Pyroclastic Flow Induced Tsunami Captured by Borehole Strainmeter

Total Page:16

File Type:pdf, Size:1020Kb

Pyroclastic Flow Induced Tsunami Captured by Borehole Strainmeter Pyroclastic Flow Induced Tsunami Captured by Borehole Strainmeter during Massive Dome Collapse at Soufriere Hills Photo: Voight Photo: Voight (1) Department of Geosciences, University of Arkansas Volcano, Montserrat, West Indies: Observations and Theory (2) Department of Geosciences, Pennsylvania State University (3) Applied Fluids Engineering, Inc. (4) Department of Terrestrial Magnetism, Carnegie Institution Washington Elizabeth Van Boskirk (1), Barry Voight (2), Phillip Watts (3), Christina Widiwijayanti (2), Glen Mattioli (1), Derek Elsworth (2), Dannie Hidayat (5) Division of Earth and Ocean Sciences, Duke University Pyroclastic flows entering the ocean at the Tar River (2), Alan Linde (4), Peter Malin (5), Jurgen Neuberg (6), Selwyn Sacks (4), Eylon Shalev (5), R. Steven J Sparks (7), Simon R Young (2) (6) School of Earth & Environment Earth Sciences, Leeds University Valley delta (7) University of Bristol, Department of Earth Sciences 0.8 HARR seismic envelope III Analysis Abstract 0.6 I II a b c IV A 0.4 Figure 9. Spectra for Strainmeters at three Caribbean Andesite Lava Island Precision-Seismo-geodetic Observatory Normalized Amplitude 30 15 Figure 10. Spectra of 0.2 Figure 5. Eruption Seismicity and Dilatation. GEOWAVE simulation 25 1 5 10 35 (CALIPSO) borehole sites recorded dilitation offset by 7-12 minutes from the seismic signals leading 38 20 TRNT strainmeter. ) A: Normalized seismic amplitude for HARR output. 3 200 m up to 12/13 July 2003 dome collapse eruption of Soufriere Hills Volcano, Montserrat, West Indies. 6 Unfiltered 12/13 July 10 surface broadband seismometer. All records Spectrum1d of GMT 100 Pyroclastic flows were observed entering the ocean at the Tar River Valley (TRV) delta at 18:00 local B start at 23:00 (UTC) 12 July 2003. Individual was used to compare 2003 eruption data. Each Cumulative Cumulative 0 Vo l um e ( HARR Z-cmp seismogram 1 sample of the strain is a time (LT) 12 July. The eruption occurred 23:30 LT 12 July, with dome collapse consisting of 210 x 5 pyroclastic flows are annotated on seismic GEOWAVE wave C 0 x 10 sampling of the 106 m3 (DRE). Dilatometers at three sites recorded complex, correlated long period oscillatory wave -1 envelope and major divisions are shown as amplitude outputs with 8 Time [hour UT on 13 July 2003] unobserved signal. packets with periods ~250-500 s. The strongest oscillatory signal was at Trants, the site nearest to HARR spectrogram Roman numerals. B: Cumulative collapse the TRNT dilatation. 6 volume from HARR-normalized amplitude in A. a) Spanish Point b) the TRV delta and the coastline. GEOWAVE was used to model wave initiation and propagation to C: HARR vertical component seismogram. D: Airport c) Offshore test that pyroclastic flows and dome collapse into the ocean at the TRV delta stimulated tsunami. D 4 Spectrogram for seismogram in C. Note that Trants, 250 m from Frequency (Hz) These tsunami are hypothesized to be signal the strainmeter is observing. The spectral power 2 most of power is in 1–3 Hz band and that higher TRNT d) Average of simulated ocean waves were compared to observed strain at Trants. Simulated wave heights Figure 1. 12/13 July 2003 Eruption frequency energy is observed during significant Trants 250 m radii using a) Soufriere Hills Volcano (SHV) taken May 31, 2003. View Table 1. Strainmeter TRNT dilatation collapse events. E: TRNT dilatation highpass 5 gauge files e) Average correlate with observations and demonstrate strainmeter sensitivity to geophysical processes not 400 SSE. E 0 filtered at >0.002 Hz. Peak amplitudes in of Trants 500 m radii data was sampled at envisioned in the design of the installation at SHV. b) Taken August 12, 2003 from the same location. Nanostrain -400 different wave packets TRNT spectrogram dilatation that occur 7–10 min after same events using 6 gauge files. The 3 3000 Approximately 210 M m of the dome collapsed during the 0.008 are recorded as seismic energy at HARR. F: lines signify the throughout the eruption. 2000 July 12/13 eruption/dome collapse. 0.006 Spectrogram for TRNT dilatation in E. Most of correlation of increased 1 b) sample 2 c) sample 3 1000 CALIPSO Borehole Sites c) July 12-13 2003 dilatometer and vertical seismometer F d) sample 4 e) sample 5. 0.004 power Figureis between 3. 0.004 and 0.006 Hz, and spectral power at records from TRNT site, which is 5.8 km from SHV. Frequency (Hz) during Mattiolipeak etcollapse al., 2006 event III, energy is spread associated with a broad Each CALIPSO site is equipped with a three component seismometer (Duke CIW Hz-1kHz), Pinnacle 0.002 Timescale is in seconds with 0 at July 12 00:44 (Mattioli et to higherGeology frequencies (Mattioli et al., 2006). peak at 0.01 Hz in all Technologies series-5000 tiltmeter, Ashtech U-Z CGPS receiver with choke ring antenna with SCIGN 0.000 al., 2004). 00:00 02:00 04:00 06:00 the synthetic gauge time mount and radome, and single component, very-broad-band Sacks-Evertson dilatometer. Time (HH:MM UTC 13 July 2003) series. GEOWAVE GEOWAVE uses a Boussinesq model for wave propagation combined with TOPICS, which is input into the program FUNWAVE, to Sensitivity Test Results simulate the wave initiation and development of a tsunami (Watts and Waythomas, 2003; Watts et al., 2003; Wei and Kirby, 1995). Detailed The GEOWAVE simulation entry bathometry for the region of Montserrat is smoothed to reenact the underwater pyroclastic flow. The equations to generate a pyroclastic flow Figure 11. Wave amplitude parameters that significantly affect the height in time for are exactly the same used as to generate a wave from a subarial debris flow. GEOWAVE handles frequency dispersion, simulating deep- shoreline wave amplitudes are: water waves. The model treats the flow as a solid block that decelerates from an initial velocity. Underwater deformation of the flow is not GEOWAVE simulation. a) Entry at Tar River •final depth and runout length included in the model (Watts and Waythomas, 2003). GEOWAVE simulated runnup and allows enough entry sources to recreate the b) White’s Bottom Ghaut •runout time geometry of the TRV delta. c) Spanish Point •landslide volume d) Airport 50 sec 100 sec •runout time Figure 7. Montserrat Bathymetry. Figure 8. GEOWAVE e) Offshore Trants, 250 m Red stars are CALIPSO borehole simulations. from TRNT In all cases, the values for the sources sites and TRNT, GERS, and AIRS 16.8°N Colors (red for wave f) Average of Trants 250 m of the edge waves (S1 and S2) cause had operating strainmeters during heights above and blue for radii using 5 gauge files g) changes in the gauge maximum wave the eruption. Green circles wave heights below sea Average of Trants 500 m amplitudes. nasa represent entry sources used in level) are scaled to model radii using 6 gauge files. 16.7°N 6.0 4.0 GEOWAVE. The simulated 4.5 3.0 extremes. Simulations are 3.0 2.0 3 pyroclastic flow has five entry 1.5 1.0 for 7 Mm pyroclastic flow 0.0 0.0 meters -1.5 meters -1.0 sources to recreate the geometry of -3.0 -2.0 entering sea at ~70 ms–1 -4.5 -3.0 the entry at the TRV delta. Blue -6.0 -4.0 with volume to width ratio Figure 3. AIRS CGPS site. Figure 4. SHV Monitoring Sites and orange circles represent of 16700 m2. Z max is Conclusions July 14, 2003. Note ~11 cm of ash Left: Map of CALIPSO borehole sites (red 300 sec Z max gauges used in GEOWAVE. maximum wave height GEOWAVE, along with the methods applied by Voight and Watts provide parameter limitations to simulate a accumulation from the July 12/13 squares) and other monitoring stations around Several gauges (orange) are over entire temporal 16.8°N pyroclastic flow entering the TRV delta in which to create tsunami similar to the 12/13 July 2003 dome collapse. Schematics of the very-broad- SHV. placed as a radii around Trants and domain. Eastern band Sacks-Evertson dilatometer Right: Color Infrared image taken by ASTER. the results are averaged in space Montserrat, from TRF to collapse and pyroclastic flow events leading up to the peak collapse. Detailed simulations confirm that the (Mattioli et al., 2002) The TRV delta is the grey pyroclastic flow for a fixed time. The next step is to Trant’s Bay, experienced unique strainmeter observations may be explained by ocean loading from pyroclastic flow generated deposits on the eastern side of SHV (Mattioli et calculate the Green’s Functions for maximum waves of few 16.7°N tsunami (Mattioli et al., 2006). To quantitatively compare the signals of the strainmeter to the simulated 2.0 al., 2004). a load on a uniform elastic half 1.5 4.0 meters, with heights as 1.0 3.0 tsunami, however, one needs to solve Green’s function, which determines the energy transfer for an elastic 0.5 space. We will examine the load 0.0 2.0 high as 14 m localized meters meters -0.5 1.0 half-plane. Also, to further recreate the actual collapse events of 12/13 July 2003, multiple pyroclastic flows over a several km area offshore -1.0 proximal to TRF. (Mattioli -1.5 0.0 Trants since the volumetric strain is -2.0 et al., 2006). causing ocean excitation should be simulated. 62.2°W 62.1°W 62.2°W 62.1°W July 12/13 2003 Eruption Timing directly proportional to the dVof the The largest dome collapse of Soufriere Hills Volcano removed ~210x106 m3 DRE of material.
Recommended publications
  • Penn State the Anatomy of a Volcano
    Research|Penn State: The Anatomy of a Volcano file:///Users/lfoley/Desktop/volcano_print.html Back to article —By Charles Fergus With remote sensing and an international army of geologists, SEA-CALIPSO takes the measure of an angry mountain. Barry Voight first went to Montserrat, an island in the British West Indies, in March 1996. The veteran volcanologist had been invited by the island’s government and by staff at the Montserrat Volcano Observatory (MVO), who were monitoring a lava dome that had been growing for four months atop the previously dormant Soufriere Hills volcano. The steep, cone-shaped volcano occupied the southern end of the 40-square-mile island, towering 3,000 feet above the capital city of Plymouth, population 7,000. The government officials and MVO scientists wanted Voight’s opinion on the potential danger from a crater-wall collapse on the volcano’s western flank, which directly faced Plymouth. More than twenty-five years earlier, Voight had accurately predicted that a massive avalanche on Mt. St. Helens, in the Cascade Range in Washington, could trigger a destructive lateral blast, which took place on May 18, 1980. Since then, as a member of the U.S. Geological Survey’s Volcano Hazards Response Team, Voight frequently had inspected ready-to-blow volcanoes around the world. At times, he and his fellow volcanologists gave advice leading to evacuations that saved hundreds, if not thousands, of lives. “The Soufriere Hills volcano looked very different in 1996 than it does now,” Voight recalls. “The slopes and even the crater were forested, apart from the new lava dome and some localized spots downwind where sulfur and chlorine gases had killed the vegetation.
    [Show full text]
  • Control on the Emplacement of the Andesite Lava Dome of the Soufriere Hills Volcano, Montserrat by Degassing-Induced Crystallization R
    Paper 267 Disc Control on the emplacement of the andesite lava dome of the Soufriere Hills volcano, Montserrat by degassing-induced crystallization R. S. J. Sparks*,{, M. D. Murphy{, A. M. Lejeune{, R. B. Watts{, J. Barclay{ and S. R. Young} {Department of Earth Sciences, Bristol University, Bristol BS8 1RJ, UK; {School of Environmental Sciences, University of East Anglia, Norwich NR4 7JT, UK; }Montserrat Volcano Observatory, Mongo Hill, Montserrat, West Indies ABSTRACT Lava solidification is controlled by two mechanisms:external in the range 1013±1014 Pa s and mechanical strength 4 1 MPa. cooling and gas exsolution, the latter inducing crystallization due Deformation can be heterogeneous with extrusion along shear to increasing liquidus temperature. The andesite lava dome of the zones. Rheological stiffening in the upper conduit also causes Soufriere Hills Volcano, Montserrat, is an extrusion dominated by large overpressures, shallow seismicity, and cyclic patterns of crystallization caused by gas exsolution where cooling is dome extrusion. Gas-rich porphyritic andesites tend to be the unimportant in controlling emplacement. In the magma least mobile kind of lava, because transition from magma into hot chamber the magma has an estimated viscosity of 7 6 106 Pa s. crystalline material was reached during ascent. During ascent, gas exsolution caused the magma to extrude in a highly crystalline state, with only 5±15% residual melt, viscosities Terra Nova, 12, 14±20, 2000 some rheological calculations and inclusions (Barclay et al., 1998) indicate Introduction measurements on the andesite which that the magma at depth contained 4±5 Two main mechanisms influence the show that viscosity increases by several wt% H2O in the rhyolitic (73±74% emplacement and solidification of lava orders of magnitude during decom- SiO2) melt phase.
    [Show full text]
  • School of Earth and Space Exploration
    In conversation with International Innovation, volcanologists Drs Amanda CLARKE DRS AMANDA & AUGUSTO NERI Clarke and Augusto Neri Explosive describe their successful international collaborative research programme on work exploding volcanoes Flavio Dobran and Dr Giovanni Macedonio, aimed collaborations, such as the special and long- at simulation of volcanic processes. This was lasting cooperations with Professor Barry Voight, then a very innovative approach that recognised Amanda and Dr Christina Widiwijayanti on the the need to complement field observations with modelling and simulation of magma ascent and quantitative representations based on the laws explosive events at Mount St Helens and Soufriere of physics and modern mathematics. Explosive Hills volcanoes. volcanism was a key subject for us due to the fact that in Italy we have very-high-risk explosive What do you consider to be your team’s major volcanoes such as Vesuvius and Campi Flegrei. I contributions up to now? was also fascinated by the challenging and always surprising beauty of these phenomena, and wished AN: I would say that perhaps the most important to contribute to mitigating their hazards. contribution of our INGV research team, which includes Amanda as Research Associate, has been Could you discuss your accomplishments and the demonstration of the genuine value that The INGV research group (from left to right): Augusto your hopes for the far-reaching impact of physical and mathematical models can provide Neri, Mattia de’Michieli Vitturi, Amanda Clarke, Sara your
    [Show full text]
  • GSA Division Awards
    2008 ® GSA Division Awards Presented at the of the 120th Annual Meeting Geological Society of America S 4 October 2008 Houston, Texas 2008 MEDALS & AWARDS RIP RAPP this topic, beginning in the early 1980s with and methods of geoarchaeology in books several papers that focused on archaeology and journals is not going to cut it with him. ARCHAEOLOGICAL and Holocene landscape evolution in drainage His passion for field research is apparent in GEOLOGY AWARD systems of western Iowa. Soon after that his teaching, presentations at professional he turned his attention to the Des Moines meetings, and collaboration with colleagues. Presented to E. Arthur Bettis III River valley, then moved farther east and Many of Art’s students claim that his attacked a bigger stream and more daunting enthusiasm is contagious. problem: the relationship between the spatial In sum, Art has been a driving force pattern of landform sediment assemblages in geoarchaeology and undoubtedly will (LSAs) and the archaeological record of continue to have a strong influence on the upper Mississippi River valley. Art’s its direction. He deserves the recognition approach to identifying and mapping LSAs associated with the Rip Rapp Award because in the Mississippi valley revolutionized of his many outstanding contributions to alluvial geoarchaeology. Conceptualizing the interdisciplinary field of archaeological the landscape in this manner has provided geology. The Geological Society of America archeologists with a range of powerful tools and members of the Archaeological Geology for evaluating and interpreting cultural Division should be proud of honoring him in resources preserved in sediments that this way. constitute valley landscapes.
    [Show full text]
  • ENCYCLOPEDIA of NATURAL HAZARDS Encyclopedia of Earth Sciences Series
    ENCYCLOPEDIA of NATURAL HAZARDS Encyclopedia of Earth Sciences Series ENCYCLOPEDIA OF NATURAL HAZARDS Volume Editor Peter Bobrowsky is an Adjunct Professor at the Center for Natural Hazards Research, Department of Earth Sciences, Simon Fraser University, Burnaby, BC, Canada ([email protected]). With over 30 years of professional experience as an environmental and engineering geologist he has worked in Africa, China, India, North America, Middle East and South America. He has published extensively on a variety of subjects and has served/serves on a number of bodies and organizations: Secretary General of IUGS, President of the Geological Association of Canada, President of the Canadian Quaternary Association, Vice President of the International Consortium on Landslides, editorial board for Landslides Quaternary International and several others. The project to compile and publish this volume was completed during his tenure as SG of IUGS. Editorial Board Pedro Basabe Bill McGuire UN/ISDR Africa Programme Department of Earth Sciences United Nations Complex, Gigiri University College London PO Box 47074 136 Gower Street (Lewis Building) Nairobi, Kenya London, UK Tom Beer Jay Melosh Australian Commonwealth Scientific and Industrial Research Department of Earth and Atmospheric Sciences Organisation (CSIRO) Civil Engineering Building, Room 3237 PB1, Aspendale 550 Stadium Mall Drive Victoria, Australia Purdue University West Lafayette, Indiana, USA Norm Catto Department of Geography Farrokh Nadim Norwegian Geotechnical Institute (NGI) Memorial University PO Box 3930 Ullevall Stadion St. John’s, Newfoundland, Canada Oslo, Norway Viacheslav K. Gusiakov Paul Slovic Siberian Division, Russian Academy of Sciences Decision Research Pr.Lavrentieva, 6 1201 Oak Street, Suite 200 Novosibirsk, Russia Eugene, Oregon, USA Michael K.
    [Show full text]
  • A New Year; a New Management Board
    A New Year; A New Management Board Engineering Geology Division Management Board (2009-2010) (left to right): Norman S. Levine, Member-at-Large, John Jens, Vice-Chair, J. David Rogers, Chair and Abdul Shakoor, Past Chair. Not pictured is William H. Schulz, Secretary. As part of the Geological Society of America’s annual meeting in Portland, Oregon, the Engineering Geology Division (EGD) held its annual luncheon and awards ceremony. Outgoing Chair Abdul Shakoor presented a brief summary of the Division’s accomplishments during the ENGINEERING GEOLOGY DIVISION OF THE GEOLOGICAL SOCIETY OF AMERICA The Engineering Geologist 2 past year. He handed over the Berkey gavel to David Rogers, the Incoming Chair, officially starting the work for the new Management Board. An important reminder presented at the luncheon was the recent appointment of Syed Hasan as the Division’s Publications Chair. Anyone interested in EGD sponsorship of a publication or proposing a volume for the Reviews in Engineering Geology series should contact Syed at ([email protected]). Distinguished Practice Award Presented to Dr. Barry Voight Citation for Dr. Barry Voight given by Richard Gray: “Barry Voight is Emeritus Professor of Geology and Geological Engineering at Penn State University, where he has been a member of the faculty since 1964. He attended the University of Notre Dame and received three degrees in Geology, and civil Engineering. After one-year at Cornell, he joined Fred Donath’s rock mechanics-structural geology group at Columbia University, was a President’s Fellow and was the course lecturer in Engineering Geology, and earned a PhD in 1965.
    [Show full text]
  • Magma-Sponge Hypothesis and Stratovolcanoes: Case for A
    GEOPHYSICAL RESEARCH LETTERS, VOL. 37, L00E05, doi:10.1029/2009GL041732, 2010 Click Here for Full Article Magma‐sponge hypothesis and stratovolcanoes: Case for a compressible reservoir and quasi‐steady deep influx at Soufrière Hills Volcano, Montserrat Barry Voight,1 Christina Widiwijayanti,1 Glen Mattioli,2 Derek Elsworth,1 Dannie Hidayat,1 and M. Strutt3 Received 10 November 2009; revised 23 December 2009; accepted 6 January 2010; published 18 February 2010. [1] We use well‐documented time histories of episodic GPS a mechanism has been proposed for a mafic reservoir under surface deformation and efflux of compressible magma to a basaltic shield volcano on Hawaii [Johnson, 1987; resolve apparent magma budget anomalies at Soufrière Johnson et al., 2000], but application to intermediate to Hills volcano (SHV) on Montserrat, WI. We focus on data intermediate‐silicic stratovolcano magmas is rare, partly from 2003 to 2007, for an inflation succeeded by an because quasi‐continuous geodetic network data and well‐ episode of eruption‐plus‐deflation. We examine Mogi‐type documented eruptive volume time‐series records are avail- and vertical prolate ellipsoidal chamber geometries to able for only a few volcanoes. An unexcelled dataset derives accommodate both mineralogical constraints indicating from Soufrière Hills (SHV) volcano on Montserrat, WI, a relatively shallow pre‐eruption storage, and geodetic which has been erupting in pulsatory fashion since 1995, constraints inferring a deeper mean‐pressure source. An with a series of 2 to 3‐year eruptive episodes and inter- exsolved phase involving several gas species greatly spersed pauses lasting 1.5 to 2‐years [Druitt and Kokelaar, increases andesite magma compressibility to depths >10 km 2002; Mattioli and Herd, 2003; Elsworth et al., 2008].
    [Show full text]
  • The 1985 Nevado Del Ruiz Volcano Catastrophe: Anatomy and Retrospection
    Journal of Volcanology and Geothermal Research, 42 (1990) 151-188 151 Elsevier Science Publishers B.V., Amsterdam--Printed in the Netherlands The 1985 Nevado del Ruiz volcano catastrophe: anatomy and retrospection BARRY VOIGHT Penn State University, University Park, PA 16802, U.S.A. (Received December 1, 1989) Abstract Voight, B., 1990. The 1985 Nevado del Ruiz volcano catastrophe: anatomy and retrospection. In: S.N. Williams (Editor), Nevado del Ruiz Volcano, Colombia, II. J. Volcanol. Geotherm. Res., 42: 151-188. This paper seeks to analyze in an objective way the circumstances and events that contributed to the 1985 Nevado del Ruiz catastrophe, in order to provide useful guidelines for future emergencies. The paper is organized into two principal parts. In the first part, an Anatomy of the catastrophe is developed as a step-by-step chronicle of events and actions taken by individuals and organizations during the period November 1984 through November 1985. This chronicle provides the essential background for the crucial events of November 13. This year-long period is broken down further to emphasize essential chapters: the gradual awareness of the awakening of the volcano; a long period of institutional skepticism reflecting an absence of credibility; the closure of the credibility gap with the September 11 phreatic eruption, followed by an intensive effort to gird for the worst; and a detailed account of the day of reckoning. The second part of the paper, Retrospection, examines the numerous complicated factors that influenced the catastrophic outcome, and attempts to cull a few "lessons from Armero" in order to avoid similar occur- rences in the future.
    [Show full text]
  • Amanda Clarke
    CURRICULUM VITAE – AMANDA BACHTELL CLARKE Arizona State University Email: [email protected] School of Earth and Space Exploration Phone: 480-965-6590 P.O. Box 871404 FAX: 480-965-8102 Tempe, AZ, USA 85287-1404 Education Pennsylvania State University Geosciences Ph.D. 2002 Advisor Professor Barry Voight Fulbright Fellow Republic of the Philippines 1994 – 1995 Topic: The economic and cultural effects of the 1993 lethal eruption of Mayon Volcano on four agricultural villages. University of Notre Dame Aerospace Engineering/Philosophy B.S./B.A. 1994 Professional Appointments 2009 - present Assoc. Prof., School of Earth and Space Exploration, Arizona State University 2009 – present Associated Researcher, Istituto Nazionale di Geofisica e Vulcanologia, Pisa, Italy (INGV-Pisa) 2003 - 2009 Asst. Prof., School of Earth and Space Exploration, Arizona State University 2002 - 2003 Royal Society Postdoctoral Research Fellow, University of Bristol, Bristol, UK Research Narrative: My research interests include the physics of volcanic eruptions, especially short- lived, highly-unsteady explosions and dome-building events; developing and using numerical models and laboratory experiments to understand controls on the style and scale of volcanic eruptions; field and satellite observation of plumes and domes to understand physical processes; volcano deformation and its role in eruption prediction; interpretation of pyroclastic deposits on Earth and Mars; highly- explosive basaltic volcanism; cinder cone erosion and volcanic geomorphology; eruption triggering and interaction between geologic processes (e.g., earthquake-triggered volcanic activity; and the interaction between volcanic plumes and Earth’s atmosphere). Field sites of interest include Mayon volcano (Philippines), Mount St. Helens (USA), the Soufrière Hills volcano (Montserrat), Merapi and Semeru volcanoes (Indonesia), and the San Francisco Volcanic Field (USA), among others.
    [Show full text]
  • Meeting Program
    Shimabara Fukko Arena Gamadas Dome (Mt. Unzen Disaster Memorial Hall) Conference Office Hall N Internet / B Ready Room Sub Arena Sub Arena: Meeting Room Simultaneous Translation Hall Main Arena: Meeting Room Provided Hall E C Gamadas Dome Hall Main Arena Registration Simultaneous Translation Desk A Provided Posters and Exhibition Hall Shimabara Fukko Arena D CITIES ON VOLCANOES 5 Gamadas Dome: Meeting Room CONFERENCE Simultaneous Translation Provided VENUE MEETING PROGRAM CITIES ON VOLCANOES 5 CONFERENCE SHIMABARA (JAPAN) Hosted by Volcanological Society of Japan and The City of Shimabara 2007 Co-hosted by International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) Faculty of Sciences, Kyushu University Earthquake Research Institute, the University of Tokyo Kyushu Regional Development Bureau, Ministry of Land, Infrastructure and Transport Nagasaki Prefecture The City of Unzen The City of Minamishimabara Mount Unzen Disaster Memorial Foundation Supported by Japan Society for the Promotion of Science (JSPS) The Commemorative Organization for the Japan World Exposition ('70) Tokyo Geographical Society COMMITTEES Advisory Committee Members Genjiro Kaneko (Governor of Nagasaki Prefecture) Teijiro Yoshioka (City Mayor of Shimabara) Fumio Kyuma (Member of the House of Representatives) Noriaki Miyoshi (Speaker of Nagasaki Prefectural Assembly) Morikane Kitaura (Chairman of Shimabara Municipal Assembly) Kazuya Ohta (Emeritus Professor of Kyushu University) Shigeo Aramaki (Yamanashi Institute of Environmental Science)
    [Show full text]
  • Roadside Geology of Mount St. Helens National Volcanic Monument and Vicinity
    ROADSIDE GEOLOGY OF MOUNT ST. HELENS NATIONAL VOLCANIC MONUMENT AND VICINITY by Patrick T. Pringle WASHINGTON DEPARTMENT OF NATURAL RESOURCES Division of Geology and Earth Resources Information Circular 88 1993 [Revised Edition 2002] Shaded relief map of the Mount St. Helens area showing areas affected by1980 eruption processes. The image was created from 30 m digital elevation data. ROADSIDE GEOLOGY OF MOUNT ST. HELENS NATIONAL VOLCANIC MONUMENT AND VICINITY by Patrick T. Pringle WASHINGTON STATE DEPARTMENTOF Natural Resources Doug Sutherland - Commissioner of Public Lands Washington Division of Geology and Earth Resources Information Circular 88 1993 [Revised Edition 2002) WASHINGTON DEPARTMENT OF NATURAL RESOURCES Doug Sutherland-Commissioner of Public Lands DIVISION OF GEOLOGY AND EARTH RESOURCES Ron Teissere-State Geologist This publication is available from: Publication Sales Washington Department of Natural Resources Division of Geology and Earth Resources PO Box 47007 Olympia, WA 98504-7007 For more information or a list of publications, call (360) 902-1450 or e-mail [email protected]. Also see our website at http://www.wa.gov/dnr/htdocs/ger / This book is also available through the Mount St. Helens visitors centers courtesy of the Mount St. Helens Institute. For more information on how you can get involved in ongoing support of research and education at Mount St. Helens, contact: Mount St. Helens Institute PO Box 820762 Vancouver, WA 98682-0017 (360) 891-5206 www.mshinstitute.org Front Cover. Mount St. Helens from the north shore of Spirit Lake, about 7 mi (11 km) north-northeast of the crater. Photo taken in 1982 by Lyn Topinka, U.S.
    [Show full text]
  • Sedimentation and Geomorphic Changes During and Following the 1980-1983 Eruptions of Mount St
    10 新 砂 防, Vol. 37, No. 2 (133) 昭59. 7. SEDIMENTATION AND GEOMORPHIC CHANGES DURING AND FOLLOWING THE 1980-1983 ERUPTIONS OF MOUNT ST. HELENS, WASHINGTON* (1) Richard J. Janda**, David F. Meyer** and Dallas Childers** INTRODUCTION After lying in repose for 123 years, Mount St. Helens, formerly known as the Fujiyama of America, started a continuing series of episodic eruptions on March 27, 1980. Based upon the amount of energy released as well as the diversity and volume of volcanic products produced, the May 18, 1980 eruption was the most significant eruption of this series. That eruption killed at least 59 people, caused more than S 900 million of damage and remedial work, and generally disrupted civil works and operations throughout much of the northwestern United States (Sarah Deatherage, written communication, Cowlitz County Dept. Community Development, 1983). Landscape modifications caused by this eruption have caused rapid erosion in the 550km2 devas- tated area and along downstream lahar-affected channels. The resulting sediment yield has cre- ated persistent sedimentation and flooding hazards of unprecedented magnitude for downstream urban areas. Post-eruption flooding along some lahar-affected channels has caused more erosion and deposition than the initial lahars. Numerous prehistoric eruptions at Mount St. Helens (Mullineaux and Crandell, 1981) and his- toric eruptions at other stratavolcanoes were more energetic and voluminous than the 1980-1983 eruptions of Mount St. Helens. Therefore, recent events at Mount St. Helens should serve as a reminder of the volcanic and hydrologic hazards associated with explosive stratavolcanoes and not be dismissed as a freak catastrophy.
    [Show full text]