Exoplanets Finding Extrasolar Planets

Total Page:16

File Type:pdf, Size:1020Kb

Exoplanets Finding Extrasolar Planets Exoplanets Finding Extrasolar Planets. I Direct Searches Direct searches are difficult because stars are so bright. How Bright are Planets? Planets shine by reflected light. The amount reflected is the amount received (the solar constant) - times the area of the planet - times the albedo (fraction reflected) L = L /4πd2 x albedo x πR 2 ~ L (R /d)2 p * p * p 2 8 For the Earth, (Rp/d) ~5 x 10 2 8 For Jupiter, (Rp/d) ~10 How Bright are Planets? You gain by going to long wavelengths The Rayleigh-Jeans Tail 7 • λmax = 2.897x 10 /T Å/K 4 • For λmax >> λmax, Iλ~ A 2ckBT/λ – A: area – IJ ~ 0.002 I¤ How Far are Planets from Stars? 1 au = 1“ at 1 pc (definition of the parsec) • 1 pc (parsec) = 3.26 light years • 1“ (arcsec) = 1/3600 degree As seen from α Centauri (4.3 ly): • Earth is 0.75 arcsec from Sol • Jupiter is 4 arcsec from Sol 2 3 2 4π a /P = G (M*+MP) 2 2 1/3 θ = (G P (M*+MP)/4π D) Aside: Telescope ResoluKon • The spaal profile of the intensity of light passing through an aperture is the Fourier Transform of that aperture. 2 2 • the intensity of the light, as a funcKon of the off-axis distance θ from a slit is I = I0 sin (u)/u – u = π D sin(θ)/λ, – D is the diameter of the aperture – λ is the wavelength of the light. • I peaks at θ=0, and has nulls at sin(θ)=n λ/D, for all n not equal to 0. Telescope ResoluKon • For a circular apertures, the spaal profile of the intensity is the Fourier transform of a circle. 2 2 • The intensity of light is given by I(θ) = (π r J1(2m)/m) – r is the radius of the aperture; D is the aperture diameter – m = π r sin(θ)/λ – J1 is a Bessell funcKon of the first kind • J1(2m)/m has a maximum at m=0, and nulls at m=1.916, 3.508, 5.987, ... • For small θ, these nulls are at 1.220 λ/D, 2.233 λ/D, 3.238 λ/D, … • Point source image: central source surrounded by progressively fainter rings, call Airy rings. • An opKcal system that can produce diffracKon rings (Airy rings) is diffrac<on-limited. Chandra HRC-S at 0.277 keV (C K-α) Resolved Images Laser T Tauri (IRTF/ NSFCam) ResoluKon: Rayleigh Criterion Rayleigh's criterion for the resoluKon of a lens (or a mirror): • The peak of the second source lies in the first null of the first source, or the resoluKon R=1.220 λ/D radians. • Equal brightness sources separated by this distance will appear at two peaks, with a minimum ~74% of the peak intensity. • One can actually resolve (or separate) sources of approximately equal brightness that are closer than this. Dawes' criterion: one can resolve sources with a 3% drop between peaks; this gives a resoluKon about 80% of the Rayleigh criterion. Even closer equally bright sources will produce a non-circular central peak: equally bright sources can in principle be detected to about 1/3 of the Rayleigh distance. Complicaons: Real Telescopes • Real telescopes do not have purely circular apertures. • Central obscuraon: decreases the contrast between the central peak and the diffracKon rings. • Supports for the central obscuraon diffract light -> diffracKon spikes Aside: Seeing. I • Ideal performance requires parallel wavefronts. • Variaons in n distort wavefronts • Variaons in n are caused by temperature differences or turbulence. • Under adiabac condiKons, dn ∝ 2δT P/T2 – P: atmospheric pressure – T: atmospheric temperature • The changes in n lead to speckles, or defocussing of the image. Astronomical Seeing • Seeing at K (2.2 µm): – 0.7 sec integraons – a= 3.1 arcsec. – The slow dri is poor tracking • Shiked and co-added image: Seeing. II • Coherence length r0: the distance over which the wavefront remains coherent (the change in phase is < one radian). 1.2 0.6 • r0 ∼ λ (cos(z)) – z: zenith distance. – A telescope with an aperture smaller than r0 will be diffracKon limited. • At a good sight (laminar airflow), such as a mountaintop in the middle of the ocean, r0 ∼10 cm at 5500 Angstroms. Seeing. II • The atmosphere acts as a series of incoherent lenses of aperture r0: • λ/r0 is ~ the diameter of the seeing disk. – The rao of the seeing disk to the Rayleigh criterion at zenith is D/24 (5500A/λ)1.2 cm. – An opKcal telescope smaller than about 25 cm is diffracKon limited; larger telescopes are seeing-limited. – In the 2.2 µm K band), telescopes are diffracKon-limited up to about 3 m diameter. – In the near-IR, much of the seeing can be compensated for by using acKve or adapKve opKcs, perming diffracKon- limited imaging in the 8m VLT and 10m Keck telescopes. Telescopes in space are never seeing-limited. Seeing. III Images from SMARTS 1.3m/ Andicam. • V band; 0.369″pixels • Upper image: – σ=8.1″ – FWHM=9.5″ • Lower image: – σ=0.8″ – FWHM=1.0″ HR 8799 (A5V) AO-assisted imaging Young planets are hot and luminous dashed lines: hot start planets Fischer et al. 2014, PP VI Direct Imaging Example: HR 8799 Beta Pictoris ~9 AU from star M: ~ 7 MJ P: ~20 yrs T: ~1600K Speckle Imaging • Subaru HiCIAO Disnguishing Speckles • Locaon of speckles depends on – Wavelength – Image coordinates – Rotates with the telescope in an alt-az mount • Locaon of exoplanet is fixed relave to the star Speckle Imaging Gemini-N Altair/NIRI a) Raw image b,c) aer subtracKng Azimuthal average d) Aker summing 117 rotated images hp:// www.gemini.e du/node/256 Finding Extrasolar Planets. II Transits Transits Venus, 8 June 2004 Artist’s Conception Transits requires an edge-on orbit. 2 τ = (RP/R*) Jupiter blocks 2% of the Sun's light Earth blocks about 0.01%. How Transits Work Transit Example - Ground The Search for Earth-like Planets • 0.95m telescope • Launched March 2009 • Observe 105 square degrees of the sky • Observe ~ 100,000 stars • Observe continuously for 4.5 years -6 • Photometric accuracy: ~10 (0.1 R⊕) How to achieve µ–mag precision Kepler Field Kepler Field Kepler Timing Transit Example - Kepler Trappist 1 • A small star – about the size of Jupiter • An ultra-cool dwarf (M8) – 2560 K Trappist 1 Transit observaons Trappist 1 Inferred planetary parameters: – Density [ Mass/([4π/3]radius3) ] -> composiKon – Incident flux -> surface temperature Trappist 1 Planets in Context Trappist 1 System Star: M8V, Teff ~ 2500K, 0.08 M¤, Size of Jupiter 40 light years from Earth TransiKng Exoplanet Survey Satellite (TESS) • Launch date planned in 2018 • 2 year mission • All-sky survey, >27.4 days conKnuous coverage • >40,000 F5 – M5 stars observed at 2 min cadence • Full sky observed at 30 min cadence • Precision < 60 ppm/hr • Science: detect transits for 1.2 < RP/R⊕ < 2 Finding Extrasolar Planets. III Astrometric Wobble Astrometric Wobble 2 3 2 3 2 • 4π a1 /P = G MP / (M*+MP) Fischer et al. 2014, PP VI Finding Extrasolar Planets. IV Most planets have been found by Doppler Wobble (radial velocity variations). This selects for massive planets close to the star. First Extrasolar Planet: 51 Pegasi b Radial velocity/ Doppler Shift Reported 6 October 1995 Upsilon Andromedae Periods: 4.6, 241, 3848 days Doppler Wobble: Gliese 876 The three planets of Gl 876: masses = 2.5 MJ, 0.8 MJ, and 7.5 M⊕ High Spectra ResoluKon Orbits 2 -2/3 -1/3 K1 = 8.95/√(1-e ) Mpsin i/M⊕ [(M*+MP)/M¤] P cm/s (period in years) Green: RV detecKons Gray: Kepler Transits Source: Fischer et al. 2014, PP VI Finding Extrasolar Planets. IVa Timing The Doppler Effect applied to pulse arrival times. Applicable to pulsar planets Finding Extrasolar Planets. V Gravitational Lensing Foreground objects focus (and magnify) light because they distort space. Microlensing Theory • Einstein ring – θE = √(κMLπrel) • κ =8.18 mas/M¤ • πrel = (1au/DL) - (1au/DS) • θE ≈ 0.3 mas for ML = 0.5 M¤, DL=6 kpc, DS=8 kpc • Magnificaon – A = u2+2 / u√ (u2+4) – u = impact parameter in terms of θE • CausKc Crossings Microlensing Example Microlensing Theory Microlensing Comparison of Techniques Extrasolar Planet Detectability ProperKes of Planets • Based on ~600 good candidates in exoplanet database Red circles: radial velociKes Blue diamonds: transits Magenta hexagons: direct imaging Asterisks: microlensing Cyan squares: pulsar Kming Green triangle: Solar System Fischer et al. 2014, PP VI Extrasolar Planets Orbits Orbital Eccentricity Extrasolar Planets Orbits Extrasolar Planets Orbits Extrasolar Planets Masses Planetary Mass Distribution Extrasolar Planets Planets are preferentially found around metal-rich stars - mostly younger than the Sun. Metallicities updated Fischer et al. 2014, PP VI ½ ½ 2 1/8 Teq= (R* T*) /((2 a) (1-e ) ) • . .
Recommended publications
  • Contributions of the Astronomical Observatory Skalnate´ Pleso
    ASTRONOMICAL INSTITUTE SLOVAK ACADEMY OF SCIENCES CONTRIBUTIONS OF THE ASTRONOMICAL OBSERVATORY SKALNATE´ PLESO • VOLUME L • Number 3 S KA SO LNATÉ PLE July 2020 Editorial Board Editor-in-Chief August´ın Skopal, Tatransk´aLomnica, The Slovak Republic Managing Editor Richard Komˇz´ık, Tatransk´aLomnica, The Slovak Republic Editors Drahom´ır Chochol, Tatransk´aLomnica, The Slovak Republic J´ulius Koza, Tatransk´aLomnica, The Slovak Republic AleˇsKuˇcera, Tatransk´aLomnica, The Slovak Republic LuboˇsNesluˇsan, Tatransk´aLomnica, The Slovak Republic Vladim´ır Porubˇcan, Bratislava, The Slovak Republic Theodor Pribulla, Tatransk´aLomnica, The Slovak Republic Advisory Board Bernhard Fleck, Greenbelt, USA Arnold Hanslmeier, Graz, Austria Marian Karlick´y, Ondˇrejov, The Czech Republic Tanya Ryabchikova, Moscow, Russia Giovanni B. Valsecchi, Rome, Italy Jan Vondr´ak, Prague, The Czech Republic c Astronomical Institute of the Slovak Academy of Sciences 2020 ISSN: 1336–0337 (on-line version) CODEN: CAOPF8 Editorial Office: Astronomical Institute of the Slovak Academy of Sciences SK - 059 60 Tatransk´aLomnica, The Slovak Republic CONTENTS EDITORIAL A. Skopal, R. Komˇz´ık: Editorial . 647 STARS T. Pribulla, L’. Hamb´alek, E. Guenther, R. Komˇz´ık, E. Kundra, J. Nedoroˇsˇc´ık, V. Perdelwitz, M. Vaˇnko: Close eclipsing binary BDAnd: a triple system . 649 V. Andreoli, U. Munari: LAMOST J202629.80+423652.0 is not a symbiotic star . 672 M.Yu. Skulskyy: Formation of magnetized spatial structures in the Beta Lyrae system. I. Observation as a research background
    [Show full text]
  • Extra-Solar Planetary Systems
    From the Academy Extra-solar planetary systems Joan Najita*†, Willy Benz‡, and Artie Hatzes§ *National Optical Astronomy Observatories, 950 North Cherry Avenue, Tucson, AZ 85719; ‡Physikalisches Institut, Universita¨t Bern, Sidlerstrasse 5, Ch-3012, Bern, Switzerland; and §McDonald Observatory, University of Texas, Austin, TX 78712 he discovery of extra-solar planets has captured the imagi- Table 1. Properties of extra-solar planet candidates Tnation and interest of the public and scientific communities K, alike, and for the same reasons: we are all want to know the Parent star M sin i Period, days a,AU e m⅐sϪ1 answers to questions such as ‘‘Where do we come from?’’ and ‘‘Are we alone?’’ Throughout this century, popular culture has HD 187123 0.52 3.097 0.042 0. 72. presumed the existence of other worlds and extra-terrestrial ␶ Bootis 3.64 3.3126 0.042 0. 469. intelligence. As a result, the annals of popular culture are filled HD 75289 0.42 3.5097 0.046 0. 54. with thoughts on what extra-solar planets and their inhabitants 51 Peg 0.44 4.2308 0.051 0.01 56. are like. And now toward the end of the century, astronomers ␷ And b 0.71 4.617 0.059 0.034 73.0 have managed to confirm at least one aspect of this speculative HD 217107 1.28 7.11 0.07 0.14 140. search for understanding in finding convincing evidence of Gliese 86 3.6 15.83 0.11 0.042 379. planets beyond the solar system. ␳1 Cancri 0.85 14.656 0.12 0.03 75.8 The discovery of extra-solar planets has brought with it a HD 195019 3.43 18.3 0.14 0.05 268.
    [Show full text]
  • Simulating (Sub)Millimeter Observations of Exoplanet Atmospheres in Search of Water
    University of Groningen Kapteyn Astronomical Institute Simulating (Sub)Millimeter Observations of Exoplanet Atmospheres in Search of Water September 5, 2018 Author: N.O. Oberg Supervisor: Prof. Dr. F.F.S. van der Tak Abstract Context: Spectroscopic characterization of exoplanetary atmospheres is a field still in its in- fancy. The detection of molecular spectral features in the atmosphere of several hot-Jupiters and hot-Neptunes has led to the preliminary identification of atmospheric H2O. The Atacama Large Millimiter/Submillimeter Array is particularly well suited in the search for extraterrestrial water, considering its wavelength coverage, sensitivity, resolving power and spectral resolution. Aims: Our aim is to determine the detectability of various spectroscopic signatures of H2O in the (sub)millimeter by a range of current and future observatories and the suitability of (sub)millimeter astronomy for the detection and characterization of exoplanets. Methods: We have created an atmospheric modeling framework based on the HAPI radiative transfer code. We have generated planetary spectra in the (sub)millimeter regime, covering a wide variety of possible exoplanet properties and atmospheric compositions. We have set limits on the detectability of these spectral features and of the planets themselves with emphasis on ALMA. We estimate the capabilities required to study exoplanet atmospheres directly in the (sub)millimeter by using a custom sensitivity calculator. Results: Even trace abundances of atmospheric water vapor can cause high-contrast spectral ab- sorption features in (sub)millimeter transmission spectra of exoplanets, however stellar (sub) millime- ter brightness is insufficient for transit spectroscopy with modern instruments. Excess stellar (sub) millimeter emission due to activity is unlikely to significantly enhance the detectability of planets in transit except in select pre-main-sequence stars.
    [Show full text]
  • The Search for Exomoons and the Characterization of Exoplanet Atmospheres
    Corso di Laurea Specialistica in Astronomia e Astrofisica The search for exomoons and the characterization of exoplanet atmospheres Relatore interno : dott. Alessandro Melchiorri Relatore esterno : dott.ssa Giovanna Tinetti Candidato: Giammarco Campanella Anno Accademico 2008/2009 The search for exomoons and the characterization of exoplanet atmospheres Giammarco Campanella Dipartimento di Fisica Università degli studi di Roma “La Sapienza” Associate at Department of Physics & Astronomy University College London A thesis submitted for the MSc Degree in Astronomy and Astrophysics September 4th, 2009 Università degli Studi di Roma ―La Sapienza‖ Abstract THE SEARCH FOR EXOMOONS AND THE CHARACTERIZATION OF EXOPLANET ATMOSPHERES by Giammarco Campanella Since planets were first discovered outside our own Solar System in 1992 (around a pulsar) and in 1995 (around a main sequence star), extrasolar planet studies have become one of the most dynamic research fields in astronomy. Our knowledge of extrasolar planets has grown exponentially, from our understanding of their formation and evolution to the development of different methods to detect them. Now that more than 370 exoplanets have been discovered, focus has moved from finding planets to characterise these alien worlds. As well as detecting the atmospheres of these exoplanets, part of the characterisation process undoubtedly involves the search for extrasolar moons. The structure of the thesis is as follows. In Chapter 1 an historical background is provided and some general aspects about ongoing situation in the research field of extrasolar planets are shown. In Chapter 2, various detection techniques such as radial velocity, microlensing, astrometry, circumstellar disks, pulsar timing and magnetospheric emission are described. A special emphasis is given to the transit photometry technique and to the two already operational transit space missions, CoRoT and Kepler.
    [Show full text]
  • Symplectic Integration of Equations of Motion and Variational Equations for Extrasolar Systems of N - Planets
    A U T D P MS C P Symplectic Integration of Equations of Motion and Variational Equations for Extrasolar Systems of N - Planets Author Supervisor Dimitra S Prof. George V October, 2017 ii iii Abstract The aim of this present thesis was the symplectic integration of the equations of motion and the variational equations for a N - body system. In order to implement the integration we use a symplectic 6th order integrator presented by Yoshida. For the integration of variational equations we apply the Tangent Map (TM) method. The algorithm is applied on three Extrasolar systems : GJ 876, HR 8799 and TRAPPIST-1. The Fast Lyapunov Indicator (FLI) of the system is calculated for all systems and it is used as a tool to detect chaotic orbits. We also apply the Angu- lar Momentum Deficit criterion to decide whether this systems are AMD - stable or not. Περίληψη Σκοπός αυτής της διατριβής είναι η συμπλεκτική ολοκλήρωση των εξισώσεων της κίνησης και των εξισώσεων των μεταβολών σε ένα σύστημα Ν - σωμάτων. Για να επιτύχουμε την αριθμητική ολοκλήρωση υλοποιούμε τον αλγόριθμο του συμπλε- κτικού ολοκληρωτή 6ης τάξης του Yoshida. Για την ολοκλήρωση των εξισώσεων των μεταβολών εφαρμόσαμε τη μέθοδο Tangent Map (TM). Ο αλγόριθμος που δη- μιουργήσαμε τον εφαρμόσαμε σε τρία εξωπλανητικά συστήματα τα GJ 876, HR 8799 και TRAPPIST-1. Ο Γρήγορος Δείκτης Lyapunov (Fast Lyapunov Indicator, FLI) του συστήματος, υπολογίζεται με σκοπός την ταξινόμηση των τροχιών στο σύστημα σε τακτικές και χαοτικές. Εφαρμόζουμε επίσης το κριτήριο σταθερότη- τας κατά την ποσότητα Angular Momentum Deficit (AMD) ή Έλλειμμα Στρο- φορμής για την κατηγοριοποίηση των συστημάτων ως ευσταθή ή ασταθή κατά την ποσότητα αυτή.
    [Show full text]
  • An Empirically Derived Three-Dimensional Laplace Resonance in the Gliese 876 Planetary System
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Caltech Authors MNRAS 455, 2484–2499 (2016) doi:10.1093/mnras/stv2367 An empirically derived three-dimensional Laplace resonance in the Gliese 876 planetary system Benjamin E. Nelson,1,2‹ Paul M. Robertson,1,2 Matthew J. Payne,3 Seth M. Pritchard,4 Katherine M. Deck,5 Eric B. Ford,1,2 Jason T. Wright1,2 and Howard T. Isaacson6 1Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802, USA 2Department of Astronomy & Astrophysics, The Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802, USA 3Harvard–Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA 4Department of Physics & Astronomy, University of Texas San Antonio, UTSA Circle, San Antonio, TX 78249, USA 5Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91101, USA 6Department of Astronomy, University of California, Berkeley, CA 94720, USA Downloaded from Accepted 2015 October 8. Received 2015 October 5; in original form 2015 April 24 ABSTRACT http://mnras.oxfordjournals.org/ We report constraints on the three-dimensional orbital architecture for all four planets known to orbit the nearby M dwarf Gliese 876 based solely on Doppler measurements and demand- ing long-term orbital stability. Our data set incorporates publicly available radial velocities taken with the ELODIE and CORALIE spectrographs, High Accuracy Radial velocity Planet Searcher (HARPS), and Keck HIgh Resolution Echelle Spectrometer (HIRES) as well as pre- viously unpublished HIRES velocities. We first quantitatively assess the validity of the planets thought to orbit GJ 876 by computing the Bayes factors for a variety of different coplanar models using an importance sampling algorithm.
    [Show full text]
  • On the Stability of the Gliese 876 System of Planets and the Importance of the Inner Planet
    On the Stability of the Gliese 876 System of Planets and the Importance of the Inner Planet By: Ricky Leon Murphy Major Project – HET617 – Computational Astrophysics S2 – 2005 | Supervisor: Professor James Murray Background Image Credits: HIRES Echelleogram: http://exoplanets.org/gl876_web/gl876_tech.html Above: Gliese 876d Artist Rendition: http://exoplanets.org/gl876_web/gl876_graphics.html Abstract: Above: Above: Above: Using the SWIFT simulator code, a 5,000 Changing the mass of the inner body has In addition to mass, the eccentricity of the inner year simulation of the current Gliese 876 resulted in the middle planet to take on a body also severely affects system stability. A third planet with a mass of 0.023 MJ was found orbiting the star Gliese 876. system was performed (Monte Carlo more distant orbit. The eccentricity of this Here the mass of the inner body is the same simulations - to determine the best Cartesian body was very high, so the mass of the inner The initial two body system was found to have a perfect orbital resonance as the stable system (0.023M J ) with a change of 2/1. This paper will demonstrate the orbital stability to maintain this coordinates). The result is a system that is body was not available to ensure system in the orbital eccentricity from 0 to 0.1. None of stable. These parameters will be used for the stability. The mass of the inner body was the planets are able to hold their orbits. ratio is highly dependant on the presence of the small, inner planet. In remaining simulations of Gliese 876.
    [Show full text]
  • Planets and Exoplanets
    NASE Publications Planets and exoplanets Planets and exoplanets Rosa M. Ros, Hans Deeg International Astronomical Union, Technical University of Catalonia (Spain), Instituto de Astrofísica de Canarias and University of La Laguna (Spain) Summary This workshop provides a series of activities to compare the many observed properties (such as size, distances, orbital speeds and escape velocities) of the planets in our Solar System. Each section provides context to various planetary data tables by providing demonstrations or calculations to contrast the properties of the planets, giving the students a concrete sense for what the data mean. At present, several methods are used to find exoplanets, more or less indirectly. It has been possible to detect nearly 4000 planets, and about 500 systems with multiple planets. Objetives - Understand what the numerical values in the Solar Sytem summary data table mean. - Understand the main characteristics of extrasolar planetary systems by comparing their properties to the orbital system of Jupiter and its Galilean satellites. The Solar System By creating scale models of the Solar System, the students will compare the different planetary parameters. To perform these activities, we will use the data in Table 1. Planets Diameter (km) Distance to Sun (km) Sun 1 392 000 Mercury 4 878 57.9 106 Venus 12 180 108.3 106 Earth 12 756 149.7 106 Marte 6 760 228.1 106 Jupiter 142 800 778.7 106 Saturn 120 000 1 430.1 106 Uranus 50 000 2 876.5 106 Neptune 49 000 4 506.6 106 Table 1: Data of the Solar System bodies In all cases, the main goal of the model is to make the data understandable.
    [Show full text]
  • Abstracts of Extreme Solar Systems 4 (Reykjavik, Iceland)
    Abstracts of Extreme Solar Systems 4 (Reykjavik, Iceland) American Astronomical Society August, 2019 100 — New Discoveries scope (JWST), as well as other large ground-based and space-based telescopes coming online in the next 100.01 — Review of TESS’s First Year Survey and two decades. Future Plans The status of the TESS mission as it completes its first year of survey operations in July 2019 will bere- George Ricker1 viewed. The opportunities enabled by TESS’s unique 1 Kavli Institute, MIT (Cambridge, Massachusetts, United States) lunar-resonant orbit for an extended mission lasting more than a decade will also be presented. Successfully launched in April 2018, NASA’s Tran- siting Exoplanet Survey Satellite (TESS) is well on its way to discovering thousands of exoplanets in orbit 100.02 — The Gemini Planet Imager Exoplanet Sur- around the brightest stars in the sky. During its ini- vey: Giant Planet and Brown Dwarf Demographics tial two-year survey mission, TESS will monitor more from 10-100 AU than 200,000 bright stars in the solar neighborhood at Eric Nielsen1; Robert De Rosa1; Bruce Macintosh1; a two minute cadence for drops in brightness caused Jason Wang2; Jean-Baptiste Ruffio1; Eugene Chiang3; by planetary transits. This first-ever spaceborne all- Mark Marley4; Didier Saumon5; Dmitry Savransky6; sky transit survey is identifying planets ranging in Daniel Fabrycky7; Quinn Konopacky8; Jennifer size from Earth-sized to gas giants, orbiting a wide Patience9; Vanessa Bailey10 variety of host stars, from cool M dwarfs to hot O/B 1 KIPAC, Stanford University (Stanford, California, United States) giants. 2 Jet Propulsion Laboratory, California Institute of Technology TESS stars are typically 30–100 times brighter than (Pasadena, California, United States) those surveyed by the Kepler satellite; thus, TESS 3 Astronomy, California Institute of Technology (Pasadena, Califor- planets are proving far easier to characterize with nia, United States) follow-up observations than those from prior mis- 4 Astronomy, U.C.
    [Show full text]
  • Near-Resonance in a System of Sub-Neptunes from TESS
    Near-resonance in a System of Sub-Neptunes from TESS The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Quinn, Samuel N., et al.,"Near-resonance in a System of Sub- Neptunes from TESS." Astronomical Journal 158, 5 (November 2019): no. 177 doi 10.3847/1538-3881/AB3F2B ©2019 Author(s) As Published 10.3847/1538-3881/AB3F2B Publisher American Astronomical Society Version Final published version Citable link https://hdl.handle.net/1721.1/124708 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The Astronomical Journal, 158:177 (16pp), 2019 November https://doi.org/10.3847/1538-3881/ab3f2b © 2019. The American Astronomical Society. All rights reserved. Near-resonance in a System of Sub-Neptunes from TESS Samuel N. Quinn1 , Juliette C. Becker2 , Joseph E. Rodriguez1 , Sam Hadden1 , Chelsea X. Huang3,45 , Timothy D. Morton4 ,FredC.Adams2 , David Armstrong5,6 ,JasonD.Eastman1 , Jonathan Horner7 ,StephenR.Kane8 , Jack J. Lissauer9, Joseph D. Twicken10 , Andrew Vanderburg11,46 , Rob Wittenmyer7 ,GeorgeR.Ricker3, Roland K. Vanderspek3 , David W. Latham1 , Sara Seager3,12,13,JoshuaN.Winn14 , Jon M. Jenkins9 ,EricAgol15 , Khalid Barkaoui16,17, Charles A. Beichman18, François Bouchy19,L.G.Bouma14 , Artem Burdanov20, Jennifer Campbell47, Roberto Carlino21, Scott M. Cartwright22, David Charbonneau1 , Jessie L. Christiansen18 , David Ciardi18, Karen A. Collins1 , Kevin I. Collins23,DennisM.Conti24,IanJ.M.Crossfield3, Tansu Daylan3,48 , Jason Dittmann3 , John Doty25, Diana Dragomir3,49 , Elsa Ducrot17, Michael Gillon17 , Ana Glidden3,12 , Robert F.
    [Show full text]
  • GLIESE 687 B—A NEPTUNE-MASS PLANET ORBITING a NEARBY RED DWARF
    The Astrophysical Journal, 789:114 (14pp), 2014 July 10 doi:10.1088/0004-637X/789/2/114 C 2014. The American Astronomical Society. All rights reserved. Printed in the U.S.A. THE LICK–CARNEGIE EXOPLANET SURVEY: GLIESE 687 b—A NEPTUNE-MASS PLANET ORBITING A NEARBY RED DWARF Jennifer Burt1, Steven S. Vogt1, R. Paul Butler2, Russell Hanson1, Stefano Meschiari3, Eugenio J. Rivera1, Gregory W. Henry4, and Gregory Laughlin1 1 UCO/Lick Observatory, Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064, USA 2 Department of Terrestrial Magnetism, Carnegie Institute of Washington, Washington, DC 20015, USA 3 McDonald Observatory, University of Texas at Austin, Austin, TX 78752, USA 4 Center of Excellence in Information Systems, Tennessee State University, Nashville, TN 37209, USA Received 2014 February 24; accepted 2014 May 8; published 2014 June 20 ABSTRACT Precision radial velocities from the Automated Planet Finder (APF) and Keck/HIRES reveal an M sin(i) = 18 ± 2 M⊕ planet orbiting the nearby M3V star GJ 687. This planet has an orbital period P = 38.14 days and a low orbital eccentricity. Our Stromgren¨ b and y photometry of the host star suggests a stellar rotation signature with a period of P = 60 days. The star is somewhat chromospherically active, with a spot filling factor estimated to be several percent. The rotationally induced 60 day signal, however, is well separated from the period of the radial velocity variations, instilling confidence in the interpretation of a Keplerian origin for the observed velocity variations. Although GJ 687 b produces relatively little specific interest in connection with its individual properties, a compelling case can be argued that it is worthy of remark as an eminently typical, yet at a distance of 4.52 pc, a very nearby representative of the galactic planetary census.
    [Show full text]
  • The Stability of Ultra-Compact Planetary Systems
    A&A 516, A82 (2010) Astronomy DOI: 10.1051/0004-6361/200912698 & c ESO 2010 Astrophysics The stability of ultra-compact planetary systems B. Funk1, G. Wuchterl2,R.Schwarz1,3, E. Pilat-Lohinger3, and S. Eggl3 1 Department of Astronomy, Eötvös Loránd University, Pázmány Péter Sétány 1/A, 1117 Budapest, Hungary e-mail: [email protected] 2 Thüringer Landessternwarte, Sternwarte 5, 07778 Tautenburg, Germany e-mail: [email protected] 3 Institute for Astronomy, University of Vienna, Türkenschanzstrasse 17, 1180 Vienna, Austria e-mail: [schwarz;lohinger;eggl]@astro.univie.ac.at Received 15 June 2009 / Accepted 15 March 2010 ABSTRACT Aims. We investigate the dynamical stability of compact planetary systems in the CoRoT discovery space, i.e., with orbital periods of less than 50 days, including a detailed study of the stability of systems, which are spaced according to Hill’s criteria. Methods. The innermost fictitious planet was placed close to the Roche limit from the star (MStar = 1 MSun) and all other fictitious planets are lined up according to Hill’s criteria up to a distance of 0.26 AU, which corresponds to a 50 day period for a Sun-massed star. For the masses of the fictitious planets, we chose a range of 0.33–17 mEarth, where in each simulation all fictitious planets have the same mass. Additionally, we tested the influence of both the semi-major axis of the innermost planet and of the number of planets. In a next step we also included a gas giant in our calculations, which perturbs the inner ones and investigated their stability.
    [Show full text]