Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 December 2019 doi:10.20944/preprints201912.0280.v1 Peer-reviewed version available at Genes 2020, 11, 126; doi:10.3390/genes11020126 1 Article 2 Pulmonary Hypertension Remodels the Genomic 3 Fabrics of Major Functional Pathways 4 Rajamma Mathew 1,2, Jing Huang 1, Sanda Iacobas 3 and Dumitru A Iacobas 4,* 5 1 Department of Pediatrics, New York Medical College, Valhalla, NY 10595, U.S.A. 6 2 Department of Physiology, New York Medical College, Valhalla, NY 10595, U.S.A. 7 3 Department of Pathology, New York Medical College, Valhalla, NY 10595, U.S.A. 8 4 Personalized Genomics Laboratory, Center for Computational Systems Biology, Roy G Perry College of 9 Engineering, Prairie View A&M University, Prairie View, TX77446, U.S.A. 10 * Correspondence:
[email protected]; Tel.: +1(936)261-9926 11 Abstract: Pulmonary hypertension (PH) is a serious disorder with high morbidity and mortality 12 rate. We analyzed the right ventricular systolic pressure (RVSP), right ventricular hypertrophy 13 (RVH), lung histology and transcriptomes of six weeks old male rats with PH induced by: 1) hypoxia 14 (HO), 2) administration of monocrotaline (CM) or 3) administration of monocrotaline and exposure 15 to hypoxia (HM). The results in PH rats were compared to those in control rats (CO). After four 16 weeks exposure, increased RVSP and RVH, pulmonary arterial wall thickening, and alteration of 17 the lung transcriptome were observed in all PH groups. The HM group exhibited the largest 18 alterations and also neointimal lesions and obliteration of lumen in small arteries.