Observational Studies of X-Ray Binary Systems Observational Studies of X-Ray Binary Systems

Total Page:16

File Type:pdf, Size:1020Kb

Observational Studies of X-Ray Binary Systems Observational Studies of X-Ray Binary Systems mmnML mmmm AWD DE» FIOWS INIS-mf—8690 "'•'..'..-. !' ..- -'. .^: C-^;/- V'-^ ^ ^'vV?*f,>4 "' :f ,.?;•• ..f..-XV., . '4*.> • OBSERVATIONAL STUDIES OF X-RAY BINARY SYSTEMS OBSERVATIONAL STUDIES OF X-RAY BINARY SYSTEMS PROPERTIES OF THE NEUTRON STAR AND ITS COMPANION ORBITAL MOTION AND MASS FLOWS ACADEMISCH PROEFSCHRIFT ter verkrijging van de graad van doctor in de Wiskunde en Natuurwetenschappen aan de Universiteit van Amsterdam, op gezag van de Rector Magnificus, Dr. D.W. Bresters, hoogleraar in de Faculteit der Wiskunde en Natuurwetenschappen, in het openbaar te verdedigen in de Aula der Universiteit (tijdelijk in de Lutherse Kerk, ingang Singel 411, hoek Spui) op woensdag 2 februari 1983 te 13:30 uur door Michiel Baidur Maximiliaan van der Klis geboren te 's Gravenhage PROMOTOR : Prof. Dr. E.P.J, van den Heuvel CO-REFERENT : Dr. Ir. J.A.H. Bieeker CONTENTS 0. Introduction and summary 7 1. Mass-Flux Induced Orbital-Period Changes In X-Ray Binaries 17 2. Cygnus X-3 2.1 A Change In Light Curve Asymmetry and the Ephemeris of Cygnus X-3 31 2.2 The X-Ray Modulation of Cygnus X-3 34 2.3 The Cycle-to-Cycle Variability of Cygnus X-3 40 3. Mass Transfer and Accretion in Centaurus X-3 and SMC X-l 3.1 The Accretion Picture of Cen X-3 as Inferred from One Month of Continuous X-Ray Observations 55 3.2 Long Term X-Ray Observations of SMC X-l Including a Turn-On 62 4. Pulsation and Orbital Parameters of Centaurus X-3 and Vela X-l 4.1 Characteristics of the Cen X-3 Neutron Star from Correlated Spin-Up and X-Ray Luminosity Measurements 69 4.2 The Orbital Parameters and the X-Ray Pulsation of Vela X-l (4U 0900-40) 76 5. Ultraviolet and Optical Observations 5.1 Ultraviolet Observations of LMC X-4 and SMC X-l 101 5.2 A Study of Ultraviolet Spectroscopic and Light Variations in the X-Ray Binaries LMC X-4 and SMC X-l 104 5.3 Photometric and Spectroscopic Observations of an Optical Candidate for the X-Ray Source H0544-665 110 6. Low Mass X-Ray Binaries 6.1 The X-Ray Flux Variations of Cygnus X-2 117 6.2 X-Ray Observations of Bright Galactic Bulge Sources in the Vicinity of GX 5-1 122 Nederlandse samenvatting 131 Dankwoord 135 INTRODUCTION AND SUMMARY 0. INTRODUCTION AND SUMMARY All stars in the galaxy probably emit X-rays1. The nearest star, for example, our sun, is the apparently brightest X-ray source in the sky2. In most of these ~ 10*° sources, the X-ray emission comprises only a «rtnute fraction of the total energy output, which is mainly in the optical region. Large X-ray fluxes must be generated in the high-temperature interiors cf the stars, where the nuclear burning takes place. The thick layers of plasma surrounding the stellar core, however, do not allow any of these X-rays to escape from the stellar surface. Only by secondary processes, like the formation of a hot corona, do stars manage to emit X-roys at all. The X-ray sources which I wish to discuss here are many orders of magnitude more luminous than normal stars are in the X-ray band. As we will see, they usually act as signposts indicating small, very energetic objects, which are totally unlike normal stars. 1. Galactic X-ray sources The history of X-ray observations now extends over more than 20 years, from the first observation of an X-ray source outside the solar system3 via the epochal Uhuru survey1* in 1972-'73 to the recent HEAO 2 experiment5. These observations have provided us with a sample of X-ray sources which is approximately complete from the brightest steady sources, typically ~ 103 pjy, down to X-ray intensities of ~ 2 μJy in the 2-10 keV band1*'6. Excluding those which are probably extragalactic objects, there are roughly 200-300 of these sources in the sky. Their sky distribution peaks strongly at the galactic plane, which shows that the great majority of them belongs to our galaxy (about 10 such sources have been detected in the Magellanic Clouds). The X-ray flux we receive from them, together with the fact that these sources form a galactic population, imply that their X-ray luminosities are in the range 10 -103° erg s"1. The observed X-ray spectra suggest in many cases, that the X-rays are produced in a hot plasma, with a temperature of 10 to 10 K. Depending on the precise X-ray emission mechanism, the emitting region can be quite small, of the order of a few kilometers. This implies non- transient emissivities of more than 10 erg s cm, by far the highest we observe in nature9. (By comparison, the most luminous normal stars (giants and supergiants of class I—III) emit as much energy in the'optical region as these sources do in the X-ray band, but their radius is closer to 107 km. Even in their cores, these stars produce at most 106 erg s"1 cm"3.) 2. The Binary Model7'8 At an early stage in the study of X-ray sources, a model was proposed which involves the transfer of matter in a binary system to a compact star (a white dwarf, a neutron star or a black hole). In this model, matter is removed from the outer layers of the non-compact component of the binary by the tidal forces exerted by the nearby compact star. This process is called Roche-lobe overflow. Because it has considerable angular momentum with respect to the compact star (originating in the binary orbital motion), the matter first settles In a disk around it. Spiralling down towards the compact star, the matter gets rid of its surplus angular momentum by transporting it to the outer edge of the disk by means of viscous forces. Finally, it falls down the deep gravitational potential well of the compact star. In this accretion process, large amounts of gravitational energy are released, a considerable part of which is emitted as thermal X-rays. A similar model, in which the mass transfer is not caused by Roche lobe overflow, but Instead originates in a stellar wind emanating from a hot, massive star, was proposed at a later time. In systems of this type, an accretion disk does not necessarily form. 3. Binaries emitting X-rays The above-mentioned ideas have been confirmed by the observations. Of the 82 point-like X-ray sources in the current sample of bright galactic sources, which have been identified with an optical object, 74 are very probably binaries containing a compact star9. An additional 30 bright sources, which have not been optically identified, are also believed to be binaries. Many of these sources lie in the region of the galactic bulge, within 40* of the center of the galaxy, and their detection by optical means is probably prevented by obscuring gas and dust between us and this region. The low end of the X-ray luminosity distribution of these 74 sources 1s occupied by the so-called cataclysmic variables (CV's), systems containing a white dwarf. Many CV's are known as X-ray sources11, but probably only 6 of them belong to our sample of sources brighter than 2 tfy9. The remaining 68 systems, which contain a neutron star, or, in rare cases, perhaps a black hole, form the jjroup of the X-ray binaries. These systems are the most luminous X-ray sources in the galaxy. 4. X-ray binaries X-ray binaries12'13 divide naturally into two two broad categories: massive X-ray binaries, In which the mass of the non-compact companion to the X-ray source is typically more than 10 Mg, and low-mass X-ray binaries, characterized by a companion with a mass below 1 MG. There 1s only one intermediate case known: Hercules X-l, which contains a 2 Mo companion. I will now discuss the main characteristics of these two classes of X-ray binaries in turn. At the end of this section, I will describe the source Cygnus X-3, which is unlike any other X-ray binary. a) Massive X-ray binaries Massive X-ray binaries contain hot, massive stars of spectral type 0 and B, which show clear evidence in their optical and UV spectra of mass loss in a stellar wind. These early- type stars have short lifetimes (< 10 y)12, so we expect massive X-ray binaries to be young systems. This is confirmed by their strong concentration towards the galactic plane, where regions of star formation are also concentrated. Two groups of massive X-ray binaries can be distinguished: 'close' systems, with orbital periods typically less than 10 d, and the so-called Be transients, which have orbital periods of more than - 15 d. In the close systems, the orbit of the neutron star (which has a radius of ~ 10 km) is not far above the surface of the companion (R = 1 to 2 10 km). The optical flux of the system varies periodically as the tidally deformed optical star rotates. We often observe eclipses of the X-ray source by the companion in these systems. In a Be transient, the X-ray source follows an orbit which is wide relative to the 0.5 to 1 10 km radius of the companion. Strong X-rays are only produced when the Be companion star undergoes an episode of rapid mass loss, which phenomenon Is known to occur In Be stars11».
Recommended publications
  • Helium-Star Mass Loss and Its Implications for Black-Hole
    Helium-Star Mass Loss and its Implications for Black-Hole Formation and Supernova Progenitors Onno R. Pols1,2 and Jasinta D.M. Dewi3,4 1 Department of Mathematics, PO Box 28M, Monash University, Vic 3800, Australia 2 Astronomical Institute, Postbus 80000, 3508 TA Utrecht, The Netherlands [email protected] 3 Astronomical Institute, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands [email protected] 4 Bosscha Observatory and Department of Astronomy, Lembang 40391, Bandung, Indonesia Abstract Recently the observationally derived stellar-wind mass-loss rates for Wolf- Rayet stars, or massive naked helium stars, have been revised downwards by a substantial amount. We present evolutionary calculations of helium stars incor- porating such revised mass-loss rates, as well as mass transfer to a close compact binary companion. Our models reach final masses well in excess of 10 M⊙, con- sistent with the observed masses of black holes in X-ray binaries. This resolves the discrepancy found with previously assumed high mass-loss rates between the final masses of stars which spend most of their helium-burning lifetime as Wolf- Rayet stars (∼ 3 M⊙) and the minimum observed black hole masses (6 M⊙). Our arXiv:astro-ph/0203308v1 19 Mar 2002 calculations also suggest that there are two distinct classes of progenitors for Type Ic supernovae: one with very large initial masses (∼> 35 M⊙), which are still massive when they explode and leave black hole remnants, and one with moderate initial masses (∼ 12 − 20 M⊙) undergoing binary interaction, which end up with small pre-explosion masses and leave neutron star remnants.
    [Show full text]
  • Contributions of the Astronomical Observatory Skalnate´ Pleso
    ASTRONOMICAL INSTITUTE SLOVAK ACADEMY OF SCIENCES CONTRIBUTIONS OF THE ASTRONOMICAL OBSERVATORY SKALNATE´ PLESO • VOLUME L • Number 3 S KA SO LNATÉ PLE July 2020 Editorial Board Editor-in-Chief August´ın Skopal, Tatransk´aLomnica, The Slovak Republic Managing Editor Richard Komˇz´ık, Tatransk´aLomnica, The Slovak Republic Editors Drahom´ır Chochol, Tatransk´aLomnica, The Slovak Republic J´ulius Koza, Tatransk´aLomnica, The Slovak Republic AleˇsKuˇcera, Tatransk´aLomnica, The Slovak Republic LuboˇsNesluˇsan, Tatransk´aLomnica, The Slovak Republic Vladim´ır Porubˇcan, Bratislava, The Slovak Republic Theodor Pribulla, Tatransk´aLomnica, The Slovak Republic Advisory Board Bernhard Fleck, Greenbelt, USA Arnold Hanslmeier, Graz, Austria Marian Karlick´y, Ondˇrejov, The Czech Republic Tanya Ryabchikova, Moscow, Russia Giovanni B. Valsecchi, Rome, Italy Jan Vondr´ak, Prague, The Czech Republic c Astronomical Institute of the Slovak Academy of Sciences 2020 ISSN: 1336–0337 (on-line version) CODEN: CAOPF8 Editorial Office: Astronomical Institute of the Slovak Academy of Sciences SK - 059 60 Tatransk´aLomnica, The Slovak Republic CONTENTS EDITORIAL A. Skopal, R. Komˇz´ık: Editorial . 647 STARS T. Pribulla, L’. Hamb´alek, E. Guenther, R. Komˇz´ık, E. Kundra, J. Nedoroˇsˇc´ık, V. Perdelwitz, M. Vaˇnko: Close eclipsing binary BDAnd: a triple system . 649 V. Andreoli, U. Munari: LAMOST J202629.80+423652.0 is not a symbiotic star . 672 M.Yu. Skulskyy: Formation of magnetized spatial structures in the Beta Lyrae system. I. Observation as a research background
    [Show full text]
  • Anton Pannekoek: Ways of Viewing Science and Society
    STUDIES IN THE HISTORY OF KNOWLEDGE Tai, Van der Steen & Van Dongen (eds) Dongen & Van Steen der Van Tai, Edited by Chaokang Tai, Bart van der Steen, and Jeroen van Dongen Anton Pannekoek: Ways of Viewing Science and Society Ways of Viewing ScienceWays and Society Anton Pannekoek: Anton Pannekoek: Ways of Viewing Science and Society Studies in the History of Knowledge This book series publishes leading volumes that study the history of knowledge in its cultural context. It aspires to offer accounts that cut across disciplinary and geographical boundaries, while being sensitive to how institutional circumstances and different scales of time shape the making of knowledge. Series Editors Klaas van Berkel, University of Groningen Jeroen van Dongen, University of Amsterdam Anton Pannekoek: Ways of Viewing Science and Society Edited by Chaokang Tai, Bart van der Steen, and Jeroen van Dongen Amsterdam University Press Cover illustration: (Background) Fisheye lens photo of the Zeiss Planetarium Projector of Artis Amsterdam Royal Zoo in action. (Foreground) Fisheye lens photo of a portrait of Anton Pannekoek displayed in the common room of the Anton Pannekoek Institute for Astronomy. Source: Jeronimo Voss Cover design: Coördesign, Leiden Lay-out: Crius Group, Hulshout isbn 978 94 6298 434 9 e-isbn 978 90 4853 500 2 (pdf) doi 10.5117/9789462984349 nur 686 Creative Commons License CC BY NC ND (http://creativecommons.org/licenses/by-nc-nd/3.0) The authors / Amsterdam University Press B.V., Amsterdam 2019 Some rights reserved. Without limiting the rights under copyright reserved above, any part of this book may be reproduced, stored in or introduced into a retrieval system, or transmitted, in any form or by any means (electronic, mechanical, photocopying, recording or otherwise).
    [Show full text]
  • The Search for Exomoons and the Characterization of Exoplanet Atmospheres
    Corso di Laurea Specialistica in Astronomia e Astrofisica The search for exomoons and the characterization of exoplanet atmospheres Relatore interno : dott. Alessandro Melchiorri Relatore esterno : dott.ssa Giovanna Tinetti Candidato: Giammarco Campanella Anno Accademico 2008/2009 The search for exomoons and the characterization of exoplanet atmospheres Giammarco Campanella Dipartimento di Fisica Università degli studi di Roma “La Sapienza” Associate at Department of Physics & Astronomy University College London A thesis submitted for the MSc Degree in Astronomy and Astrophysics September 4th, 2009 Università degli Studi di Roma ―La Sapienza‖ Abstract THE SEARCH FOR EXOMOONS AND THE CHARACTERIZATION OF EXOPLANET ATMOSPHERES by Giammarco Campanella Since planets were first discovered outside our own Solar System in 1992 (around a pulsar) and in 1995 (around a main sequence star), extrasolar planet studies have become one of the most dynamic research fields in astronomy. Our knowledge of extrasolar planets has grown exponentially, from our understanding of their formation and evolution to the development of different methods to detect them. Now that more than 370 exoplanets have been discovered, focus has moved from finding planets to characterise these alien worlds. As well as detecting the atmospheres of these exoplanets, part of the characterisation process undoubtedly involves the search for extrasolar moons. The structure of the thesis is as follows. In Chapter 1 an historical background is provided and some general aspects about ongoing situation in the research field of extrasolar planets are shown. In Chapter 2, various detection techniques such as radial velocity, microlensing, astrometry, circumstellar disks, pulsar timing and magnetospheric emission are described. A special emphasis is given to the transit photometry technique and to the two already operational transit space missions, CoRoT and Kepler.
    [Show full text]
  • Arxiv:Astro-Ph/0101303V1 17 Jan 2001 Y -) H Eodcascmrsstemjrt ( Majority the Comprises Class C H Black Class Second a first the Containing the Them of 2000)
    HIGH-MASS X-RAY BINARIES AND OB- RUNAWAY STARS Lex Kaper Astronomical Institute, University of Amsterdam, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands [email protected] Abstract High-mass X-ray binaries (HMXBs) represent an important phase in the evolution of massive binary systems. HMXBs provide unique diag- nostics to test massive-star evolution, to probe the physics of radiation- driven winds, to study the process of mass accretion, and to measure fundamental parameters of compact objects. As a consequence of the supernova explosion that produced the neutron star (or black hole) in these systems, HMXBs have high space velocities and thus are run- aways. Alternatively, OB-runaway stars can be ejected from a cluster through dynamical interactions. Observations obtained with the Hip- parcos satellite indicate that both scenarios are at work. Only for a minority of the OB runaways (and HMXBs) a wind bow shock has been detected. This might be explained by the varying local conditions of the interstellar medium. Keywords: Massive stars, OB runaways, X-ray binaries, stellar winds, ISM arXiv:astro-ph/0101303v1 17 Jan 2001 1. THE EVOLUTION OF MASSIVE BINARIES In a high-mass X-ray binary (HMXB) a massive, OB-type star is or- bited by a compact, accreting X-ray source: a neutron star or a black hole. Mass is accreted either from the stellar wind of the massive com- panion (resulting in a modest X-ray luminosity), or flows with a higher rate to the compact star when the massive star fills its Roche lobe. In the latter case a much higher X-ray luminosity is achieved.
    [Show full text]
  • Astrophysics in 2006 3
    ASTROPHYSICS IN 2006 Virginia Trimble1, Markus J. Aschwanden2, and Carl J. Hansen3 1 Department of Physics and Astronomy, University of California, Irvine, CA 92697-4575, Las Cumbres Observatory, Santa Barbara, CA: ([email protected]) 2 Lockheed Martin Advanced Technology Center, Solar and Astrophysics Laboratory, Organization ADBS, Building 252, 3251 Hanover Street, Palo Alto, CA 94304: ([email protected]) 3 JILA, Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder CO 80309: ([email protected]) Received ... : accepted ... Abstract. The fastest pulsar and the slowest nova; the oldest galaxies and the youngest stars; the weirdest life forms and the commonest dwarfs; the highest energy particles and the lowest energy photons. These were some of the extremes of Astrophysics 2006. We attempt also to bring you updates on things of which there is currently only one (habitable planets, the Sun, and the universe) and others of which there are always many, like meteors and molecules, black holes and binaries. Keywords: cosmology: general, galaxies: general, ISM: general, stars: general, Sun: gen- eral, planets and satellites: general, astrobiology CONTENTS 1. Introduction 6 1.1 Up 6 1.2 Down 9 1.3 Around 10 2. Solar Physics 12 2.1 The solar interior 12 2.1.1 From neutrinos to neutralinos 12 2.1.2 Global helioseismology 12 2.1.3 Local helioseismology 12 2.1.4 Tachocline structure 13 arXiv:0705.1730v1 [astro-ph] 11 May 2007 2.1.5 Dynamo models 14 2.2 Photosphere 15 2.2.1 Solar radius and rotation 15 2.2.2 Distribution of magnetic fields 15 2.2.3 Magnetic flux emergence rate 15 2.2.4 Photospheric motion of magnetic fields 16 2.2.5 Faculae production 16 2.2.6 The photospheric boundary of magnetic fields 17 2.2.7 Flare prediction from photospheric fields 17 c 2008 Springer Science + Business Media.
    [Show full text]
  • Arxiv:0908.2624V1 [Astro-Ph.SR] 18 Aug 2009
    Astronomy & Astrophysics Review manuscript No. (will be inserted by the editor) Accurate masses and radii of normal stars: Modern results and applications G. Torres · J. Andersen · A. Gim´enez Received: date / Accepted: date Abstract This paper presents and discusses a critical compilation of accurate, fun- damental determinations of stellar masses and radii. We have identified 95 detached binary systems containing 190 stars (94 eclipsing systems, and α Centauri) that satisfy our criterion that the mass and radius of both stars be known to ±3% or better. All are non-interacting systems, so the stars should have evolved as if they were single. This sample more than doubles that of the earlier similar review by Andersen (1991), extends the mass range at both ends and, for the first time, includes an extragalactic binary. In every case, we have examined the original data and recomputed the stellar parameters with a consistent set of assumptions and physical constants. To these we add interstellar reddening, effective temperature, metal abundance, rotational velocity and apsidal motion determinations when available, and we compute a number of other physical parameters, notably luminosity and distance. These accurate physical parameters reveal the effects of stellar evolution with un- precedented clarity, and we discuss the use of the data in observational tests of stellar evolution models in some detail. Earlier findings of significant structural differences between moderately fast-rotating, mildly active stars and single stars, ascribed to the presence of strong magnetic and spot activity, are confirmed beyond doubt. We also show how the best data can be used to test prescriptions for the subtle interplay be- tween convection, diffusion, and other non-classical effects in stellar models.
    [Show full text]
  • Astrophysics the Origin of the Runaway High-Mass X
    UvA-DARE (Digital Academic Repository) The origin of the runaway high-mass X-ray binary HD 153919/4U1700-37 Ankay, A.; Kaper, L.; de Bruijne, J.H.J.; Dewi, J.D.M.; Hoogerwerf, R.; Savonije, G.J. Publication date 2001 Published in Astronomy & Astrophysics Link to publication Citation for published version (APA): Ankay, A., Kaper, L., de Bruijne, J. H. J., Dewi, J. D. M., Hoogerwerf, R., & Savonije, G. J. (2001). The origin of the runaway high-mass X-ray binary HD 153919/4U1700-37. Astronomy & Astrophysics, 370, 170-175. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:30 Sep 2021 A&A 370, 170–175 (2001) Astronomy DOI: 10.1051/0004-6361:20010192 & c ESO 2001 Astrophysics The origin of the runaway high-mass X-ray binary HD 153919/4U1700-37? A.
    [Show full text]
  • Abstracts of Extreme Solar Systems 4 (Reykjavik, Iceland)
    Abstracts of Extreme Solar Systems 4 (Reykjavik, Iceland) American Astronomical Society August, 2019 100 — New Discoveries scope (JWST), as well as other large ground-based and space-based telescopes coming online in the next 100.01 — Review of TESS’s First Year Survey and two decades. Future Plans The status of the TESS mission as it completes its first year of survey operations in July 2019 will bere- George Ricker1 viewed. The opportunities enabled by TESS’s unique 1 Kavli Institute, MIT (Cambridge, Massachusetts, United States) lunar-resonant orbit for an extended mission lasting more than a decade will also be presented. Successfully launched in April 2018, NASA’s Tran- siting Exoplanet Survey Satellite (TESS) is well on its way to discovering thousands of exoplanets in orbit 100.02 — The Gemini Planet Imager Exoplanet Sur- around the brightest stars in the sky. During its ini- vey: Giant Planet and Brown Dwarf Demographics tial two-year survey mission, TESS will monitor more from 10-100 AU than 200,000 bright stars in the solar neighborhood at Eric Nielsen1; Robert De Rosa1; Bruce Macintosh1; a two minute cadence for drops in brightness caused Jason Wang2; Jean-Baptiste Ruffio1; Eugene Chiang3; by planetary transits. This first-ever spaceborne all- Mark Marley4; Didier Saumon5; Dmitry Savransky6; sky transit survey is identifying planets ranging in Daniel Fabrycky7; Quinn Konopacky8; Jennifer size from Earth-sized to gas giants, orbiting a wide Patience9; Vanessa Bailey10 variety of host stars, from cool M dwarfs to hot O/B 1 KIPAC, Stanford University (Stanford, California, United States) giants. 2 Jet Propulsion Laboratory, California Institute of Technology TESS stars are typically 30–100 times brighter than (Pasadena, California, United States) those surveyed by the Kepler satellite; thus, TESS 3 Astronomy, California Institute of Technology (Pasadena, Califor- planets are proving far easier to characterize with nia, United States) follow-up observations than those from prior mis- 4 Astronomy, U.C.
    [Show full text]
  • Pos(INTEGRAL 2012)009 ∗ [email protected] Speaker
    INTEGRAL and the Evolution of X-ray Binaries PoS(INTEGRAL 2012)009 E.P.J. van den Heuvel∗ University of Amsterdam, The Netherlands E-mail: [email protected] INTEGRAL discovered two new types of High-Mass X-ray Binaries (HMXB): the highly ob- scured systems and the Supergiant Fast X-ray Transients (SFXT). The causes for the long spin periods of the neutron stars in supergiant HMXBs and of the outbursts of SFXTs are discussed. Furthermore, the formation rate, duration of the X-ray phase and the evolution after the X-ray phase of the HMXBs are discussed. Many systems will later in life merge to form Thorne- Zytkow Objects. The fate of such objects is still unclear, but the relatively high formation rate of supergiant HMXBs in the Galaxy implies that their remnants must be all around us. “An INTEGRAL view of the high-energy sky (the first 10 years)” 9th INTEGRAL Workshop and celebration of the 10th anniversary of the launch October 15-19, 2012 Bibliotheque Nationale de France, Paris, France ∗Speaker. c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/ INTEGRAL and the Evolution of X-ray Binaries E.P.J. van den Heuvel 1. Introduction: forty years of X-ray binaries Forty years ago the discovery of the first-known X-ray binary Centaurus X-3 was published. Etan Schreier of the UHURU team discovered in November 1971 the recurrence of the X-ray low states of this source with a 2,087-day period, indicating that it is an eclipsing binary, and discovered the simultaneous periodic Doppler modulation of its 4,84-second X-ray pulse period (Schreier et al.
    [Show full text]
  • Infrared Imaging with COAST
    Infrared Imaging with COAST John Stephen Young St John’s College, Cambridge and Cavendish Astrophysics A dissertation submitted for the degree of Doctor of Philosophy in the University of Cambridge 26 March 1999 iii Preface This dissertation describes work carried out in the Astrophysics Group of the Department of Phys- ics, University of Cambridge, between October 1995 and March 1999. Except where explicit reference is made to the work of others, this dissertation is the result of my own work, and includes nothing which is the outcome of work done in collaboration. No part of this dissertation has been submitted for a degree, diploma, or other qualification at any University. This dissertation does not exceed 60,000 words in length. v Acknowledgements Many people say that this is the only page of a PhD. thesis worth reading. I hope that is not the case here. This is, however, the only page not written in the passive voice, and the only one which might make you smile. Above all, I would like to thank my supervisor, Professor John Baldwin, for always being available to give advice and encouragement, and for assisting with many hours of alignment and even more hours of observing. The shortbread was much appreciated! Many thanks are also due for his reading of this thesis. It has been a pleasure to work with all of the members of the COAST team. None of the work described in this thesis would have been possible without the NICMOS camera built by Martin Beckett. I would like to thank him for taking the time to explain it to me.
    [Show full text]
  • A Search for the Origin of the Interstellar Comet 2I/Borisov
    A&A 634, A14 (2020) Astronomy https://doi.org/10.1051/0004-6361/201937231 & © C. A. L. Bailer-Jones et al. 2020 Astrophysics A search for the origin of the interstellar comet 2I/Borisov Coryn A. L. Bailer-Jones1, Davide Farnocchia2, Quanzhi Ye ( )3, Karen J. Meech4, and Marco Micheli5,6 1 Max Planck Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany e-mail: [email protected] 2 Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA 3 Department of Astronomy, University of Maryland, College Park, MD 20742, USA 4 Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822, USA 5 ESA NEO Coordination Centre, Largo Galileo Galilei 1, 00044 Frascati (RM), Italy 6 INAF – Osservatorio Astronomico di Roma, Via Frascati 33, 00040 Monte Porzio Catone (RM), Italy Received 2 December 2019 / Accepted 30 December 2019 ABSTRACT The discovery of the second interstellar object 2I/Borisov on 2019 August 30 raises the question of whether it was ejected recently from a nearby stellar system. Here we compute the asymptotic incoming trajectory of 2I/Borisov, based on both recent and pre-discovery data extending back to December 2018, using a range of force models that account for cometary outgassing. From Gaia DR2 astrometry and radial velocities, we trace back in time the Galactic orbits of 7.4 million stars to look for close encounters with 2I/Borisov. The closest encounter we find took place 910 kyr ago with the M0V star Ross 573, at a separation of 0.068 pc (90% confidence interval 1 of 0.053–0.091 pc) with a relative velocity of 23 km s− .
    [Show full text]