Measuringandmonitoringcarbon Emissiontopromotelow-Carbon Developmentinjohorbahru
Total Page:16
File Type:pdf, Size:1020Kb
MEASURING AND MONITORING CARBON EMISSION Isiaka Adeyemi Abdul-Azeez TO PROMOTE LOW-CARBON DEVELOPMENT IN JOHOR BAHRU MEASURING AND MONITORING CARBON EMISSION TO PROMOTE LOW-CARBON DEVELOPMENT IN JOHOR BAHRU by Isiaka Adeyemi Abdul-Azeez Department of Urban & Regional Planning, Modibbo Adama University of Technology, Yola, Nigeria Abstract Reducing carbon dioxide emissions through low carbon development is an appropriate approach to combating climate change. The aim of this research is to identify ways of reducing carbon dioxide emissions in Johor Bahru—the capital city of the state of Johor, Malaysia, and the second-largest city in that country—and promoting low-carbon development. Because the practice of low-carbon development in Johor Bahru is relatively new and few projects have been completed to date, the focus in this work has been on refining the concept of low carbon, rather than the direct measurement of carbon dioxide (CO2) emissions. Because the majority of the carbon emissions in the region under study come from the electricity and transportation sectors, the Malaysian University Carbon Emission Tool (MUCET), described herein, was modified to measure and monitor emissions from Johor Bahru’s energy sector. That tool facilitated the formulation of policies that will target emission reduction, and thereby promote steady movement toward a clean energy future. Introduction Concentrations of human activities in today’s cities produce greenhouse gas emissions, which collectively account for about 78 percent of carbon emissions [1][2]. Those cities have an almost insatiable appetite for energy, both to conduct business as usual, and to grow. That appetite is met mainly through the combustion of fossil fuels, which causes carbon dioxide emissions, which in turn are the major driving force for climate change [4]. Many current technological practices favor the use of fossil fuels as their prime sources of energy [3], and therefore are major (if indirect) contributors to carbon emission. Climate change is one of the greatest challenges to global development, posing a threat to both the environment and the world’s human population [5]. The effects of climate change can best be countered through the adoption of low-carbon technology and the design of mitigation policies, usually referred to as “Low-Carbon Development.” Malaysia Sustainable Cities Program, Working Paper Series 1 © Isiaka Adeyemi Abdul-Azeez & Massachusetts Institute of Technology 2016 MEASURING AND MONITORING CARBON EMISSION Isiaka Adeyemi Abdul-Azeez TO PROMOTE LOW-CARBON DEVELOPMENT IN JOHOR BAHRU Typically, this involves the implementation of energy sustainability policies, which in turn brings about changes to the industrial structure, energy mix [6], and employment structures [7]. As nations around the globe chart a path to combating climate change, many cities have embraced the development objective of becoming low-carbon cities. Low-carbon development is very significant to the sustainable development of cities. Over half of the global population resides in cities— a figure that is expected to rise to about 70 percent by 2050 (WRI). Cities are currently responsible for 67-76 percent of energy use and 71-76 percent of energy-related carbon dioxide emissions [4][8]. Sustainable development in the future, clearly, will depend upon cities finding ways to go low carbon [9]. Low-carbon development has its roots in the United Nations Forum for Climate Change Convention, adopted in Rio in 1992. That convention comprises strategies and growth plans that promote low-emission or climate-resilient economic growth [10]. Low-carbon development refers to a society that emits greenhouse gases (GHGs) only in an amount that can be absorbed by nature. By extension, it portends a movement towards a simpler lifestyle and a richer quality of life, in harmony with the natural world. This means encouraging the kinds of new growth, markets, and consumer attitudes that promote emission-reduction strategies and renewable energy use. Against this backdrop, the Prime Minister of Malaysia pledged to reduce the carbon-emission intensity of Malaysia by 40 percent below its 2005 level by the year 2020 [13] [14]. To achieve this ambitious goal, the national government established agencies that were responsible for preparing the “blueprints” necessary for the promotion of a low-carbon society. Notable among these plans is the Low Carbon Blueprint for Iskandar Malaysia 2025, which covers five local authorities including the entire district of Johor Bahru and Kulai Jaya. The blueprint recommends 281 strategic policies that would help achieve a target of 58 percent reduction in carbon intensity by 2025 compared to 2005 levels [15]. The document was officially embraced in 2012 by the Prime Minister of Malaysia and the Iskandar Regional Development Authority (IRDA). Clearly, reducing carbon dioxide emissions to mitigate global warming and combat climate change will require an accurate assessment of the existing levels of CO2 emission, to serve as a baseline for going forward. The baseline emission for Johor Bahru was determined by the Low Carbon Asia Research Center, Universiti Teknologi Malaysia, UTM, in collaboration with a Japanese partner institution. This measurement and monitoring of carbon emissions was carried out for IRDA using the Asia‐ Pacific Integrated Model (AIM) [16]. Self-monitoring is very important for administrators—both to understand the realities of the carbon situation, and to make informed Malaysia Sustainable Cities Program, Working Paper Series 2 © Isiaka Adeyemi Abdul-Azeez & Massachusetts Institute of Technology 2016 MEASURING AND MONITORING CARBON EMISSION Isiaka Adeyemi Abdul-Azeez TO PROMOTE LOW-CARBON DEVELOPMENT IN JOHOR BAHRU decisions locally. IRDA is a case in point. It needs to be able to monitor emission reduction through its own interface—not only because planning for emission reductions becomes easier when familiar variables are considered, but also because people tend to adapt more easily when they understand how their “footprint” was determined. As noted, energy has been identified as a key driver of CO2 emissions [17] [18]. Promoting low-carbon development in Johor Bahru will involve mapping carbon emissions from energy use, and then formulating policies based on that information. The purpose of this research, therefore, is to study how low-carbon development is practiced in Johor Bahru, and describe a method of “carbon inventorying” to determine CO2 emissions resulting from energy use, in a manner that is easy for all stakeholders to understand. In theory, this will facilitate the setting and realization of emission reduction targets, and promote low-carbon development in Johor Bahru. Background study Cities are engines of growth of many nations. Economic growth requires the use of energy for movement, lighting, manufacturing, and a host of other purposes. But a thriving economy often comes at the expense of significant environmental impacts. Economic development generally translates into more energy consumption, which in turn leads to rising greenhouse gas emissions . Because cities are among the largest contributors of carbon emission, they can play an important role in the development of a low- carbon economy [19]. Stated differently, because cities are where efforts aimed at poverty reduction and economic development tend to be focused, they are also where low-carbon innovations and emission reduction strategies are likely to be most compelling and productive [20]. Two kinds of energy tend to be essential for growth and development: liquid energy, for transport; and generated energy, for electricity. In both cases, the energy needed is predominantly derived from fossil fuels—such as coal, diesel, and petrol, among others—the combustion of which results in carbon dioxide (CO2). Energy-related emissions of CO2 and other greenhouse gases increased rapidly throughout the last century [21]. Aside from lighting, cooling, and heating buildings—which account for about 48 percent of all energy use in in the developed countries—transportation is the fastest-growing form of energy use, accounting for about 30 percent of the world‘s energy use and 95 percent of global oil consumption [22]. Under normal circumstances, therefore, economic growth and sustainable low-carbon development would appear to be in conflict. But by taking the low-carbon development path, cities can maintain desired growth rates, sustain living standards, and still control their fossil fuel- based energy consumption to minimize their carbon emissions. Planning Malaysia Sustainable Cities Program, Working Paper Series 3 © Isiaka Adeyemi Abdul-Azeez & Massachusetts Institute of Technology 2016 MEASURING AND MONITORING CARBON EMISSION Isiaka Adeyemi Abdul-Azeez TO PROMOTE LOW-CARBON DEVELOPMENT IN JOHOR BAHRU ways to meet this ambitious set of goals therefore becomes imperative. The focus, again, should be to achieve energy transformation in a way that balances economic growth and the environment. That planning begins with science. Measuring and reducing carbon emissions require rigorous scientific analysis, focused on the sources of those emissions, and how they can be reduced. A key first step, therefore, is the introduction of a technique for inventorying CO2 that is understood by the relevant administrators, and—ultimately—can facilitate the setting of realistic carbon emission reduction targets. Low-carbon development: the Malaysian experience The 10th Malaysian Plan clearly expressed