publisher of high-impact journals and books “We have journals going back to 1841,” he says. “We started migrating People print content online in the late 1990s. Our biggest challenge now is how • Will Russell we will deliver content in the future in the most useful way for the Business Relationship Manager researcher.” Goals Will pinpoints a way forward. “There are new opportunities presented • Embrace new technology to remain by open science and alternative metrics, and increasing importance competitive against innovative attached to data and open data,” he says.
    [Show full text]
  • Data Curation Issues in the Chemical Sciences
    ARTICLE EXCERPTED FROM: INFORMATION STANDARDS QUARTERLY FALL 2013 | VOL 25 | ISSUE 3 | ISSN 1041-0031 TOPIC DATA CURATION DATA CURATION ISSUES IN THE CHEMICAL SCIENCES DATA CURATION IN THE OPENAIRE SCHOLARLY COMMUNICATION INFRASTRUCTURE PRESERVING THE GREY LITERATURE EXPLOSION: PDF/A AND THE DIGITAL ARCHIVE ENSURING THE LONG TERM IMPACT OF EARTH SCIENCE DATA THROUGH DATA CURATION AND PRESERVATION COLIN L. BIRD, CERYS WILLOUGHBY, SIMON J. COLES, & JEREMY G. FREY DATA CURATION ISSUES IN THE CHEMICAL SCIENCES All science is strongly dependent on preserving, maintaining, and adding value to the research record, including the data, both raw and derived, generated during the scientific process. This statement leads naturally to the assertion that all science is strongly dependent on curation.[1] Chemistry is no exception, and given the significance of chemical data to many other disciplines, we assert that curation should be a fundamental aspect of the research practice in the chemical sciences. In this article we investigate the extent to which chemists do actually respect the importance of curation in their day-to-day activities in the laboratory or, nowadays, frequently at the computer. » CONTINUED » 6 FE CONTINUED » RESEARCH LIFECYCLE NOTIONAL TIMELINE CURATION PRESERVATION DISCOVERY ACCESS PROVENANCE Figure 1: The concepts of preservation, curation, provenance, discovery, and access in the context of the research lifecycle Reused with permission[3] Several of us have examined the origins and evolution of that group related items, provide context, and facilitate the scientific record keeping in our recent review of laboratory reuse of specified research outputs. [2] a notebooks in the digital era. We compare the electronic Zeng and Qin[4] present examples taken from a math laboratory notebook (ELN) with the traditional paper notebook, dictionary and an educational library system to “demonstrate noting that paper still has some advantages for maintaining that metadata is capable of performing the following tasks: a “journal” of research activities.
    [Show full text]
  • New Journal and Database Subscriptions – 2012 -2013
    NEW JOURNAL AND DATABASE SUBSCRIPTIONS – 2012 -2013 New Journals Afterall: A Journal of Art, Context and Enquiry American Biology Teacher American Journal of Bioethics American Political Thought Annals of Tourism Research Art Documentation Biodiversity and Conservation Biomaterials Science BioScience Boom: A Journal of California California Archaeology California Management Review Catalysis Science & Technology Chemical Hazards in Industry China Journal Classical Antiquity Classical Philology Crime and Justice Critical Review of International Social and Political Philosophy Education in Chemistry Educational Technology Research Development Elephant Ethics Federal Sentencing Reporter Food & Function Frankie Gastronomica: The Journal of Food and Culture Haaretz Historical Studies in the Natural Sciences HOPOS: The Journal of the International Society for the History of Philosophy of Science Huntington Library Quarterly Indian Country Today Indonesia Journal Information, Communication & Society Innovation Policy and the Economy Integrative Biology Issues in Environmental Science and Technology Journal of Applied Remote Sensing Journal of Digital Media Management Journal of Empirical Research on Human Research Ethics Journal of Environmental Studies and Sciences Journal of Human Capital Journal of Labor Economics Journal of Leisure Research Journal of Micro/Nanolithography, MEMS, and MOEMS Journal of Modern History Journal of Nanophotonics Journal of North African Studies Journal of Palestine Studies Journal of Photonics for Energy Journal
    [Show full text]
  • RSC Gold 2015 Flyer.Pdf
    RSC Gold Want access to full content from the world’s leading chemistry society? Including regular new material and an Archive dating back to 1841? Caltech’s RSC Gold Plus voucher codes to publish package subscription has been a very Open Access (OA) free of charge? welcome development ... I am very appreciative of the RSC Gold is the Royal Society of Chemistry’s general excellence of articles in the RSC premium package comprising 41 international research journals, evidenced by strong journals, literature updating services and impact factors and magazines that will meet the needs of all your increases in local download statistics. end-users. And the accompanying Gold for Gold Dana L. Roth OA voucher codes ensure maximum visibility for Chemistry Librarian your institution’s quality research. Caltech, USA Take a look inside to see exactly what you get www.rsc.org/gold RSC Gold includes a wealth of quality RSC journal, database and magazine content that is all available online. Journals Natural Product Reports Analyst New Journal of Chemistry Analytical Methods Organic & Biomolecular Chemistry Biomaterials Science Photochemical & Photobiological Sciences Catalysis Science & Technology Physical Chemistry Chemical Physics (PCCP) Chemical Communications Polymer Chemistry Chemical Science* RSC Advances Chemical Society Reviews Soft Matter CrystEngComm Toxicology Research Dalton Transactions Energy & Environmental Science B a c k fi l e Environmental Science: Nano** RSC Journals Archive 1841-2007 lease Environmental Science: Processes & Impacts
    [Show full text]
  • Publishing Price List 2016
    Publishing Price List 2016 Royal Society of Chemistry Collections for 2016 RSC GOLD INCLUDES: Key Royal Society of Chemistry online Price on application ONLINE ONLY† journal, database and magazine content, plus a EMAIL [email protected] book series. or contact your Account Manager PRICES JOURNALS ARCHIVE ONLINE ONLY† RSC Journals Archive Outright Purchase (1841 – 2007) • £41,097 • $72,615 RSC Journals Archive Outright Purchase (2005 – 2007) • £4,867 • $8,271 RSC Journals Archive Lease (1841 – 2007) • £7,408 • $13,133 PRICES RSC Journals Archive Hosting Fee • £819 • $1,340 THE HISTORICAL COLLECTION INCLUDES: Price on application ONLINE ONLY† • Society Publications (1949 – 2012) EMAIL [email protected] • Society Minutes (1841 – 1966) or contact your Account Manager • Historical Papers (1505 – 1991) PRICES CORE CHEMISTRY COLLECTION INCLUDES: • Chemical Communications • Dalton Transactions • Journal of Materials Chemistry A, B & C • New Journal of Chemistry PRINT & ONLINE† ONLINE ONLY† • Organic & Biomolecular Chemistry • • • Physical Chemistry Chemical Physics £19,685 £18,701 • RSC Advances (online only) • $36,814 • $34,973 PRICES GENERAL CHEMISTRY COLLECTION INCLUDES: • Chemical Communications • Chemical Society Reviews PRINT & ONLINE† ONLINE ONLY† • Chemistry World • £8,360 • £7,942 • New Journal of Chemistry PRICES • $13,685 • $13,244 • RSC Advances (online only) ANALYTICAL SCIENCE COLLECTION INCLUDES: • Analyst • Analytical Abstracts (online only) • Analytical Methods PRINT & ONLINE† ONLINE ONLY† • Environmental Science: Processes & Impacts •
    [Show full text]
  • Journal Automatic Opt-In Unknown When Available After Acceptance
    Journal Automatic Opt-In Unknown When Available After Acceptance American Chemical Society Accounts of Chemical Research X 30 minutes - 24 hours ACS Applied Materials & Interfaces X 30 minutes - 24 hours ACS Biomaterials Science & Engineering X 30 minutes - 24 hours ACS Catalysis X 30 minutes - 24 hours ACS Chemical Biology X 30 minutes - 24 hours ACS Chemical Neuroscience X 30 minutes - 24 hours ACS Combinatorial Science X 30 minutes - 24 hours ACS Infectious Diseases X 30 minutes - 24 hours ACS Macro Letters X 30 minutes - 24 hours ACS Medicinal Chemistry Letters X 30 minutes - 24 hours ACS Nano X 30 minutes - 24 hours ACS Photonics X 30 minutes - 24 hours ACS Sustainable Chemistry & Engineering X 30 minutes - 24 hours ACS Symposium Series X 30 minutes - 24 hours ACS Synthetic Biology X 30 minutes - 24 hours Advances in Chemistry X 30 minutes - 24 hours Analytical Chemistry X 30 minutes - 24 hours Biochemistry X 30 minutes - 24 hours Bioconjugate Chemistry X 30 minutes - 24 hours Biomacromolecules X 30 minutes - 24 hours Biotechnology Progress X 30 minutes - 24 hours Chemical & Engineering New Archives X 30 minutes - 24 hours C&EN Online X 30 minutes - 24 hours Chemical Research in Toxicology X 30 minutes - 24 hours Chemical Reviews X 30 minutes - 24 hours Chemistry of Materials X 30 minutes - 24 hours Inorganic Chemistry X 30 minutes - 24 hours Journal of the American Chemical Society X 30 minutes - 24 hours Journal of Chemical & Engineering Data X 30 minutes - 24 hours Journal of Chemical Information & Modeling X 30 minutes - 24 hours
    [Show full text]
  • Chemical Society Reviews REVIEW
    Please do not adjust margins Chemical Society Reviews REVIEW Aerosol processing: a wind of innovation in the field of advanced heterogeneous catalysts a, a b c Received 00th January 20xx, Damien P. Debecker, * Solène Le Bras, Cédric Boissière, Alexandra Chaumonnot, Clément Accepted 00th January 20xx Sanchezb* DOI: 10.1039/x0xx00000x Aerosol processing is long known and implemented industrially to obtain various types of divided materials and nanomaterials. The atomisation of a liquid solution or suspension produces a mist of aerosol droplets which can then be www.rsc.org/ transformed via a diversity of processes including spray-drying, spray pyrolysis, flame spray pyrolysis, thermal decomposition, micronisation, gas atomisation, etc. The attractive technical features of these aerosol processes make them highly interesting for the continuous, large scale, and tailored production of heterogeneous catalysts. Indeed, during aerosol processing, each liquid droplet undergoes well-controlled physical and chemical transformations, allowing for example to dry and aggregate pre-existing solid particles or to synthesise new micro- or nanoparticles from mixtures of molecular or colloidal precursors. In the last two decades, more advanced reactive aerosol processes have emerged as innovative means to synthesise tailored-made nanomaterials with tunable surface properties, textures, compositions, etc. In particular, the “aerosol-assisted sol-gel” process (AASG) has demonstrated tremendous potential for the preparation of high-performance heterogeneous catalysts. The method is mainly based on the low-cost, scalable, and environmentally benign sol-gel chemistry process, often coupled with the evaporation-induced self-assembly (EISA) concept. It allows producing micronic or submicronic, inorganic or hybrid organic-inorganic particles bearing tuneable and calibrated porous structures at different scale.
    [Show full text]
  • GUT RSC Journals List
    SCHEDULE A Publisher Content Section A Customer has access to the electronic versions of the following journals via an External route: Access Post - Copyright Journals E-ISSN years cancellation Owner* during Term access Analyst 1364-5528 2008-2018 2012-2018 RSC Analytical Methods 1 1759-9679 2009-2018 2012-2018 RSC Annual Reports on the Progress of Chemistry, A 1460-4760 2008-2013 2012-2013 RSC B 1460 4779 2008-2013 2012-2013 RSC C 1460-4787 2008-2013 2012-2013 RSC Biomaterials Science 1 2047-4849 2013-2018 2016-2018 RSC Catalysis Science & Technology 1 2044-4761 2011-2018 2013-2018 RSC Chemical Communications 1364-548X 2008-2018 2012-2018 RSC Chemical Science 1, 2 2041-6539 2010-2014 2012-2014 RSC Chemical Society Reviews 1460-4744 2008-2018 2012-2018 RSC Chemistry World 1749-5318 2012-2016 2012-2016 RSC CrystEngComm 1466-8033 2008-2018 2012-2018 RSC Dalton Transactions 1477-9234 2008-2018 2012-2018 RSC Education in Chemistry 1749-5326 2012-2016 2012-2016 RSC Energy & Environmental Science 1 1754-5706 2008-2018 2012-2018 RSC Environmental Science: Nano 1 2051-8161 2014-2018 2016-2018 RSC Environmental Science: Processes & Impacts including 2050-7895 2013-2018 2013-2018 RSC Journal of Environmental Monitoring (1464-0333) 2008-2012 2012 Environmental Science: Water Research & Technology 1 2053-1419 2015-2018 2017-2018 RSC Faraday Discussions 1364-5498 2008-2018 2012-2018 RSC Food & Function 1 2042-650X 2010-2018 2012-2018 RSC Green Chemistry 1463-9270 2008-2018 2012-2018 RSC Inorganic Chemistry Frontiers 1 2052-1553 2014-2018 2017-2018
    [Show full text]
  • SCHEDULE B Publisher Content
    SCHEDULE B Publisher Content Section A The electronic versions of the following journals: Copyright Journals E-ISSN Years Access Owner* The Analyst 1364-5528 2000-2010 External RSC Annual Reports on the Progress of Chemistry, A 1460-4760 2000-2010 External RSC B 1460 4779 2000-2010 External RSC C 1460-4787 2000-2010 External RSC Chemical Communications 1364-548X 2000-2010 External RSC Chemical Society Reviews 1460-4744 2000-2010 External RSC 1473-7604 Chemistry World (print ISSN) 2004-2010 External RSC CrystEngComm 1466-8033 2000-2010 External RSC Dalton Transactions 1364-5447 2003-2010 External RSC Faraday Discussions 1364-5498 2000-2010 External RSC Green Chemistry 1463-9270 2000-2010 External RSC 1350-7583 Issues in Environmental Science & Technology (print ISSN) 1994-2010 External RSC J. Chem. Soc., Dalton Transactions 1364-5447 2000-2002 External RSC J. Chem. Soc., Perkin Transactions 1 1364-5463 2000-2002 External RSC J. Chem. Soc., Perkin Transactions 2 1364-5471 2000-2002 External RSC Journal of Analytical Atomic Spectrometry 1364-5544 2000-2010 External RSC Journal of Environmental Monitoring 1464-0333 2000-2010 External RSC Journal of Materials Chemistry 1364-5501 2000-2010 External RSC Lab on a Chip 1473-0189 2001-2010 External RSC Molecular BioSystems 1742-2051 2005-2010 External RSC Natural Product Reports 1460-4752 2000-2010 External RSC New Journal of Chemistry 1369-9261 2000-2010 External CNRS Organic & Biomolecular Chemistry 1477-0539 2003-2010 External RSC Photochemical & Photobiological Sciences 1474-9092 2002-2010
    [Show full text]
  • Alexander Ruf Dissertation
    TECHNISCHE UNIVERSITÄT MÜNCHEN Previously unknown organomagnesium compounds in astrochemical context Alexander Ruf Dissertation TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt Lehrstuhl für Analytische Lebensmittelchemie Previously unknown organomagnesium compounds in astrochemical context Alexander Ruf Vollständiger Abdruck der von der Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigten Dissertation. Vorsitzender: Prof. Dr. Erwin Grill Prüfer der Dissertation: 1. apl. Prof. Dr. Philippe Schmitt-Kopplin 2. Prof. Dr. Michael Rychlik 3. Prof. Eric Quirico, PhD (Université Grenoble Alpes) Die Dissertation wurde am 06.12.2017 bei der Technischen Universität München ein- gereicht und durch die Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt am 18.01.2018 angenommen. Do we feel less open-minded, the more open-minded we are? A tribute to sensitivity and resolution... Acknowledgments This work has been prepared at the Helmholtz Zentrum München in the research unit Analytical BioGeoChemistry of apl. Prof. Dr. Philippe Schmitt-Kopplin, in collaboration with the Chair of Analytical Food Chemistry at the Technical Uni- versity of Munich. In the course of these years, I have relied on the courtesy and support of many to which I am grateful. The success of this PhD thesis would not have been possible without help and support of many wonderful people. First of all, I would like to thank the whole research group Analytical BioGeo- Chemistry for a very friendly, informal, and emancipated working atmosphere that formed day-by-day an enjoyable period of residence - it has felt like freedom! Small issues like having stimulating lunch discussions or going out into a bar, friendly peo- ple could be found herein to setting up a balance to scientific work.
    [Show full text]
  • August 6, 2021 1 RICHARD L. BRUTCHEY, Ph.D. Professor Of
    August 6, 2021 RICHARD L. BRUTCHEY, Ph.D. Professor of Chemistry University of Southern California Los Angeles, CA 90089-0744 Tel: (213) 821-2554 · E-mail: [email protected] · http://chem.usc.edu/~brutchey_group/Home.html Twitter: @BrutcheyGroup Professional Experience Professor of Chemistry, University of Southern California 2016-Present Joseph Meyerhoff Visiting Professor, Weizmann Institute of SCienCe 2022 ViCe Chair, Department of Chemistry, University of Southern California 2014-2021 AssoCiate Professor of Chemistry, University of Southern California 2013-2016 Visiting Professor of Chemistry, Swiss Federal Institute of TeChnology Zurich 2014 Assistant Professor of Chemistry, University of Southern California 2007-2013 Postdoctoral Fellow, UCSB-MIT-CalteCh Institute for Collaborative BioteChnologies 2005-2007 Graduate ResearCher, Department of Chemistry, UC Berkeley 2000-2005 Undergraduate ResearCher, Department of Chemistry, UC Irvine 1997-2000 Professional Preparation B.S., Chemistry (magna cum laude), UC Irvine 2000 Honors thesis title: “New Polymer Precursors from Polyhedral Oligosilsesquioxane Frameworks” Advisor: Professor Frank J. Feher Ph.D., Chemistry, UC Berkeley 2005 Thesis title: “Design and Synthesis of Heterogeneous Catalysts and Catalyst Supports Derived from Molecular Precursors” Advisor: Professor T. Don Tilley Postdoctoral Fellow, Materials, UC Santa Barbara 2005-2007 Advisor: Professor Daniel E. Morse Honors and Awards • Phi Kappa Phi Faculty Recognition Award, 2021 • ACS Inorganic Nanoscience Award, 2020 • RCSA
    [Show full text]