Australia's Renewable Energy Future
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Final Report
The Senate Select Committee on Wind Turbines Final report August 2015 Commonwealth of Australia 2015 ISBN 978-1-76010-260-9 Secretariat Ms Jeanette Radcliffe (Committee Secretary) Ms Jackie Morris (Acting Secretary) Dr Richard Grant (Principal Research Officer) Ms Kate Gauthier (Principal Research Officer) Ms Trish Carling (Senior Research Officer) Mr Tasman Larnach (Senior Research Officer) Dr Joshua Forkert (Senior Research Officer) Ms Carol Stewart (Administrative Officer) Ms Kimberley Balaga (Administrative Officer) Ms Sarah Batts (Administrative Officer) PO Box 6100 Parliament House Canberra ACT 2600 Phone: 02 6277 3241 Fax: 02 6277 5829 E-mail: [email protected] Internet: www.aph.gov.au/select_windturbines This document was produced by the Senate Select Wind Turbines Committee Secretariat and printed by the Senate Printing Unit, Parliament House, Canberra. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Australia License. The details of this licence are available on the Creative Commons website: http://creativecommons.org/licenses/by-nc-nd/3.0/au/ ii MEMBERSHIP OF THE COMMITTEE 44th Parliament Members Senator John Madigan, Chair Victoria, IND Senator Bob Day AO, Deputy Chair South Australia, FFP Senator Chris Back Western Australia, LP Senator Matthew Canavan Queensland, NATS Senator David Leyonhjelm New South Wales, LDP Senator Anne Urquhart Tasmania, ALP Substitute members Senator Gavin Marshall Victoria, ALP for Senator Anne Urquhart (from 18 May to 18 May 2015) Participating members for this inquiry Senator Nick Xenophon South Australia, IND Senator the Hon Doug Cameron New South Wales, ALP iii iv TABLE OF CONTENTS Membership of the Committee ........................................................................ iii Tables and Figures ............................................................................................ -
Solar Energy Policy Setting and Applications to Cotton Production
SOLAR ENERGY POLICY SETTING AND APPLICATIONS TO COTTON PRODUCTION JW Powell I JM Welsh SOLAR ENERGY POLICY SETTING AND APPLICATIONS TO COTTON PRODUCTION Report outline Executive Summary 5 1. Energy in agriculture 6 • Energy Use in World Agriculture 6 • Energy Use in Australian Agriculture 7 • Energy Use in Irrigated Cotton 8 • The feasibility and development of renewable energy sources for cotton 9 2. Energy Policy Setting 11 • Australian Government Renewable Energy Policies 11 • Renewable Energy Target (RET) 11 • Emissions Reduction Fund 14 • Other Government Bodies 15 3. Electricity Markets & Pricing 16 • Advances in Solar Technology 20 • A Bright Future for Solar Energy in Australia 23 4. Associated solar technology 25 • Utilising ‘excess’ solar energy 25 • Battery Storage 25 • Electric Vehicles 26 Conclusion 27 Acknowledgements 27 References 28 2 SOLAR ENERGY POLICY SETTING AND APPLICATIONS TO COTTON PRODUCTION www.cottoninfo.com.au 3 SOLAR ENERGY POLICY SETTING AND APPLICATIONS TO COTTON PRODUCTION Executive Summary Energy is at the forefront of agricultural issues in Australia. Two key concerns dominate the discussion of agricultural energy: pricing volatility of energy and government policy supporting renewable energy. Together these concerns have resulted in a stimulated interest in the potential substitutes for fossil fuels. A scarcity in energy sources (particularly crude oil) has highlighted the dependence of energy-related agricultural inputs such as fertilizer, electricity and fuels for farm plant and irrigation pumping. As government policies develop, environmental concerns related to global climate change and market signals from the consumer to improve sustainability have encouraged investigation of alternative energy sources to transform the relationship between the energy and agriculture sectors. -
Global Wind Report Annual Market Update 2012 T Able of Contents
GLOBAL WIND REPORT ANNUAL MARKET UPDATE 2012 T able of contents Local Content Requirements: Cost competitiveness vs. ‘green growth’? . 4 The Global Status of Wind Power in 2012 . 8 Market Forecast for 2013-2017 . 18 Australia . .24 Brazil . .26 Canada. .28 PR China . .30 Denmark . .34 European Union . .36 Germany. .38 Global offshore . .40 India . .44 Japan . .46 Mexico . .48 Pakistan . 50 Romania . 52 South Africa . 54 South Korea . 56 Sweden . .58 Turkey . 60 Ukraine . .62 United Kingdom. .64 United States . 66 About GWEC . 70 GWEC – Global Wind 2012 Report FOREWORD 2012 was full of surprises for the global wind industry. Most As the market broadens, however, we face new challenges, surprising, of course, was the astonishing 8.4 GW installed in or rather old challenges, but in new markets. Our special the United States during the fourth quarter, as well as the fact focus chapter looks at the impact of increasing local content that the US eked out China to regain the top spot among global requirements and trade restrictions in some of the most markets for the first time since 2009. This, in combination with promising new markets, and the consequences of that a very strong year in Europe, meant that the annual market trend for an industry which is still grappling with significant grew by about 10% to just under 45 GW, and the cumulative overcapacity and the downward pressure on turbine prices market growth of almost 19% means we ended 2012 with that result. 282.5 GW of wind power globally. For the first time in three years, the majority of installations were inside the OECD. -
ZCWP02-19 Renewable Energy Projects on the Indigenous Estate: Identifying Risks and Opportunities of Utility-Scale and Dispersed Models
Zero-Carbon Energy for the Asia-Pacific Grand Challenge ZCEAP Working Papers ZCWP02-19 Renewable energy projects on the indigenous estate: identifying risks and opportunities of utility-scale and dispersed models. Kathryn Thorburn, Lily O’Neil and Janet Hunt Centre for Aboriginal Economic Policy Research, Australian National University April 2019 Executive Summary This paper considers the opportunities and risks of renewable energy developments for Aboriginal communities in Australia’s Pilbara and Kimberley regions. These regions in the North West of Australia have very high rates of Indigenous land tenure, as well as being very attractive for both solar and wind power generation, particularly as developing technology makes it feasible to transport power over large distances. They are also areas remote from Australia’s electricity networks and are therefore often reliant on expensive methods of non-renewable electricity generation, including diesel. We consider renewable energy development for these regions at two different scales. This is because research indicates that different size developments can present different opportunities and risks to Aboriginal communities. These scales are utility (between 30 – 600MW) which, at the time of writing, are predominately intended to generate energy for export or industrial use, and via smaller, dispersed models (distributed generation and microgrids under 30 MW) which are currently more likely to be built to supply energy locally. Globally, renewable energy developments have seen a trend towards some amount of community ownership for a variety of reasons including: consumer desire to play a more active role in the generation of energy; social licence to operate considerations in relation to developments usually sited close to high population areas; and governments encouraging or mandating some level of community ownership because of a combination of reasons. -
Attendee Conference Pack
Wind Energy Conference 2021 Rising to the Challenge 12 May 2021, InterContinental Hotel, Wellington, New Zealand Programme Joseph, aged 9 We would like to thank our sponsors for their support 2021 Wind Energy Conference – 12th May 2021 Wind Energy Conference Programme 12 May 2021 InterContinental, Wellington Rising to the Challenge Welcome and Minister’s The energy sector and renewables Presentation ▪ Hon Dr Megan Woods, Minister of Energy and Resources 8.30 – 9.00 Session 1 Facilitator: Dr Christina Hood, Compass Climate Decarbonising the New Zealand’s journey to net zero carbon energy sector ▪ Hon James Shaw, Minister of Climate Change 9.00 to 10.45 Infrastructure implications of decarbonisation ▪ Ross Copland, New Zealand Infrastructure Commission The industrial heat opportunity ▪ Linda Mulvihill, Fonterra Panel and Audience Discussion – testing our key opportunities and level of ambition ▪ Ross Copland, New Zealand Infrastructure Commission ▪ Linda Mulvihill, Fonterra ▪ Briony Bennett (she/her), Ministry of Business, Innovation and Employment ▪ Matt Burgess, The New Zealand Initiative ▪ Liz Yeaman, Retyna Ltd Morning Tea Sponsored by Ara Ake 10.45 to 11.15 Session 2 Waipipi, Delivering a wind farm during a global pandemic Jim Pearson, Tilt Renewables Building new wind Australian renewables and wind development update 11.15 -1.00 ▪ Kane Thornton, Clean Energy Council DNV’s Energy Transition Outlook what it means for wind energy ▪ Graham Slack, DNV A changing regulatory landscape and implications for wind and other renewables ▪ Amelia -
The Role of Law in Responding to Climate Change: Emerging Regulatory, Liability and Market Approaches
THE ROLE OF LAW IN RESPONDING TO CLIMATE CHANGE: EMERGING REGULATORY, LIABILITY AND MARKET APPROACHES NICOLA ANNA MAY DURRANT BSc (Env)/LLB (Hons)(GU); Grad DipLP (ANU) Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy Faculty of Law/Institute for Sustainable Resources Queensland University of Technology Brisbane 2008 1 KEYWORDS Climate Change, Climate Law, Climate Liabilities, Carbon Trading, Environmental Governance, Environmental Law, Environmental Policy, International Law. 2 ABSTRACT Climate change presents as the archetypal environmental problem with short-term economic self-interest operating to the detriment of the long-term sustainability of our society. The scientific reports of the Intergovernmental Panel on Climate Change strongly assert that the stabilisation of emissions in the atmosphere, to avoid the adverse impacts of climate change, requires significant and rapid reductions in ‘business as usual’ global greenhouse gas emissions. The sheer magnitude of emissions reductions required, within this urgent timeframe, will necessitate an unprecedented level of international, multi-national and intra-national cooperation and will challenge conventional approaches to the creation and implementation of international and domestic legal regimes. To meet this challenge, existing international, national and local legal systems must harmoniously implement a strong international climate change regime through a portfolio of traditional and innovative legal mechanisms that swiftly transform current behavioural practices in emitting greenhouse gases. These include the imposition of strict duties to reduce emissions through the establishment of strong command and control regulation (the regulatory approach); mechanisms for the creation and distribution of liabilities for greenhouse gas emissions and climate- related harm (the liability approach) and the use of innovative regulatory tools in the form of the carbon trading scheme (the market approach). -
Planning for Wind Power: a Study of Public Engagement in Uddevalla, Sweden
Planning for Wind Power: A Study of Public Engagement in Uddevalla, Sweden by Michael Friesen A Thesis submitted to the Faculty of Graduate Studies of The University of Manitoba In partial fulfilment of the requirements of the degree of MASTER OF CITY PLANNING Faculty of Architecture, Department of City Planning Winnipeg, MB Copyright © 2014 by Mike Friesen Abstract Despite seemingly widespread support, wind power initiatives often experience controversial development processes that may result in project delays or cancelations. Wind power planning – often derided for ignoring the concerns of local residents – is ideally positioned to engage citizens in determining if and where development may be appropriate. Following the process of a dialogue based landscape analysis in Uddevalla, Sweden, the research endeavours to better understand the ties between landscape and attitudes towards wind power, how concerned parties express these attitudes, and how these attitudes may change through public engagement. In contrast to many existing quantitative studies, the research uses one-on-one interviews with participants of the planning processes to provide a rich qualitative resource for the exploration of the topic. Five themes emerging from the interviews and their analysis, are explored in depth. These themes include: landscape form and function; the expression of public attitudes; changing attitudes; frustration with politicians and processes; and engagement and representation. Consideration is also given to landscape analysis as a method, wind -
Reliability Impacts of Increased Wind Generation in the Australian National Electricity Grid
Reliability Impacts of Increased Wind Generation in the Australian National Electricity Grid Mehdi Mosadeghy B.Sc., M.Sc. A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2015 School of Information Technology and Electrical Engineering Abstract Wind power penetration has been consistently growing and it has been rapidly becoming a significant generation technology in many countries. However, the intermittent and variable nature of wind energy is a major barrier in wind power commitment. Wind speed fluctuations and unpredictability can affect the operation and reliability of power systems. Therefore, the impact of integrating large volume of wind generators on the system reliability needs to be carefully investigated and the reliability contributions of wind farms require to be evaluated for better integration of wind energy sources. Because of intermittency and variability of wind energy, conventional reliability evaluation methods are not applicable and different techniques have been developed to model wind generators. However, most of these methods are time-consuming or may not be able to capture time dependency and correlations between renewable resources and load. Therefore, this research intends to improve the existing reliability methods and proposes a faster and simpler approach. In this approach, wind power and electricity demand are being modelled as time-dependent clusters, which not only can capture their time-dependent attributes, but also is able to keep the correlations between the data sets. To illustrate the effectiveness of this framework, the proposed methodology has been applied to the IEEE reliability test system. In addition, the developed technique is validated by comparing results with the sequential Monte Carlo technique. -
Renewable Energy in Agriculture.Pdf
Renewable energy in agriculture A farmer’s guide to technology and feasibility Renewable energy in agriculture Authors: Gerry Flores, David Eyre, David Hoffmann © NSW Farmers Association and the NSW Office of Environment and Heritage All rights reserved ISBN: 978-0-9942464-0-0 Citation information: Flores G, Eyre D N, Hoffmann D, Renewable energy in agriculture: A farmer’s guide to technology and feasibility NSW Farmers, 2015 First edition, May 2015. Acknowledgements This publication has been produced by NSW Farmers with assistance from the NSW Office of Environment and Heritage. Authors: Gerry Flores, David Eyre, David Hoffmann © NSW Farmers Association and the NSW Office of Environment and Heritage All rights reserved ISBN: 978-0-9942464-0-0 Citation information: Flores G, Eyre D N, Hoffmann D, Renewable energy in agriculture: A farmer’s guide to technology and feasibility, NSW Farmers, 2015 Copyright and disclaimer This document: • Is copyright to NSW Farmers Association and the NSW Office of Environment and Heritage • Is only intended for the purpose of assisting farmers and those interested in on- farm energy generation (and is not intended for any other purpose). While all care has been taken to ensure this publication is free from omission and error, no responsibility can be taken for the use of this information in the design or installation of any solar electric system. Cover photo: Solar PV is widely adopted in First Edition, May 2015. Australia by farmers who operate intensive facilities. A farmer’s guide to technology and feasibility 1 Contents 2. Foreword 3. About this guide 4. Overview 6. -
Clean Energy Australia 2019
CLEAN ENERGY AUSTRALIA CLEAN ENERGY AUSTRALIA REPORT 2019 AUSTRALIA CLEAN ENERGY REPORT 2019 We put more energy into your future At Equip, we’re fairly and squarely focused on generating the best possible returns to power the financial future of our members. With more than 85 years in the business of reliably delivering superannuation to employees in the energy sector, it makes sense to nominate Equip as the default fund for your workplace. Equip Super fair and square Call Tyson Adams Ph: 03 9248 5940 Mob: 0488 988 256 or email: [email protected] This is general information only. It does not take into account your personal objectives, financial situation or needs and should therefore not be taken as personal advice.Equipsuper Pty Ltd ABN 64 006 964 049, AFSL 246383 is the Trustee of the Equipsuper Superannuation Fund ABN 33 813 823 017. Before making a decision to invest in the Equipsuper Superannuation Fund, you should read the appropriate Equip Product Disclosure Statement (PDS). Past performance is not a reliable indicator of future performance. Equipsuper Financial Planning Pty Ltd (ABN 84 124 491 078, AFSL 455010) is licensed to provide financial planning services to retail and wholesale clients. Equipsuper Financial Planning Pty Ltd is owned on behalf of Equipsuper Pty Ltd. CONTENTS 4 Introduction 6 2018 snapshot 12 Jobs and investment in renewable energy by state 15 Project tracker 16 Policy void risks momentum built by Renewable Energy Target 18 Industry outlook: small-scale renewable energy 19 Industry outlook: large-scale -
Preliminary Assessment of the Impact of Wind Farms on Surrounding Land Values in Australia, NSW Valuer
PRELIMINARY ASSESSMENT OF THE IMPACT OF WIND FARMS ON SURROUNDING LAND VALUES IN AUSTRALIA NSW DEPARTMENT OF LANDS PRELIMINARY ASSESSMENT OF THE IMPACT OF WIND FARMS ON SURROUNDING LAND VALUES IN AUSTRALIA Prepared for: NSW Valuer General August 2009 RESEARCH REPORT 1 PRP REF: M.6777 PRELIMINARY ASSESSMENT OF THE IMPACT OF WIND FARMS ON SURROUNDING LAND VALUES IN AUSTRALIA NSW DEPARTMENT OF LANDS CONTENTS EXECUTIVE SUMMARY _____________________________________________________________ 2 1. INTRODUCTION ______________________________________________________________ 3 2. CONTEXT ___________________________________________________________________ 4 3. LITERATURE REVIEW _________________________________________________________ 5 4. METHODOLOGY _____________________________________________________________ 12 5. RESULTS ___________________________________________________________________ 16 6. DISCUSSION ________________________________________________________________ 54 7. REFERENCES _______________________________________________________________ 56 RESEARCH REPORT 1 PRP REF: M.6777 PRELIMINARY ASSESSMENT OF THE IMPACT OF WIND FARMS ON SURROUNDING LAND VALUES IN AUSTRALIA NSW DEPARTMENT OF LANDS EXECUTIVE SUMMARY The aim of this study was to conduct a preliminary assessment on the impacts of wind farms on surrounding land values in Australia, mainly through the analysis of property sales transaction data. This included consideration of the contribution of various factors (including distance to a wind farm, view of a wind farm, and land use) to -
Clean Energy Australia 2020
CLEAN ENERGY AUSTRALIA CLEAN ENERGY AUSTRALIA REPORT 2020 AUSTRALIA CLEAN ENERGY REPORT 2020 CONTENTS 4 Introduction 6 2019 snapshot 12 Jobs and investment in renewable energy by state 15 Project tracker 16 Renewable Energy Target a reminder of what good policy looks like 18 Industry outlook: small-scale renewable energy 22 Industry outlook: large-scale renewable energy 24 State policies 26 Australian Capital Territory 28 New South Wales 30 Northern Territory 32 Queensland 34 South Australia 36 Tasmania 38 Victoria 40 Western Australia 42 Employment 44 Renewables for business 48 International update 50 Electricity prices 52 Transmission 54 Energy reliability 56 Technology profiles 58 Battery storage 60 Hydro and pumped hydro 62 Hydrogen 64 Solar: Household and commercial systems up to 100 kW 72 Solar: Medium-scale systems between 100 kW and 5 MW 74 Solar: Large-scale systems larger than 5 MW 78 Wind Cover image: Lake Bonney Battery Energy Storage System, South Australia INTRODUCTION Kane Thornton Chief Executive, Clean Energy Council Whether it was the More than 2.2 GW of new large-scale Despite the industry’s record-breaking achievement of the renewable generation capacity was year, the electricity grid and the lack of Renewable Energy Target, added to the grid in 2019 across 34 a long-term energy policy continue to projects, representing $4.3 billion in be a barrier to further growth for large- a record year for the investment and creating more than scale renewable energy investment. construction of wind and 4000 new jobs. Almost two-thirds of Grid congestion, erratic transmission solar or the emergence this new generation came from loss factors and system strength issues of the hydrogen industry, large-scale solar, while the wind sector caused considerable headaches for by any measure 2019 was had its best ever year in 2019 as 837 project developers in 2019 as the MW of new capacity was installed grid struggled to keep pace with the a remarkable year for transition to renewable energy.