Limitations on the Use of Volkamer Lemon As Rootstock for Citrus

Total Page:16

File Type:pdf, Size:1020Kb

Limitations on the Use of Volkamer Lemon As Rootstock for Citrus Limitations on the Use of Volkamer Lemon as Rootstock for Citrus Ary A. Salibe and Ede Cereda ABSTRACT. Performance tests revealed a number of restrictions on the use of Volkamer lemon as rootstock: intolerance to xyloporosis (cachexia) viroid, develop- ment of budunion crease with certain scion varieties and appearance of wood pitting in the presence of severe strains of tristeza virus. Typical crease symptoms occurred at the union of trees of Serrana acidless, Pera Bianchi, Pera Santa Irene, nucellar Pera Vacinada and Pera Comprida oranges and Citrus macroptera scion varieties. Trees of nucellar Serrana orange on the same rootstock were healthy. Tests of four Volkameriana lemon selections for susceptibility to tristeza stem pitting virus, revealed that Acireale was more tolerant than Palermo, while Catania-1 and Catania-2 were intermediate. All selections showed good tolerance to severe strains of exocortis viroid. Orchard surveys showed the occurrence of symptoms of "citrus de- cline" in trees budded on Volkamer lemon. Index words. xyloporosis, budunion crease, tristeza stem pitting. There is a growing interest in interest in nurserymen and grow- the use of Volkamer lemon, Citrus ers in the use of Volkamer lemon volkameriana as rootstock for as rootstock in SBo Paulo, Brazil. citrus, due to its tolerance to tris- The results of the research re- teza, good resistance to Phytoph- ported here revealed some restric- thora root rot and to "ma1 secco" tions on the use of Volkamer lemon caused by Deuterophoma trachei- as a rootstock for certain citrus phila Petri and because it induces scion varieties and indicated its be- high vigour and productivity to the haviour in the presence of major scions. According to Russo (7, 8) viruses. this citrus type has many charac- EXPERIMENTS AND RESULTS teristics resembling those of Rang- pur lime and may be identical to Reaction to tristeza virus. Canton lemon. Truly, the trees and Eight-month-old seedlings of four fruits of Volkamer lemon are in selections of Volkamer lemon many aspects nearly identical to named Acireale, Palermo, Catania-1 rough lemon and only a few charac- and Catania-2 were infected with teristics remind one of Rangpur a severe strain of tristeza virus lime (12, 16). with the brown citrus aphid, Performance tests conducted in Toxoptera citricida Kirk. Original Brazil of Volkamer lemon as a seeds of these lemon selections rootstock for orange and lemon were obtained from Acireale Citrus scions, yielded excellent results Station, Sicily, Italy, through the (11, 17). This opened the possi- kindness of Dr. Francesco Russo. bility of using this variety as an Colonies of T. citricida were alternate for Rangpur lime, which allowed to feed for several days on has ranked first in most of 100 a nucellar Hamlin orange tree in- rootstock experiments conducted in fected with a severe strain of tris- Brazil during the last fifty years teza stem pitting virus. Aphids (6). The outstanding behaviour of were then transferred to the young Volkamer lemon with tristeza-in- Volkamer lemon seedlings (about fected orange scions indicated that 40-50 adults aphids to each seed- it was tolerant to this virus. This ling) and were killed with insecti- information roused a growing cide four days later. Ten seedlings Ninth ZOCV Conference of each selection were inoculated vere exocortis and the rumple and another ten seedlings left as agent. All three trees inspected noninoculated controls. were healthy, vigorous, with no All seedlings were cut back two trunk symptoms characteristic of months later and three new sprouts exocortis. Trees of same scion allowed to grow. On September variety budded on Rangpur lime 1980, one year after inoculation, were stunted, with severe cracking all sprouts were peeled and rated and bark scaling in the trunk of the for stem pitting, on a scale of zero rootstock. (no pits) to four (severely pitted). Inspections made in the same Average results were: Palermo se- citrus collection on Volkamer lemon lection 2.9, Catania-2 2.7, Catania-1 rootstock, revealed typical symp- 1.6, Acireale 0.4 and all healthy toms of xyloporosis (cachexia) in controls 0.0. No significant differ- two trees of Uruguay sweet lime. ences in growth occurred between The removal of a piece of bark at infected and healthy control plants. the union showed the presence of Field observation of trees on conoid pits and pegs, tissue dis- Volkamer lemon with 21-year-old colorations and gum pockets in the nucellar Baianinha navel orange bark characteristic of the disease scions, and with 12-year-old nu- (1, 2, 14, 15). Stunting of affected cellar Valencia orange scions, in- trees was also noticeable. fected with tristeza virus revealed Inspections for budunion crease. vigorous growth and good produc- The excellent performance of trees tivity, with no visible deleterious budded on Volkamer lemon in the effect due to the presence of tris- preliminary experiments, led to the teza virus. establishment of a citrus collection Reaction to exocortis and xylo- on this rootstock. Varieties were of porosis viroids : Eight-month-old old or nucellar clones according to seedlings of Volkamer lemon grow- the material available. In some in- ing in the field were infected with stances, nucellar and old clones of exocortis and xyloporosis viroids. the same variety were included. Seedlings were of the Acireale se- The citrus collection was es- lection and were grown from seeds tablished at the S. Manoel Experi- taken from a single mother tree. ment Station, in November 1974, Sources of inoculum were a and included: 26 oranges, 12 Bar50 orange tree carrying severe lemons, 10 tangerines, 2 tangors, 5 xyloporosis and a Hamlin orange citrons, 3 sweet limes, 3 sour tree carrying severe exocortis. Ten oranges, plus one limequat, one seedlings of Volkamer lemon were shaddock, one grapefruit, one infected with exocortis and another tangelo and Citrus rnacroptera ten with xyloporosis, with the use totaling 66 varieties. Most im- of three blind buds for inoculation portant commercial citrus varieties of each seedling. Ten noninoculated were represented in the collection seedlings were cut back and one to determine their behaviour and sprout allowed to grow on each compatibility with Volkamer lemon seedling. Periodic inspection, to rootstock. May 1983 (35 months following in- Periodic observations indicated oculation) showed no symptoms of that trees made vigorous growth, exocortis and xyloporosis in the with differences according to the seedlings. scion species or hybrids. Average Inspections were also made of tree heights in May 1982 were: field trees of nine-year-old Lisbon for lemons 4.25 m, Marsh seedless lemon budded on Volkamer lemon, grapefruit 3.05 m, citrons 3.00 m, known to be infected with very se- sweet limes 2.95 m, shaddock 2.90 Other Subjects m, sour oranges 2.81 m, tangors commercial varieties. Volkamer 2.75 m, tangerines 2.60 m, sweet lemon has many outstanding oranges 2.31 m, Orlando tangelo characteristics (8, 11, 17, 18) that 2.15 m, Eustis limequat 1.80 m and recommends its use as rootstock. Citrus macroptera. 1.50 m. In- However, trees of certain scion spections of the budunion by the varieties develop budunion crease removal of a piece of bark, revealed when budded on this rootstock and typical budunion crease symptoms symptoms were similar to those of (4.10) with the following scion some Pera orange and other scion varieties : Serrana acidless, Pera varieties budded on Florida rough Bianchi, Pera Santa Irene, nucellar lemon (3, 5, 10, 13). Pera Vacinada (nucellar Pera pre- Pera orange is the most im- immunized with mild tristeza portant scion variety grown in virus) and Pera comprida oranges Brazil, and includes possibly 50 to and Citrus macroptera. All trees of 60 per cent of all citrus trees in nucellar Serrana orange in the the State of S5o Paulo. Thus, the same collection were healthy. These incompatibility shown by Pera trees with budunion incompati- orange trees on Volkamer lemon bility were conspicuously smaller rootstock drastically limits the use than trees having Valencia, of this rootstock there. Baianinha, and Navel orange The occurrence of budunion scions. crease symptoms in trees of old Wood pitting caused by tristeza line Serrana orange on Volkamer virus was observed in the trunk lemon rootstock and the absence of of the rootstock in trees budded to symptoms in the trees of nucellar the Feijiio Crii and Sanguinea de line Serrana orange raises the Mombuca sweet oranges. Indexing possibility of a transmissible agent showed that these trees were carry- being involved in the problem. ing very severe strains of tristeza Several authors attributed bud- seedling yellows virus. union crease to a genetic incom- Reaction to citrus decline. Ten patibility (4, 9, 13) but a trans- young trees of Baianinha navel missible agent has been indicated orange budded on Volkamer lemon, as the cause of the problem in two years old in the nursery were certain stionic combinations (5). inoculated with buds taken from Volkamer lemons has been trees showing "citrus decline." shown here to be tolerant to exo- This was part of a larger experi- cortis and intolerant to xyloporosis. ment to study this disease which is These results strengthen the idea similar to Florida blight. Two years that it has some characteristics of after inoculation all trees were still rough lemon ( tolerance to exo- apparently healthy. cortis, budunion crease with certain Field inspections in a com- scion varieties) and some others of mercial Valencia orange grove with Rangpur lime (intolerance to xylo- various rootstocks, revealed several porosis). The use of healthy mother trees with symptoms of "citrus de- trees, free from xyloporosis viroid cline" in Volkamer lemon and Rang- is then necessary when using Volk- pur lime rootstocks. amer lemon rootstock.
Recommended publications
  • Observations on Impietratura Disease Symptoms in Four Citrus Species
    Observations on Impietratura Disease Symptoms in Four Citrus Species A. Caruso, M. Davino and G. Terranova ABSTRACT. Citrus impietratura disease affects citrus cultivars in the Mediterranean Basin. The indexing of impietratura disease is based on symptoms on indicator plants such as Volkamer lemon or grapefruit or on the inspection of the trees in the field. This requires many years. In this paper the effects of a severe isolate of impietratura on sweet orange, Volkamer lemon, rough lemon and Marsh Seedless grapefruit is reported. Our observations indicate that rough lemon is a better indicator of fruit symptoms than Volkamer lemon, grapefruit and sweet orange. Index words. biological assay, albedo gumming, rough lemon. In Italy cristacortis, concave gum servation for at least three years. Dif- and impietratura are widespread in ficulties in timely indexing of old line commercial orchards. The causal Navelina trees planted in Italy be- agents of these diseases have not been tween 1970 and 1985 resulted in the characterized and their detection is high percentage of infection (>30%) by still by means of biological assays. impietratura, concave gum and Due of its excellent bioagronomic psorosis A (4,6,13). and marketing character, in Italy the Rough lemon was initially consid- cultivation of the Navelina sweet ered to be tolerant to impietratura dis- orange spread rapidly in many citrus- ease (9), but later studies showed it to growing areas by growers, despite the be susceptible (7,8,12) and Catara and fact that the first trees imported pre- Scaramuzzi (5) suggested its use as an sented very mild flecking symptoms on alternative indicator.
    [Show full text]
  • Rangpur Lime X Troyer Citrange, a Hybrid Citrus Rootstock for Closely Spaced Trees
    Proc. Fla. State Hort. Soc. 99:33-35. 1986. RANGPUR LIME X TROYER CITRANGE, A HYBRID CITRUS ROOTSTOCK FOR CLOSELY SPACED TREES W. S. Castle A combination of diseases, repeated freezes, and other University of Florida, IFAS factors has reemphasized the importance of rootstocks in Citrus Research and Education Center Florida. Moreover, the effects of these factors illustrate the 700 Experiment Station Road inherent weaknesses in virtually all citrus rootstocks and Lake Alfred, FL 33850 the need to continually search for new, improved ones. Another recent trend related to rootstocks has been C. O. YOUTSEY the shift toward more closely spaced trees, particularly FDACS, Division of Plant Industry within the row (7,8). Rootstocks well-suited for dense plan Citrus Budwood Registration Bureau tings have not been available although such stocks are 3027 Lake Alfred Road being evaluated and one appears particularly promising Winter Haven, FL 33881 (1, 3, 4, 8). It is a hybrid of Rangpur lime and Troyer D. J. Hutchison citrange (RxT) and has been under study in Florida for 18 United States Department of Agriculture yr. During this period, trees on RxT have demonstrated Agricultural Research Service sufficient commercial potential to justify our presentation 2120 Camden Road in this report of their performance and a description of Orlando, FL 32803 RxT and its characteristics. Additional index words. Blight, tristeza, tree size control. History Dr. J. R. Furr, formerly a plant breeder with the U.S. Abstract. A hybrid of Rangpur lime (Citrus limonia Osb.) and Department of Agriculture (USDA) at Indio, California, Troyer citrange [ C. sinensis (L) Osb.
    [Show full text]
  • Eight New Somatic Hybrid Citrus Rootstocks with Potential For
    HORTSCIENCE 27(9):1033-1036. 1992. pest resistance into horticulturally desirable rootstocks adapted to the various environ- mental conditions that exist in Florida. Eight New Somatic Hybrid Citrus Rough lemon, Volkamer lemon, and Rangpur have been used as rootstocks, be- Rootstocks with Potential for cause trees on these stocks are vigorous, high- yielding, and tristeza- and drought-tolerant Improved Disease Resistance (Castle, 1987; Castle et al., 1989). How- ever, their use has declined because they are Eliezer S. Louzada1, Jude W. Grosseti, Frederick G. Gmitter, Jr.2, highly susceptible to citrus blight. Cleopatra Beatriz Nielsen3, and J.L. Chandler3 mandarin has become an increasingly im- portant rootstock that is less susceptible to Department of Horticultural Sciences, Citrus Research and Education citrus blight than the rootstocks named above, Center, Institute of Food and Agricultural Sciences, University of tolerant to tristeza, and cold-hardy. Trees Florida, 700 Experiment Station Road, Lake Alfred, FL 33850 grafted on Cleopatra mandarin are moder- ately vigorous but are slow to reach full 2 Xiu Xin Deng bearing potential (Castle et al., 1989). Sweet Department of Horticulture, Huazhong Agricultural University, Wuhan orange is tolerant of citrus blight, but is not Hubei 430070, People’s Republic of China used as a rootstock due to Phytophthora sus- ceptibility. Somatic hybridization of Cleo- Nicasio Tusa4 patra mandarin with rough lemon, Volkamer lemon, and Rangpur; ‘Hamlin’ sweet orange Centro di Studio per il Miglioramento Genetico degli Agrumi, Consiglio with Rangpur; and ‘Valencia’ sweet orange Nazionale delle Ricerche, Male delle Scienze, Palenno 90128, Sicily with Carrizo citrange was attempted to gen- Additional index words.
    [Show full text]
  • Effect of Temperature on Germination of Citrus Macroptera, Citrus Latipes and Citrus Indica Seeds *Anamika Upadhaya, Shiva S
    ISSN. 0972 - 8406 The NEHU Journal Vol. XVII, No. 1 (January - June) and No. 2 (July - December) 2019, pp. 12-20 Effect of temperature on germination of Citrus macroptera, Citrus latipes and Citrus indica seeds *Anamika Upadhaya, Shiva S. Chaturvedi, Brajesh K. Tiwari and Dibyendu Paul Department of Environmental Studies, North Eastern Hill University Umshing, Meghalaya, India – 793022 *Corresponding author : [email protected] Abstract Seeds are an important means of propagation of Citrus species. Seeds of three wild Citrus namely; Citrus macroptera Montrouz., Citrus latipes (Swingle) Tanaka and Citrus indica Tanaka were germinated at 20°C, 25°C, 30°C and 35°C temperature to observe the effect of temperature on germination. Mean germination time and percentage seed germinated were recorded and used to determine optimum temperature for germination. Viability of seeds determined using chemical and germination tests yielded similar results. Optimum temperature for germination was found to be 28°C for C. macroptera and C. latipes and 26°C for C. indica. Keywords: Germination, wild, C. macroptera, C. latipes, C. indica, Meghalaya Introduction Citrus has been domesticated since ancient times, and where ‘natural’ populations are located, it is often difficult to determine whether they represent wild ancestors or are derived from naturalized forms of introduced varieties. Though relatively rare in wild, Citrus are mostly found as scattered trees in primary forests in remote areas rather than as pure stands. In India, a vast reservoir of Citrus diversity exists both in wild and in cultivated forms. North-eastern India is considered as natural home of many Citrus species with wide occurrence of indigenous species like C.
    [Show full text]
  • Chemical Variability of Peel and Leaf Essential Oils in the Citrus Subgenus Papeda (Swingle) and Relatives
    Chemical variability of peel and leaf essential oils in the Citrus subgenus Papeda (Swingle) and relatives Clémentine Baccati, Marc Gibernau, Mathieu Paoli, Patrick Ollitrault, Félix Tomi, François Luro To cite this version: Clémentine Baccati, Marc Gibernau, Mathieu Paoli, Patrick Ollitrault, Félix Tomi, et al.. Chemical variability of peel and leaf essential oils in the Citrus subgenus Papeda (Swingle) and relatives. Plants, MDPI, 2021, 10 (6), pp.1117. 10.3390/plants10061117. hal-03262123 HAL Id: hal-03262123 https://hal.archives-ouvertes.fr/hal-03262123 Submitted on 16 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Chemical variability of peel and leaf essential oils in the Citrus subgenus Papeda (Swingle) and relatives Clémentine Baccati 1, Marc Gibernau 1, Mathieu Paoli 1, Patrick Ollitrault 2,3, Félix Tomi 1, * and François Luro 2 1 Université de Corse-CNRS, UMR 6134 SPE, Route des Sanguinaires, 20000 Ajaccio, France; [email protected] (C.B.) ; [email protected] (M.G.) ; [email protected] (M.P.) ; [email protected] (F.T.) 2 UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro – 20230, San Giuliano, France 3 CIRAD, UMR AGAP, F-20230 San Giuliano, France * Correspondence: [email protected]; tel.:+33-495-52-4122.
    [Show full text]
  • 'Orlando' Tangelos on 10 Rootstocks
    Literature Cited Proc. Int. Soc. Citriculture. (In press) 3. Reece, P. C, and F. E. Gardner. 1959. Robinson, Osceola and Lee- 1. Hearn, C. J., P. C. Reece, and R. Fenton. 1968. Effects of pollen new early maturing tangerine hybrids. Proc. Fla. State Hort. Soc. source on fruit characteristics and set of four citrus hybrids. Proc. 72:48-51. Fla. State Hort. Soc. 81:94-98. 4. , , and C. J. Hearn. 1963. Page orange—a prom 2. Krezdorn, A. H. 1977. Influence of rootstock on mandarin cultivars. ising variety. Proc. Fla. State Hort. Soc. 76:53-54. Proc. Fla. State Hort. Soc. 90:47-49. 1977. THE PERFORMANCE OF 'NOVA' AND 'ORLANDO' TANGELOS ON 10 ROOTSTOCKS D. J. Hutchison and C. J. Hearn1 The rootstocks were Carrizo (CAR), Rusk (RSK), and Agricultural Research Service, Troyer (TROY) citranges (C. sinensis (L.) Osbeck X U.S. Department of Agriculture, Poncirus trifoliata (L.) Raf.); Estes rough lemon (RL) (C. Orlando, FL 32803 Union (L.) Burm. L); Milam (MIL) (rough lemon hybrid?); Seville sour orange (SO) (C. aurantium L.); Cleopatra mandarin (CLEO) (C. reticulata); Large Flower trifoliate Additional index words. Citrus. orange (LETO) (P. trifoliata); Orlando tangelo (ORL); and Sanguine Grosse Ronde sweet orange (SANG) (C. Abstract. 'Nova' and 'Orlando' tangelos were evaluated sinensis). on 10 rootstocks during 1968-1976. 'Nova' and 'Orlando' tangelos propagated on rough lemon rootstock produced the largest trees. The highest yields were 'Nova' on rough lemon Results and Discussion and 'Orlando' on Troyer rootstocks. The highest total soluble The time of bloom indicated by percentage petal drop solids were produced by 'Nova' on sour orange and 'Or in 1969 and 1971 is shown in Table 1.
    [Show full text]
  • Limau Purut. the Story of Lime-Leaves (Citrus Hystrix DC, Rutaceae)?
    Gardens' Bulletin Singapore 54 (2002) 185-197. Limau Hantu and Limau Purut. the Story of Lime-Leaves (Citrus hystrix DC, Rutaceae)? D. J. MABBERLEY Nationaal Herbarium Nederland, University of Leiden, The Netherlands; Royal Botanic Gardens Sydney, Mrs Macquaries Road, Sydney 2000, Australia* Abstract Limau purut (Citrus hystrix DC), cultivated throughout SE Asia, appears to be a selected form of the wild limau hantu (C. macroptera Montr., i.e. C. auraria Michel), though its earliest scientific name may be C. fusca Lour. Complete synonymy with types is presented in a provisional arrangement of 'wild' plants and cultivars. Suggestions for further work on C. hystrix and its relations with other cultivated citrus are made. X Citroncirus is formally reduced to Citrus and a new name proposed for the citrange root-stock, Citrus x insitorum Mabb. A diagram of the relationships through hybridity of cultivated citrus is presented. Introduction Characteristic of Thai cooking, worldwide, are lime-leaves (limau purut, Citrus hystrix DC), chopped fine better to release their oils. The fruits are not used for food, because, unlike those of species and hybrids placed in 'subg. Citrus', those of C. hystrix and other species placed in 'subgen. Papeda (Hassk.) Swingle' are almost inedible due to the acrid oil in the vesicles surrounding the seeds (Mabberley, 1997). They have been used medicinally, and in Sri Lanka the English name is leech-lime because they are used as a leech-repellent. In the Malay Peninsula the fruits were a soap substitute and sold for this purpose (Burkill, 1931), a practice still prevalent in Cambodia (Boeun Sok, Royal Botanic Gardens Sydney, pers.
    [Show full text]
  • Survey of Phenolic Compounds Produced in Citrus
    USDA ??:-Z7 S rveyof Phenolic United States Department of Agriculture C mpounds Produced IliIIiI Agricultural Research In Citrus Service Technical Bulletin Number 1856 December 1998 United States Department of Agriculture Survey of Phenolic Compounds Agricultural Produced in Citrus Research Service Mark Berhow, Brent Tisserat, Katherine Kanes, and Carl Vandercook Technical Bulletin Number 1856 December 1998 This research project was conducted at USDA, Agricultural Research Service, Fruit and Vegetable Chem­ istry laboratory, Pasadena, California, where Berhow was a research chemist, TIsserat was a research geneticist, Kanes was a research associate, and Vandercook, now retired, was a research chemist. Berhow and Tisserat now work at the USDA-ARS National Center for AgriCUltural Utilization Research, Peoria, Illinois, where Berhow is a research chemist and Tisserat is a research geneticist. Abstract Berhow, M., B. Tisserat, K. Kanes, and C. Vandercook. 1998. Survey of Mention of trade names or companies in this publication is solely for the Phenolic Compounds Produced in Citrus. U.S. Department ofAgriculture, purpose of providing specific information and does not imply recommenda­ Agricultural Research Service, Technical Bulletin No. 1856, 158 pp. tion or endorsement by the U. S. Department ofAgriculture over others not mentioned. A survey of phenolic compounds, especially flavanones and flavone and flavonol compounds, using high pressure liquid chromatography was While supplies last, single copies of this publication may be obtained at no performed in Rutaceae, subfamily Aurantioideae, representing 5 genera, cost from- 35 species, and 114 cultivars. The average number of peaks, or phenolic USDA, ARS, National Center for Agricultural Utilization Research compounds, occurring in citrus leaf, flavedo, albedo, and juice vesicles 1815 North University Street were 21, 17, 15, and 9.3, respectively.
    [Show full text]
  • Citrus Industry Biosecurity Plan 2015
    Industry Biosecurity Plan for the Citrus Industry Version 3.0 July 2015 PLANT HEALTH AUSTRALIA | Citrus Industry Biosecurity Plan 2015 Location: Level 1 1 Phipps Close DEAKIN ACT 2600 Phone: +61 2 6215 7700 Fax: +61 2 6260 4321 E-mail: [email protected] Visit our web site: www.planthealthaustralia.com.au An electronic copy of this plan is available through the email address listed above. © Plant Health Australia Limited 2004 Copyright in this publication is owned by Plant Health Australia Limited, except when content has been provided by other contributors, in which case copyright may be owned by another person. With the exception of any material protected by a trade mark, this publication is licensed under a Creative Commons Attribution-No Derivs 3.0 Australia licence. Any use of this publication, other than as authorised under this licence or copyright law, is prohibited. http://creativecommons.org/licenses/by-nd/3.0/ - This details the relevant licence conditions, including the full legal code. This licence allows for redistribution, commercial and non-commercial, as long as it is passed along unchanged and in whole, with credit to Plant Health Australia (as below). In referencing this document, the preferred citation is: Plant Health Australia Ltd (2004) Industry Biosecurity Plan for the Citrus Industry (Version 3.0 – July 2015). Plant Health Australia, Canberra, ACT. Disclaimer: The material contained in this publication is produced for general information only. It is not intended as professional advice on any particular matter. No person should act or fail to act on the basis of any material contained in this publication without first obtaining specific and independent professional advice.
    [Show full text]
  • Antimicrobial Activity Screening for Three Citrus Pulp Extracts and Phytochemical Constituency Profiling
    Journal of Pharmacognosy and Phytochemistry 2019; 8(4): 157-161 E-ISSN: 2278-4136 P-ISSN: 2349-8234 JPP 2019; 8(4): 157-161 Antimicrobial activity screening for three Citrus Received: 16-03-2019 Accepted: 18-04-2019 pulp extracts and phytochemical constituency profiling Farhana Rumzum Bhuiyan Department of Botany, University of Chittagong, Chittagong, Bangladesh Farhana Rumzum Bhuiyan, Mahmudul Hasan, Abdus Shukur Imran, Sheikh Rashel Ahmed, Parsha Shanzana and Marufatuzzahan Mahmudul Hasan Department of Pharmaceuticals and Industrial Biotechnology, Abstract Sylhet Agricultural University, Selective utilization of plant extracts as potential source of pharmaceutical agents has been increasing in Sylhet, Bangladesh recent years. Many of the plant extracts possess bio-active components which inhibit the growth of some of the Gram positive and Gram negative bacterial pathogens. Three different species of Citrus (Citrus Md. Abdus Shukur Imran limon, Citrus aurantifolia and Citrus macroptera) fruits pulp extracts were allowed to antimicrobial Department of Pharmaceuticals screening against pathogenic bacteria viz., Staphylococcus aureus, Escherichia coli, Klebsiella sp., and Industrial Biotechnology, Pseudomonas sp. and Salmonella sp. Ethanol extract of Citrus macroptera showed highest zone of Sylhet Agricultural University, inhibition (14±0.25mm) against Klebsiella sp. and methanol extract of Citrus aurantifolia showed Sylhet, Bangladesh highest zone of inhibition (8 ± 0.56 mm) against Salmonella Sp. Ethanol extract and methanol extracts of Citrus fruits are more effective against pathogenic bacteria. Among different extraction methods, water Sheikh Rashel Ahmed bath method showed better result than soaking method. So it could be assumed that Citrus fruit may Department of Plant and Environmental Biotechnology, release more bioactive compound in water bath method rather than soaking method.
    [Show full text]
  • Effect of Environmental Conditions on the Yield of Peel and Composition
    agronomy Article Effect of Environmental Conditions on the Yield of Peel and Composition of Essential Oils from Citrus Cultivated in Bahia (Brazil) and Corsica (France) François Luro 1,*, Claudia Garcia Neves 2, Gilles Costantino 1, Abelmon da Silva Gesteira 3 , Mathieu Paoli 4 , Patrick Ollitrault 5 ,Félix Tomi 4 , Fabienne Micheli 2,6 and Marc Gibernau 4 1 Unité Mixte de Recherche Amélioration Génétique et et Adaptation des Plantes (UMR AGAP) Corse, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 20230 San Giuliano, France; [email protected] 2 Centro de Biotecnologia e Genética (CBG), Departamento de Ciências Biológicas (DCB), Universidade Estadual de Santa Cruz (UESC), Rodovia Ilhéus-Itabuna, km 16, Ilhéus, BA 45662-900, Brasil; [email protected] (C.G.N.); [email protected] (F.M.) 3 Empresa Brasileira de Pesquisa e Agropecuária (EMBRAPA) Mandioca e Fruticultura, Rua Embrapa, s/nº, Cruz das Almas, BA 44380-000, Brasil; [email protected] 4 Equipe Chimie et Biomasse, Unité Mixte de Recherche 6134 SPE, Université de Corse-CNRS, Route des Sanguinaires, 20000 Ajaccio, France; [email protected] (M.P.); [email protected] (F.T.); [email protected] (M.G.) 5 Unité Mixte de Recherche Amélioration Génétique et et Adaptation des Plantes (UMR AGAP) Corse, Centre de coopération Internationale en Recherche Agronomique pour le développement (CIRAD), 20230 San Giuliano, France; [email protected] 6 Unité Mixte de Recherche Amélioration Génétique et et Adaptation des Plantes (UMR AGAP), Montpellier, Centre de coopération Internationale en Recherche Agronomique pour le développement (CIRAD), 34398 Montpellier, France * Correspondence: [email protected]; Tel.: +33-4-95-59-59-46 Received: 31 July 2020; Accepted: 24 August 2020; Published: 26 August 2020 Abstract: The cosmetic and fragrance industry largely exploits citrus essential oils (EOs) because of their aromatic properties.
    [Show full text]
  • Improvement of Subtropical Fruit Crops: Citrus
    IMPROVEMENT OF SUBTROPICAL FRUIT CROPS: CITRUS HAMILTON P. ÏRAUB, Senior Iloriiciilturist T. RALPH ROBCNSON, Senior Physiolo- gist Division of Frnil and Vegetable Crops and Diseases, Bureau of Plant Tndusiry MORE than half of the 13 fruit crops known to have been cultivated longer than 4,000 years,according to the researches of DeCandolle (7)\ are tropical and subtropical fruits—mango, oliv^e, fig, date, banana, jujube, and pomegranate. The citrus fruits as a group, the lychee, and the persimmon have been cultivated for thousands of years in the Orient; the avocado and papaya were important food crops in the American Tropics and subtropics long before the discovery of the New World. Other types, such as the pineapple, granadilla, cherimoya, jaboticaba, etc., are of more recent introduction, and some of these have not received the attention of the plant breeder to any appreciable extent. Through the centuries preceding recorded history and up to recent times, progress in the improvement of most subtropical fruits was accomplished by the trial-error method, which is crude and usually expensive if measured by modern standards. With the general accept- ance of the Mendelian principles of heredity—unit characters, domi- nance, and segregation—early in the twentieth century a starting point was provided for the development of a truly modern science of genetics. In this article it is the purpose to consider how subtropical citrus fruit crops have been improved, are now being improved, or are likel3^ to be improved by scientific breeding. Each of the more important crops will be considered more or less in detail.
    [Show full text]