The 1985 Nevado Del Ruiz Volcano Catastrophe: Anatomy and Retrospection

Total Page:16

File Type:pdf, Size:1020Kb

The 1985 Nevado Del Ruiz Volcano Catastrophe: Anatomy and Retrospection Journal of Volcanology and Geothermal Research, 42 (1990) 151-188 151 Elsevier Science Publishers B.V., Amsterdam--Printed in the Netherlands The 1985 Nevado del Ruiz volcano catastrophe: anatomy and retrospection BARRY VOIGHT Penn State University, University Park, PA 16802, U.S.A. (Received December 1, 1989) Abstract Voight, B., 1990. The 1985 Nevado del Ruiz volcano catastrophe: anatomy and retrospection. In: S.N. Williams (Editor), Nevado del Ruiz Volcano, Colombia, II. J. Volcanol. Geotherm. Res., 42: 151-188. This paper seeks to analyze in an objective way the circumstances and events that contributed to the 1985 Nevado del Ruiz catastrophe, in order to provide useful guidelines for future emergencies. The paper is organized into two principal parts. In the first part, an Anatomy of the catastrophe is developed as a step-by-step chronicle of events and actions taken by individuals and organizations during the period November 1984 through November 1985. This chronicle provides the essential background for the crucial events of November 13. This year-long period is broken down further to emphasize essential chapters: the gradual awareness of the awakening of the volcano; a long period of institutional skepticism reflecting an absence of credibility; the closure of the credibility gap with the September 11 phreatic eruption, followed by an intensive effort to gird for the worst; and a detailed account of the day of reckoning. The second part of the paper, Retrospection, examines the numerous complicated factors that influenced the catastrophic outcome, and attempts to cull a few "lessons from Armero" in order to avoid similar occur- rences in the future. In a nutshell, the government on the whole acted responsibly but was not willing to bear the economic or political costs of early evacuation or a false alarm. Science accurately foresaw the hazards but was in- sufficiently precise to render reliable warning of the crucial event at the last possible minute. Catastrophe was therefore a calculated risk, and this combination - the limitations of predication/detection, the refusal to bear a false alarm and the lack of will to act on the uncertain information available - provided its immediate and most obvious causes. But because the crucial event occurred just two days before the Armero emergency-management plan was to be critically examined and improved, the numerous cir- cumstances which delayed progress of emergency management over the previous year also may be said to have contributed to the outcome. Thus the catastrophe was not caused by technological ineffectiveness or defectiveness, nor by an overwhelming eruption, or by an improbable run of bad luck, but rather by cumulative human error - by misjudgment, indecision and bureaucratic shortsightedness. Armero could have produces no victims, and therein dwells its immense tragedy. "We are all of us fellow passengers on the same planet and we are all of us equally responsible for the happiness and well-being of the world in which we happen to live..." (Van Loon's Geography). Introduction in 1846 in the Comptes Rendus of the Academy of Sciences, Paris, it captures the Colombian This report begins with Joaquin Acosta's ac- naturalist's observations of a flow of mud that count of tragedy on the Lagunillas; presented swept over the site of Armero in 1845: 0377-0273/90/$03.50 © 1990 Elsevier Science Publishers B.V. 152 B. VOIGHT "A great subterranean noise was heard in the vicinity regions..." of the Magdalena, from Ambalema to the village of Such ancient traditions encompass the last Mendez... This sudden noise was followed, within a major eruption at Ruiz, known through the considerably smaller area, by trembling of the ground. words of Pedro Sim6n, a Spanish priest who Then, descending along the Lagunillas from its sources in the Nevado del Ruiz, came an immense flood of thick came to the New Kingdom of Granada in 1604 mud which rapidly filled the bed of the river, covered or (Sim6n, 1625; cf. Espinosa, 1986; Vel~squez et swept away the trees and houses, burying men and al., 1986): animals• The entire population perished in the upper part and narrower parts of the Lagunillas valley. In the "It happened then, that on that day, month and year [12 lower part, several people were saved by fleeing March 1595]... there came from this volcano such a sideways to the heights; less happily, others were loud, hoarse, and extraordinary thunderclap, and after stranded on the summits of small hills from which it it three others not so strong, which were heard within was impossible to save them before they died... On ar- a radius of more than forty leagues.., the Spaniards riving at the plain with great impetus, the current of saw that the volcano hurled out a large amount of mud divided into two branches. The much larger one pumice, as big as ostrich eggs and from these down to followed the course of the Lagunillas toward the the size of dove's eggs, sparkling red like iron from the Magdalena; the other, after topping the high divide, forge, which resembled erratic stars. Some fell on them traversed the Santo Domingo valley.•, and hurled and on their horses, which disquieted them no little. itself into the Rio Sabandija, which was thus plugged by And on the side of this mountain which faced the east an immense dam. The danger seemed imminent for a •.. the waters of the Rio Guali, which wets the founda- flood of downstream lands. Happily, plentiful rain dur- tions of Mariquita, it and its companion which flows in ing the night produced enough water to begin clearing the south, called the Rio Lagunillas, both originating in a passage across this mass of broken trees, sands, the snow which melts from this mountain, ran so full of stones, and stinking mud, mixed with enormous blocks ash that it looked more like a thick soup of cinders than of ice which descended from the mountains in such like water. Both overflowed their channels leaving the abundance that after several days they had not melted land over which they flowed so devastated that for many entirely•.. The terrain covered by debris and mud is years afterward it produced nothing but small more than four leagues square; it presents the ap- weeds..." pearance of a desert or playa, on the surface of which loom up like many islands heaps of broken trees that resisted the impetus of the torrent. The depth of the Armero, which did not exist when Sim6n and mud layer varies greatly, and is much greater toward Acosta made their journeys, was built on the the upper part of the deposit where it often reaches 5 to 6 m. A realistic calculation indicates more than 300 site of these ancient mudflows. Therefore no million tons of muddy material from the flanks of precedent was established when on the evening Volc~in Ruiz..." of November 13, 1985, Nevado del Ruiz ignited to generate the worst volcanic mudflow Of this event: Acosta remarked in an 1850 let- disaster in historic time and the second worst ter to the French geologist Elie de Beaumont volcanic disaster of this century. Its death toll that all of the property which families had ac- ranks fourth in history, behind only Tambora cumulated in years of effort, the fruit of labor of in 1815 (92,000) and Krakatoa in 1883 (36,000), several generations, was lost in a mudflow both in Indonesia, and Mount Pel~e, Martini- which destroyed houses, harvests, flocks, and que, in 1902 (28,000) (UNDRO, 1986). rendered the land barren for a great many Shortly after 21:00 local time, a relatively years: "It is astonishing that none of the in- small magmatic eruption at the summit crater habitants of these villages, built on the of Volc~n Ruiz produced a series of pyroclastic solidified mud of old mass movements, has even flows and surges that turbulently scoured and suspected the origin of this vast terrain, which melted part of the summit's snow and ice cap, occupies an area at least equal to that of the and sent torrents of meltwater, slush, ice and province of the Rh6ne, although ancient tradi- pyroclastic debris in a plexus of sheet and chan- tions testify to the frequent mudflows in these neled cascades over the volcano flanks (Katsui THE NEVADO DEL RU1Z VOLCANO CATASTROPHE: ANATOMY AND RETROSPECTION 153 et al., 1986). In lower channels the flows percent of the region's livestock, thirty percent coalesced and entrained debris, vegetation and of its grain sorghum and rice crops, and half a ponded water to form lahars, the Javanese million bags of Coffee were lost. Lahars buried word used internationally to mean a mud of 3,400 hectares of the agricultured land, damag- debris flow of volcanic origin. ed or eradicated 50 schools and 2 hospitals, On the volcano's fertile western slope, over- destroyed 5,092 homes, 58 industrial plants bank flooding by lahars caused 1,100 fatalities and 343 commercial establishments, and at Chinchinh, Caldas Province, and destroyed damaged the National Coffee Research Center more than 200 houses and three bridges (E. in Chinchin£ About 7,700 were rendered Parra, P., written commun., 1986). Lahars homeless. Total damage exceeded a billion feeding the Rio Guali flowed northward and dollars (U.S. AID, written commun., 1986). then east, destroying homes near Mariquita. Thus "the majestic and silent Nevado del Ruiz, Shortly before midnight, in Tolima Province, transformed now to an active volcano, could not successive lahar waves obliterated Armero resist singing a hymn of destruction; and where (population 29,000), the prime regional there was life and hope of production, there is agricultural center.
Recommended publications
  • Geologic Map of the Long Valley Caldera, Mono-Inyo Craters
    DEPARTMENT OF THE INTERIOR TO ACCOMPANY MAP 1-1933 US. GEOLOGICAL SURVEY GEOLOGIC MAP OF LONG VALLEY CALDERA, MONO-INYO CRATERS VOLCANIC CHAIN, AND VICINITY, EASTERN CALIFORNIA By Roy A. Bailey GEOLOGIC SETTING VOLCANISM Long Valley caldera and the Mono-Inyo Craters Long Valley caldera volcanic chain compose a late Tertiary to Quaternary Volcanism in the Long Valley area (Bailey and others, volcanic complex on the west edge of the Basin and 1976; Bailey, 1982b) began about 3.6 Ma with Range Province at the base of the Sierra Nevada frontal widespread eruption of trachybasaltic-trachyandesitic fault escarpment. The caldera, an east-west-elongate, lavas on a moderately well dissected upland surface oval depression 17 by 32 km, is located just northwest (Huber, 1981).Erosional remnants of these mafic lavas of the northern end of the Owens Valley rift and forms are scattered over a 4,000-km2 area extending from the a reentrant or offset in the Sierran escarpment, Adobe Hills (5-10 km notheast of the map area), commonly referred to as the "Mammoth embayment.'? around the periphery of Long Valley caldera, and The Mono-Inyo Craters volcanic chain forms a north- southwestward into the High Sierra. Although these trending zone of volcanic vents extending 45 km from lavas never formed a continuous cover over this region, the west moat of the caldera to Mono Lake. The their wide distribution suggests an extensive mantle prevolcanic basement in the area is mainly Mesozoic source for these initial mafic eruptions. Between 3.0 granitic rock of the Sierra Nevada batholith and and 2.5 Ma quartz-latite domes and flows erupted near Paleozoic metasedimentary and Mesozoic metavolcanic the north and northwest rims of the present caldera, at rocks of the Mount Morrisen, Gull Lake, and Ritter and near Bald Mountain and on San Joaquin Ridge Range roof pendants (map A).
    [Show full text]
  • Phreatomagmatic Eruptions of 2014 and 2015 in Kuchinoerabujima Volcano Triggered by a Shallow Intrusion of Magma
    Journal of Natural Disaster Science, Volume 37,Number 2,2016,pp67-78 Phreatomagmatic eruptions of 2014 and 2015 in Kuchinoerabujima Volcano triggered by a shallow intrusion of magma Nobuo Geshi1, Masato Iguchi2, and Hiroshi Shinohara1 1 Geological Survey of Japan, AIST 2 Disaster Prevention Research Institute, Kyoto University, (Received:Sep 2, 2016 Accepted:Oct.28, 2016) Abstract The 2014 and 2015 eruptions of Kuchinoerabujima Volcano followed a ~15-year precursory activation of the hydrothermal system induced by a magma intrusion event. Continuous heat transfer from the degassing magma body heated the hydrothermal system and the increase of the fluid pressure in the hydrothermal system caused fracturing of the unstable edifice, inducing a phreatic explosion. The 2014 eruption occurred from two fissures that traced the eruption fissures formed in the 1931 eruption. The explosive eruption detonated the hydrothermally-altered materials and part of the intruding magma. The rise of fumarolic activities before the past two activities in 1931-35 and 1966-1980 also suggest activation of the hydrothermal system by magmatic intrusions prior to the eruption. The long-lasting precursory activities in Kuchinoerabujima suggest complex processes of the heat transfer from the magma to the hydrothermal system. Keywords: Kuchinoerabujima Volcano, phreatomagmatic eruption, hydrothermal system, magma intrusion 1. Introduction Phreatic eruptions are generally caused by the rapid extrusion of geothermal fluid from a hydrothermal system within a volcanic edifice (Barberi et al., 1992). Hydrothermal activities and phreatic eruptions are related to magmatic activities directly or indirectly, as the hydrothermal activities of a volcano are basically driven by heat from magma (Grapes et al., 1974).
    [Show full text]
  • Penn State the Anatomy of a Volcano
    Research|Penn State: The Anatomy of a Volcano file:///Users/lfoley/Desktop/volcano_print.html Back to article —By Charles Fergus With remote sensing and an international army of geologists, SEA-CALIPSO takes the measure of an angry mountain. Barry Voight first went to Montserrat, an island in the British West Indies, in March 1996. The veteran volcanologist had been invited by the island’s government and by staff at the Montserrat Volcano Observatory (MVO), who were monitoring a lava dome that had been growing for four months atop the previously dormant Soufriere Hills volcano. The steep, cone-shaped volcano occupied the southern end of the 40-square-mile island, towering 3,000 feet above the capital city of Plymouth, population 7,000. The government officials and MVO scientists wanted Voight’s opinion on the potential danger from a crater-wall collapse on the volcano’s western flank, which directly faced Plymouth. More than twenty-five years earlier, Voight had accurately predicted that a massive avalanche on Mt. St. Helens, in the Cascade Range in Washington, could trigger a destructive lateral blast, which took place on May 18, 1980. Since then, as a member of the U.S. Geological Survey’s Volcano Hazards Response Team, Voight frequently had inspected ready-to-blow volcanoes around the world. At times, he and his fellow volcanologists gave advice leading to evacuations that saved hundreds, if not thousands, of lives. “The Soufriere Hills volcano looked very different in 1996 than it does now,” Voight recalls. “The slopes and even the crater were forested, apart from the new lava dome and some localized spots downwind where sulfur and chlorine gases had killed the vegetation.
    [Show full text]
  • Satellite Observations of Fumarole Activity at Aluto Volcano, Ethiopia: Implications for Geothermal Monitoring and Volcanic Hazard
    Accepted Manuscript Satellite observations of fumarole activity at Aluto volcano, Ethiopia: Implications for geothermal monitoring and volcanic hazard Mathilde Braddock, Juliet Biggs, Iain M. Watson, William Hutchison, David M. Pyle, Tamsin A. Mather PII: S0377-0273(17)30118-X DOI: doi: 10.1016/j.jvolgeores.2017.05.006 Reference: VOLGEO 6091 To appear in: Journal of Volcanology and Geothermal Research Received date: 24 February 2017 Revised date: 6 May 2017 Accepted date: 7 May 2017 Please cite this article as: Mathilde Braddock, Juliet Biggs, Iain M. Watson, William Hutchison, David M. Pyle, Tamsin A. Mather , Satellite observations of fumarole activity at Aluto volcano, Ethiopia: Implications for geothermal monitoring and volcanic hazard, Journal of Volcanology and Geothermal Research (2017), doi: 10.1016/ j.jvolgeores.2017.05.006 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Satellite observations of fumarole activity at Aluto volcano, Ethiopia: implications for geothermal monitoring and volcanic hazard Mathilde Braddock1*, Juliet Biggs2, Iain M. Watson2, William Hutchison3, David M. Pyle4 and Tamsin A. Mather4 1 School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, UK 2 COMET, School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, UK 3 School of Earth and Environmental Sciences, University of St.
    [Show full text]
  • Rapid Magma Ascent and Generation of Th Excesses in the Lower Crust At
    Earth and Planetary Science Letters 255 (2007) 229–242 www.elsevier.com/locate/epsl Rapid magma ascent and generation of 230Th excesses in the lower crust at Puyehue–Cordón Caulle, Southern Volcanic Zone, Chile ⁎ Brian R. Jicha a, , Brad S. Singer a, Brian L. Beard a, Clark M. Johnson a, Hugo Moreno-Roa b,c, José Antonio Naranjo b a Department of Geology and Geophysics, University of Wisconsin—Madison, 1215 West Dayton Street, Madison WI 53706, USA b Servicio Nacional de Geología y Minería (SERNAGEOMIN), Avenida Santa María, 0104 Santiago, Chile c Observatorio Volcanologico de los Andes del Sur (OVDAS), Cerro Ñielol-Sector Antenas, Temuco, Chile Received 28 July 2006; received in revised form 7 December 2006; accepted 8 December 2006 Available online 30 January 2007 Editor: R.W. Carlson Abstract Basaltic to rhyolitic lavas and tephras erupted over the last 70 kyr at the Puyehue–Cordón Caulle volcanic complex in the Andean Southern Volcanic Zone (SVZ) were analyzed for major and trace element, Sr isotope, and U–Th isotope compositions to constrain the timescales of magmatic processes and identify the subducted and crustal components involved in magma genesis. Internal U–Th mineral isochrons from five lavas and three tephra fall deposits are indistinguishable from their eruption ages, indicating a short period (b1000 yr) of crystal residence in the magma prior to eruption. The (230Th/232Th) ratios define a narrow range (0.80–0.83) compared to that of all SVZ lavas (0.72–0.97), suggesting that Puyehue basalt was derived from a relatively uniform mantle source. Dacites and rhyolites have the largest U excesses and likely evolved via fractional crystallization of a plagioclase-dominated mineral assemblage.
    [Show full text]
  • Control on the Emplacement of the Andesite Lava Dome of the Soufriere Hills Volcano, Montserrat by Degassing-Induced Crystallization R
    Paper 267 Disc Control on the emplacement of the andesite lava dome of the Soufriere Hills volcano, Montserrat by degassing-induced crystallization R. S. J. Sparks*,{, M. D. Murphy{, A. M. Lejeune{, R. B. Watts{, J. Barclay{ and S. R. Young} {Department of Earth Sciences, Bristol University, Bristol BS8 1RJ, UK; {School of Environmental Sciences, University of East Anglia, Norwich NR4 7JT, UK; }Montserrat Volcano Observatory, Mongo Hill, Montserrat, West Indies ABSTRACT Lava solidification is controlled by two mechanisms:external in the range 1013±1014 Pa s and mechanical strength 4 1 MPa. cooling and gas exsolution, the latter inducing crystallization due Deformation can be heterogeneous with extrusion along shear to increasing liquidus temperature. The andesite lava dome of the zones. Rheological stiffening in the upper conduit also causes Soufriere Hills Volcano, Montserrat, is an extrusion dominated by large overpressures, shallow seismicity, and cyclic patterns of crystallization caused by gas exsolution where cooling is dome extrusion. Gas-rich porphyritic andesites tend to be the unimportant in controlling emplacement. In the magma least mobile kind of lava, because transition from magma into hot chamber the magma has an estimated viscosity of 7 6 106 Pa s. crystalline material was reached during ascent. During ascent, gas exsolution caused the magma to extrude in a highly crystalline state, with only 5±15% residual melt, viscosities Terra Nova, 12, 14±20, 2000 some rheological calculations and inclusions (Barclay et al., 1998) indicate Introduction measurements on the andesite which that the magma at depth contained 4±5 Two main mechanisms influence the show that viscosity increases by several wt% H2O in the rhyolitic (73±74% emplacement and solidification of lava orders of magnitude during decom- SiO2) melt phase.
    [Show full text]
  • Muon Tomography Sites for Colombian Volcanoes
    Muon Tomography sites for Colombian volcanoes A. Vesga-Ramírez Centro Internacional para Estudios de la Tierra, Comisión Nacional de Energía Atómica Buenos Aires-Argentina. D. Sierra-Porta1 Escuela de Física, Universidad Industrial de Santander, Bucaramanga-Colombia and Centro de Modelado Científico, Universidad del Zulia, Maracaibo-Venezuela, J. Peña-Rodríguez, J.D. Sanabria-Gómez, M. Valencia-Otero Escuela de Física, Universidad Industrial de Santander, Bucaramanga-Colombia. C. Sarmiento-Cano Instituto de Tecnologías en Detección y Astropartículas, 1650, Buenos Aires-Argentina. , M. Suárez-Durán Departamento de Física y Geología, Universidad de Pamplona, Pamplona-Colombia H. Asorey Laboratorio Detección de Partículas y Radiación, Instituto Balseiro Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, Bariloche-Argentina; Universidad Nacional de Río Negro, 8400, Bariloche-Argentina and Instituto de Tecnologías en Detección y Astropartículas, 1650, Buenos Aires-Argentina. L. A. Núñez Escuela de Física, Universidad Industrial de Santander, Bucaramanga-Colombia and Departamento de Física, Universidad de Los Andes, Mérida-Venezuela. December 30, 2019 arXiv:1705.09884v2 [physics.geo-ph] 27 Dec 2019 1Corresponding author Abstract By using a very detailed simulation scheme, we have calculated the cosmic ray background flux at 13 active Colombian volcanoes and developed a methodology to identify the most convenient places for a muon telescope to study their inner structure. Our simulation scheme considers three critical factors with different spatial and time scales: the geo- magnetic effects, the development of extensive air showers in the atmosphere, and the detector response at ground level. The muon energy dissipation along the path crossing the geological structure is mod- eled considering the losses due to ionization, and also contributions from radiative Bremßtrahlung, nuclear interactions, and pair production.
    [Show full text]
  • Magmatic Evolution of the Nevado Del Ruiz Volcano, Central Cordillera, Colombia Minera1 Chemistry and Geochemistry
    Magmatic evolution of the Nevado del Ruiz volcano, Central Cordillera, Colombia Minera1 chemistry and geochemistry N. VATIN-PÉRIGNON “‘, P. GOEMANS “‘, R.A. OLIVER ‘*’ L. BRIQUEU 13),J.C. THOURET 14J,R. SALINAS E. 151,A. MURCIA L. ” Abstract : The Nevado del RU~‘, located 120 km west of Bogota. is one of the currently active andesitic volcanoes that lies north of the Central Cordillera of Colombia at the intersection of two dominant fault systems originating in the Palaeozoïc basement. The pre-volcanic basement is formed by Palaeozoïc gneisses intruded by pre-Cretaceous and Tertiarygranitic batholiths. They are covered by lavas and volcaniclastic rocks from an eroded volcanic chain dissected during the late Pliocene. The geologic history of the Nevado del Ruiz records two periods of building of the compound volcano. The stratigraphie relations and the K-Ar dating indicate that effusive and explosive volcanism began approximately 1 Ma ago with eruption of differentiated andesitic lava andpyroclastic flows and andesitic domes along a regional structural trend. Cataclysmic eruptions opened the second phase of activity. The Upper sequences consist of block-lavas and lava domes ranging from two pyroxene-andesites to rhyodacites. Holocene to recent volcanic eruptions, controled by the intense tectonic activity at the intersection of the Palestina fawlt with the regional fault system, are similar in eruptive style and magma composition to eruptions of the earlier stages of building of the volcano. The youngest volcanic activity is marked by lateral phreatomagmatic eruptions, voluminous debris avalanches. ash flow tuffs and pumice falls related to catastrophic collapse during the historic eruptions including the disastrous eruption of 1985.
    [Show full text]
  • Geothermal Springs, Geysers and Fumaroles
    Sciences Secondary volcanic activities: Geothermal springs, Geysers and Fumaroles Geothermal Springs A geothermal (or hydrothermal) spring is produced by the emergence of geothermally heated groundwater from the Earth's crust. There are geothermal springs in many locations all over the crust of the earth. Geothermal Springs Surface water percolates downward through the rocks below the Earth's surface to high-temperature regions surrounding a magma chamber, either active or recently solidified but still hot. When the water is heated, becomes less dense, and rises Surface water back to the surface along fissures and cracks. Sometimes these features are called "dying volcanoes" because they seem to represent the last stage of volcanic activity as the magma, in depth, cools and hardens. Water percolation Heated water rises up The temperature of hot springs depends on factors such as: •the rate at which water circulates through the underground channels Hot rocks •the amount of heat at depth •the dilution of the heated water by cool ground water near the surface. Geothermal Springs The water issuing from a hot spring is heated by geothermal heat from the Earth's astenosphere. In general, the temperature of rocks increases with depth. The rate of temperature increase is known as the geothermal gradient (it is about 25°C per km). If water percolates deeply enough into the crust, it will be heated as it comes into contact with hot rocks. Warm springs are sometimes the result of hot and cold springs mixing but may also occur outside of volcanic areas. Geysers Geyser are located near active volcanic areas, and the geyser effect is due to the proximity of magma.
    [Show full text]
  • Community Risk Assessment
    COMMUNITY RISK ASSESSMENT Squamish-Lillooet Regional District Abstract This Community Risk Assessment is a component of the SLRD Comprehensive Emergency Management Plan. A Community Risk Assessment is the foundation for any local authority emergency management program. It informs risk reduction strategies, emergency response and recovery plans, and other elements of the SLRD emergency program. Evaluating risks is a requirement mandated by the Local Authority Emergency Management Regulation. Section 2(1) of this regulation requires local authorities to prepare emergency plans that reflects their assessment of the relative risk of occurrence, and the potential impact, of emergencies or disasters on people and property. SLRD Emergency Program [email protected] Version: 1.0 Published: January, 2021 SLRD Community Risk Assessment SLRD Emergency Management Program Executive Summary This Community Risk Assessment (CRA) is a component of the Squamish-Lillooet Regional District (SLRD) Comprehensive Emergency Management Plan and presents a survey and analysis of known hazards, risks and related community vulnerabilities in the SLRD. The purpose of a CRA is to: • Consider all known hazards that may trigger a risk event and impact communities of the SLRD; • Identify what would trigger a risk event to occur; and • Determine what the potential impact would be if the risk event did occur. The results of the CRA inform risk reduction strategies, emergency response and recovery plans, and other elements of the SLRD emergency program. Evaluating risks is a requirement mandated by the Local Authority Emergency Management Regulation. Section 2(1) of this regulation requires local authorities to prepare emergency plans that reflect their assessment of the relative risk of occurrence, and the potential impact, of emergencies or disasters on people and property.
    [Show full text]
  • Multiple Sources for Tephra from AD 1259 Volcanic Signal in Antarctic Ice
    Multiple sources for tephra from AD 1259 volcanic signal in Antarctic ice cores Biancamaria Narcisi, Jean Robert Petit, Barbara Delmonte, Valentina Batanova, Joel Savarino To cite this version: Biancamaria Narcisi, Jean Robert Petit, Barbara Delmonte, Valentina Batanova, Joel Savarino. Mul- tiple sources for tephra from AD 1259 volcanic signal in Antarctic ice cores. Quaternary Science Reviews, Elsevier, 2019, 210, pp.164-174. 10.1016/j.quascirev.2019.03.005. hal-02350371 HAL Id: hal-02350371 https://hal.archives-ouvertes.fr/hal-02350371 Submitted on 25 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Manuscript Details Manuscript number JQSR_2019_21 Title MULTIPLE SOURCES FOR TEPHRA FROM AD 1259 VOLCANIC SIGNAL IN ANTARCTIC ICE CORES Abstract Strong volcanic signals simultaneously recorded in polar ice sheets are commonly assigned to major low-latitude eruptions that dispersed large quantities of aerosols in the global atmosphere with the potential of inducing climate perturbations. Parent eruptions responsible for specific events are typically deduced from matching to a known volcanic eruption having coincidental date. However, more robust source linkage can be achieved only through geochemical characterisation of the airborne volcanic glass products (tephra) sometimes preserved in the polar strata.
    [Show full text]
  • Review and Reassessment of Hazards Owing to Volcano–Glacier Interactions in Colombia
    128 Annals of Glaciology 45 2007 Review and reassessment of hazards owing to volcano–glacier interactions in Colombia Christian HUGGEL,1 Jorge Luis CEBALLOS,2 Bernardo PULGARI´N,3 Jair RAMI´REZ,3 Jean-Claude THOURET4 1Glaciology and Geomorphodynamics Group, Department of Geography, University of Zurich, 8057 Zurich, Switzerland E-mail: [email protected] 2Instituto de Meteorologı´a, Hidrologı´a y Estudios Ambientales, Bogota´, Colombia 3Instituto Colombiano de Geologı´a y Minerı´a, Bogota´, Colombia 4Laboratoire Magmas et Volcans UMR 6524 CNRS, Universite´ Blaise-Pascal, Clermont-Ferrand, France ABSTRACT. The Cordillera Central in Colombia hosts four important glacier-clad volcanoes, namely Nevado del Ruiz, Nevado de Santa Isabel, Nevado del Tolima and Nevado del Huila. Public and scientific attention has been focused on volcano–glacier hazards in Colombia and worldwide by the 1985 Nevado del Ruiz/Armero catastrophe, the world’s largest volcano–glacier disaster. Important volcanological and glaciological studies were undertaken after 1985. However, recent decades have brought strong changes in ice mass extent, volume and structure as a result of atmospheric warming. Population has grown and with it the sizes of numerous communities located around the volcanoes. This study reviews and reassesses the current conditions of and changes in the glaciers, the interaction processes between ice and volcanic activity and the resulting hazards. Results show a considerable hazard potential from Nevados del Ruiz, Tolima and Huila. Explosive activity within environments of snow and ice as well as non-eruption-related mass movements induced by unstable slopes, or steep and fractured glaciers, can produce avalanches that are likely to be transformed into highly mobile debris flows.
    [Show full text]