Invariant Fingering Over a Tuning Continuum
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tunings Thru Reverie
The Nightshift Watchman: 1) The Nightshift Watchman (D-G-D-G-B-D, capo 5) 2) Frozen in the Snow() 3) Daddy's Money (D-A-D-G-B-E, capo 1st fret) 4) That's Why I'm Laughing() 5) Come Away to Sea (C-G-C-F-C-E) 6) It's Almost Time() 7) Gone to Santa Fe() 8) Golden Key() 9) Do I Dare (D-A-D-G-A-D) 10) High Hill (C-G-D-G-A-D, capo 4th fret) 11) Sunshine on the Land (D-A-D-G-A-D, capo 1st fret) How Did You Find Me Here: 1) Eye of the Hurricane (C-G-C-G-C-E, capo 3rd fret) 2) Language of the Heart (C#-G#-C#-F#-G#-C# or DADGAD) 3) Rusty Old American Dream (C-G-C-G-C-E, capo 2nd then 3rd fret) 4) How Did You Find Me Here (D-A-D-E-A-D) 5) Leave It Like It Is (Standard E-A-D-G-B-E, capo 4th fret) 6) Saturday They'll All Be Back Again (Standard E-A-D-G-B-E, capo 4th fret) 7) Jamie's Secret (D-A-D-G-B-E) 8) It's Almost Time (C-G-D-G-B-D) 9) Just a Vehicle (C-G-D-G-B-D) 10) Common as the Rain (D-A-D-G-B-E) 11) The Kid (C-G-D-G-B-D, capo 1st fret) Home Again (For the First Time): 1) Burgundy Heart-Shaped Medallion (E-A-C#-E-A-C#) 2) Farther to Fall (D-A-D-G-A-D) 3) (You Were) Going Somewhere (D-A-D-G-B-E) 4) Wildberry Pie (D-A-D-F#-A-D) 5) Let Them In (Even Wilcox does't recall this one. -
Alternate Tuning Guide
1 Alternate Tuning Guide by Bill Sethares New tunings inspire new musical thoughts. Belew is talented... But playing in alternate Alternate tunings let you play voicings and slide tunings is impossible on stage, retuning is a between chord forms that would normally be nightmare... strings break, wiggle and bend out impossible. They give access to nonstandard of tune, necks warp. And the alternative - carry- open strings. Playing familiar fingerings on an ing around five special guitars for five special unfamiliar fretboard is exciting - you never know tuning tunes - is a hassle. Back to EBGDAE. exactly what to expect. And working out familiar But all these "practical" reasons pale com- riffs on an unfamiliar fretboard often suggests pared to psychological inertia. "I've spent years new sound patterns and variations. This book mastering one tuning, why should I try others?" helps you explore alternative ways of making Because there are musical worlds waiting to be music. exploited. Once you have retuned and explored a Why is the standard guitar tuning standard? single alternate tuning, you'll be hooked by the Where did this strange combination of a major unexpected fingerings, the easy drone strings, 3rd and four perfect 4ths come from? There is a the "new" open chords. New tunings are a way to bit of history (view the guitar as a descendant of recapture the wonder you experienced when first the lute), a bit of technology (strings which are finding your way around the fretboard - but now too high and thin tend to break, those which are you can become proficient in a matter of days too low tend to be too soft), and a bit of chance. -
Playing Music in Just Intonation: a Dynamically Adaptive Tuning Scheme
Karolin Stange,∗ Christoph Wick,† Playing Music in Just and Haye Hinrichsen∗∗ ∗Hochschule fur¨ Musik, Intonation: A Dynamically Hofstallstraße 6-8, 97070 Wurzburg,¨ Germany Adaptive Tuning Scheme †Fakultat¨ fur¨ Mathematik und Informatik ∗∗Fakultat¨ fur¨ Physik und Astronomie †∗∗Universitat¨ Wurzburg¨ Am Hubland, Campus Sud,¨ 97074 Wurzburg,¨ Germany Web: www.just-intonation.org [email protected] [email protected] [email protected] Abstract: We investigate a dynamically adaptive tuning scheme for microtonal tuning of musical instruments, allowing the performer to play music in just intonation in any key. Unlike other methods, which are based on a procedural analysis of the chordal structure, our tuning scheme continually solves a system of linear equations, rather than relying on sequences of conditional if-then clauses. In complex situations, where not all intervals of a chord can be tuned according to the frequency ratios of just intonation, the method automatically yields a tempered compromise. We outline the implementation of the algorithm in an open-source software project that we have provided to demonstrate the feasibility of the tuning method. The first attempts to mathematically characterize is particularly pronounced if m and n are small. musical intervals date back to Pythagoras, who Examples include the perfect octave (m:n = 2:1), noted that the consonance of two tones played on the perfect fifth (3:2), and the perfect fourth (4:3). a monochord can be related to simple fractions Larger values of mand n tend to correspond to more of the corresponding string lengths (for a general dissonant intervals. If a normally consonant interval introduction see, e.g., Geller 1997; White and White is sufficiently detuned from just intonation (i.e., the 2014). -
Guitar Tunings
Guitar tunings Guitar tunings assign pitches to the open strings of guitars, including acoustic guitars, electric guitars, and classical guitars. Tunings are described by the particular pitches denoted by notes in Western music. By convention, the notes are ordered from lowest-pitched string (i.e., the deepest bass note) to highest-pitched (thickest string to thinnest).[1] Standard tuning defines the string pitches as E, A, D, G, B, and E, from lowest (low E2) to highest (high E4). Standard tuning is used by most guitarists, and The range of a guitar with standard frequently used tunings can be understood as variations on standard tuning. tuning The term guitar tunings may refer to pitch sets other than standard tuning, also called nonstandard, alternative, or alternate. Some tunings are used for 0:00 MENU particular songs, and might be referred to by the song's title. There are Standard tuning (listen) hundreds of such tunings, often minor variants of established tunings. Communities of guitarists who share a musical tradition often use the same or similar tunings. Contents Standard and alternatives Standard Alternative String gauges Dropped tunings Open tunings Major key tunings Open D Open C Open G Creating any kind of open tuning Minor or “cross-note” tunings Other open chordal tunings Modal tunings Lowered (standard) E♭ tuning D tuning Regular tunings Major thirds and perfect fourths All fifths and “new standard tuning” Instrumental tunings Miscellaneous or “special” tunings 1 15 See also Notes Citation references References Further reading External links Standard and alternatives Standard Standard tuning is the tuning most frequently used on a six-string guitar and musicians assume this tuning by default if a specific alternate (or scordatura) is not mentioned. -
Tuning Continua and Keyboard Layouts
October 4, 2007 8:34 Journal of Mathematics and Music TuningContinua-RevisedVersion Journal of Mathematics and Music Vol. 00, No. 00, March 2007, 1–15 Tuning Continua and Keyboard Layouts ANDREW MILNE∗ , WILLIAM SETHARES , and JAMES PLAMONDON † ‡ § Department of Music, P.O. Box 35, FIN-40014, University of Jyvaskyl¨ a,¨ Finland. Email: [email protected] † 1415 Engineering Drive, Dept Electrical and Computer Engineering, University of Wisconsin, Madison, WI 53706 USA. ‡ Phone: 608-262-5669. Email: [email protected] CEO, Thumtronics Inc., 6911 Thistle Hill Way, Austin, TX 78754 USA. Phone: 512-363-7094. Email: § [email protected] (received April 2007) Previous work has demonstrated the existence of keyboard layouts capable of maintaining consistent fingerings across a parameterised family of tunings. This paper describes the general principles underlying layouts that are invariant in both transposition and tuning. Straightforward computational methods for determining appropriate bases for a regular temperament are given in terms of a row-reduced matrix for the temperament-mapping. A concrete description of the range over which consistent fingering can be maintained is described by the valid tuning range. Measures of the resulting keyboard layouts allowdirect comparison of the ease with which various chordal and scalic patterns can be fingered as a function of the keyboard geometry. A number of concrete examples illustrate the generality of the methods and their applicability to a wide variety of commas and temperaments, tuning continua, and keyboard layouts. Keywords: Temperament; Comma; Layout; Button-Lattice; Swathe; Isotone 2000 Mathematics Subject Classification: 15A03; 15A04 1 Introduction Some alternative keyboard designs have the property that any given interval is fingered the same in all keys. -
Invariance of Controller Fingerings Across a Continuum of Tunings
Invariance of Controller Fingerings across a Continuum of Tunings Andrew Milne∗∗, William Setharesyy, and James Plamondonzz May 26, 2007 Introduction On the standard piano-style keyboard, intervals and chords have different shapes in each key. For example, the geometric pattern of the major third C–E is different from the geometric pattern of the major third D–F]. Similarly, the major scale is fingered differently in each of the twelve keys (in this usage, fingerings are specified without regard to which digits of the hand press which keys). Other playing surfaces, such as the keyboards of [Bosanquet, 1877] and [Wicki, 1896], have the property that each interval, chord, and scale type have the same geometric shape in every key. Such keyboards are said to be transpositionally invariant [Keisler, 1988]. There are many possible ways to tune musical intervals and scales, and the introduction of computer and software synthesizers makes it possible to realize any sound in any tuning [Carlos, 1987]. Typically, however, keyboard controllers are designed to play in a single tuning, such as the familiar 12-tone equal temperament (12-TET) which divides the octave into twelve perceptually equal pieces. Is it possible to create a keyboard surface that is capable of supporting many possible tunings? Is it possible to do so in a way that analogous musical intervals are fingered the same throughout the various tunings, so that (for example) the 12-TET fifth is fingered the same as the Just fifth and as the 17-TET fifth? (Just tunings ∗∗Corresponding author. Email: [email protected] yyDepartment of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI 53706 USA. -
Regular Mappings and Marvel Temperaments
Regular Mappings and Marvel Temperaments Graham Breed This is the annotated version of the slides for the presentation I gave at Beyond the Semitone in Aberdeen, October 2013. The annotations cover things I said, or should have said, or might have said if I’d had more time. 0.1 Motivation Goals of Regular Temperament Regular temperaments are systems that approximate just intonation using fewer notes. This assumes there’s something special about just intonation that you want to preserve, and if you don’t feel this, temperament won’t be useful to you. The ”regular” part means each just ratio is tuned in a consistent way, and more than one just ratio will typically approximate to the same tempered interval. The list below is roughly prioritized, and the tuning is the least important thing. There’s a trap in microtonal literature that you focus on the tuning, and people think it’s all about tuning, although the tuning is only a tool in the service of exploring new harmonies, or making just intonation scales more manageable. • New harmonic systems • Frugal scales • Notation • Generalized keyboards • Tuning Beyond Temperament These ideas come from the study of temperaments, but can still be useful if you don’t use temperament. This is why I talk about a ”regular mapping paradigm” rather than ”regular temperament theory”. 1 I added some citations for the academic audience, and also to avoid giving the impression that everything I was talking about was original to me. Christian Kaernbach, who gave the talk after mine, discussed the idea that musicians might not play the (simplistic) theoretically correct pitches, and that doesn’t mean they’re wrong. -
Beyond the Spectrum of Music: an Exploration
BEYOND THE SPECTRUM OF MUSIC: AN EXPLORATION THROUGH SPECTRAL ANALYSIS OF SOUND COLOR IN THE ALBAN BERG VIOLIN CONCERTO by Diego Bañuelos A written project submitted in partial fulfillment of the requirements for the degree of Doctor of Musical Arts (Music) at the UNIVERSITY OF WISCONSIN-MADISON 2005 © Copyright by Diego Banuelos 2005 All Rights Reserved To Cathy Ann Elias ii CONTENTS LIST OF ILLUSTRATIONS . iii SOUND EXAMPLES . vi PART I: INTRODUCTION . 1 PART II: ANALYTICAL PROCEDURES. 14 Spectrum and Spectrogram . 14 Noise and Peaks . 20 Plotting Single Attributes of Sound . 27 Dimensions in Sound Color and the Purpose of Spectral Analysis. 27 Sensory Roughness (SR) . 30 Registral and Timbral Brightness (RB and TB) . 39 Peak Variance (PV) . 42 Noise to Signal Ratio (NSR) . 44 Summary . 47 PART III: SPECTRUM-BASED ANALYSIS OF ALBAN BERG’S VIOLIN CONCERTO (SECOND MOVEMENT) . 48 Micro-Structure . 53 Macro-Structure: Movement II in Continuity . 69 Conclusion . 80 APPENDIX A: SR, PV, NSR, RB, and TB graphs of the Berg Violin Concerto (movement II) . 84 APPENDIX B: Spectrograms of the Berg Violin Concerto (movement II) . 89 WORKS CITED . 110 iii ILLUSTRATIONS Figure Page 2.1 Spectrogram of the first six measures of Alban Berg’s Violin Concerto, movement II . 14 2.2 Spectrum of a violin open A-string analyzed over a period of 0.19 seconds 17 2.3 Stages in the construction of the spectrogram . 19 2.4 Spectrum and noise floor of a violin A-string . 22 2.5 Two spectral representations of a violin A-string. 26 2.6 Succinct representation of a Plomp and Levelt curve. -
University of Cincinnati
UNIVERSITY OF CINCINNATI Date: 28-May-2010 I, Dominic DeStefano , hereby submit this original work as part of the requirements for the degree of: Doctor of Musical Arts in Viola It is entitled: A Guide to the Pedagogy of Microtonal Intonation in Recent Viola Repertoire: Prologue by Gérard Grisey as Case Study Student Signature: Dominic DeStefano This work and its defense approved by: Committee Chair: Catharine Carroll, DMA Catharine Carroll, DMA 5/28/2010 777 A Guide to the Pedagogy of Microtonal Intonation in Recent Viola Repertoire: Prologue by Gérard Grisey as Case Study a document submitted to The Graduate School of the University of Cincinnati in partial fulfillment of the requirements for the degree of DOCTOR OF MUSICAL ARTS in the Performance Studies Division of the College-Conservatory of Music May 28, 2010 by Dominic DeStefano 3407 Clifton Ave Apt 23 Cincinnati, OH 45220 [email protected] B.M., University of Cincinnati, 2003 M.M., University of Cincinnati, 2006 ____________________________________ Advisor: Catharine Carroll, DMA ____________________________________ Reader: Masao Kawasaki ____________________________________ Reader: Lee Fiser Abstract Since its establishment as a solo instrument, the viola’s repertoire has always heavily depended upon the works of composers contemporary with its first great soloists. As this dependence on recent repertoire continues, the viola boasts a growing number of works containing microtonal pitch collections, and the modern performer and pedagogue must have the skills to interpret these works. This document serves as a guide to the intonation of microtonal viola repertoire, asserting that the first step lies in understanding the pitch collections from the composer’s point of view. -
Dissonant Views on Consonance
Dissonant Views on Consonance The Cultural Dependency of Consonance and its Reinterpretation as Euphony June 2015 MA Thesis in Arts & Culture: Musicology First supervisor: Dr. Barbara Titus Second reader: Dr. Rutger Helmers Author: Tim Ruijgrok Student number: 10633014 Date: 18-06-2015 Contents Preface ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ 2 Chapter 1 - Consonant views on consonance? ∙ ∙ ∙ ∙ ∙ 4 The cultural approach ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ 5 Chapter 2 - Consonance in the Western discourse ∙ ∙ ∙ ∙ 11 Introduction to the case studies ∙ ∙ ∙ ∙ ∙ ∙ 17 Chapter 3 - European common-practice and tonal consonance ∙ ∙ ∙ 20 The contrapuntal concept ∙ ∙ ∙ ∙ ∙ ∙ ∙ 21 The triadic/tonal concept ∙ ∙ ∙ ∙ ∙ ∙ ∙ 22 The sensory concept ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ 24 Chapter 4 - North-Indian classical music and the (absence of) harmony ∙ ∙ 29 Hindustani music ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ 31 Vādī & samvādī ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ 33 The tritone ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ 37 Chapter 5 - Javanese gamelan and inharmonic sounds ∙ ∙ ∙ ∙ 40 Spectrum and timbre ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ 42 Conclusion ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ 45 Bibliography ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ 47 1 Preface During the two years of enrolment at the University of Amsterdam, my view towards diverse expressions of music has broadened significantly. Attending the UvA with the intention to potentially increase my knowledge or interest in Asian music, I followed the "cultural trajectory" of Musicology. I was fortunate to study Russian popular music and North-Indian (classical) music, both of which – I can conclude – have enriched my knowledge. I could not come closer to my objective in terms of education, hence I attempted to steer my thesis in that direction… however, to no avail. Being unable to put my knowledge into practice in my main field of interest, i.e. Asian music, I had to make the ultimate sacrifice and leave this out of my scope. This thesis is the result of a long struggle between my own expectations of it and the actual possibilities I felt I had. -
Essential Neo-Riemannian Theory for Today's Musician
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 5-2013 Essential Neo-Riemannian Theory for Today's Musician Laura Felicity Mason [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Music Theory Commons Recommended Citation Mason, Laura Felicity, "Essential Neo-Riemannian Theory for Today's Musician. " Master's Thesis, University of Tennessee, 2013. https://trace.tennessee.edu/utk_gradthes/1646 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Laura Felicity Mason entitled "Essential Neo- Riemannian Theory for Today's Musician." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Music, with a major in Music. Brendan McConville, Major Professor We have read this thesis and recommend its acceptance: Barbara Murphy, David Northington Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Essential Neo-Riemannian Theory for Today’s Musician A Thesis Presented for the Master of Music Degree The University of Tennessee, Knoxville Laura Felicity Mason May 2013 Copyright © 2013 by Laura Felicity Mason All rights reserved. -
RESEARCH ARTICLE Metrics for Scales and Tunings
December 19, 2008 0:52 Journal of Mathematics and Music TuningMetric5 Journal of Mathematics and Music Vol. 00, No. 00, January 2009, 1–17 RESEARCH ARTICLE Metrics for Scales and Tunings a b Andrew J. Milne ∗ and William A. Sethares † aDepartment of Music, P.O. Box 35, FIN-40014, University of Jyvaskyl¨ a,¨ Finland; b1415 Engineering Drive, Department of Electrical and Computer Engineering, University of Wisconsin, Madison, WI 53706, USA (Received d mmmm yyyy; final version received d mmmm) yyyy We present a class of novel metrics for measuring the distance between any two pe- riodic scales whatever their precise tuning or cardinality. The metrics have some im- portant applications: (1) finding effective lower-dimensional temperaments of higher- dimensional tunings (such as just intonation); (2) finding simple scales that effectively approximate complex scales (e.g., using equally-tuned and well-formed scales to ap- proximate Fokker periodicity blocks and pairwise well-formed scales); (3) finding ways to map the notes of any arbitrary scale to a button lattice controller (a gen- eralized keyboard) so as to maximise geometrical consistency and playability; (4) comparing the distance of various scales (such as equal tunings with different num- bers of notes per octave) for analytical, maybe even compositional, purposes; (5) a generalized method to determine the similarity of different “pitch class sets” that is not dependent on the use of a low cardinality equal tunings such 12-tone, thus hinting at an approach towards a generalized theory of chord progression. Keywords: metric; tuning; scale; pitch class set; interval class vector; fourier transform; autocorrelation MCS/CCS/AMS Classification/CR Category numbers: ?????; ????? ∗Corresponding author.