NSW Pest Fish List As Part of a Consistent Approach to the Management of Ornamental Fish Throughout Australia

Total Page:16

File Type:pdf, Size:1020Kb

NSW Pest Fish List As Part of a Consistent Approach to the Management of Ornamental Fish Throughout Australia Ornamental Fish Update – Important Information Regarding Pest Fish July 2017 On 16 December 2016, NSW government introduced further changes to the NSW Pest Fish List as part of a consistent approach to the management of ornamental fish throughout Australia. The NSW Pest Fish List now includes an additional 65 listings that have been nationally agreed as having a high-risk potential. ____________________________________________________________________________________ part 2, schedule 1 of the Biosecurity Regulation Why are there changes to the pest 2017, are subject to notification and must not be fish list? dealt with. Compliance with the NSW Pest Fish List is mandatory by law. In 2006, all Australian governments, in consultation with representatives of the ornamental fish industry, developed a National Strategy called the What should I do with any pest ‘A Strategic Approach to the Management of fish that I have? Ornamental Fish in Australia’. The National A number of ornamental fish species that were Strategy contains seven recommendations for the previously traded by the aquarium industry, management of ornamental fish in Australia, aquarium enthusiasts or hobbyists are now including the development of an agreed National prohibited from being sold and/or being in your Pest Fish List. possession. Pest fish possess characteristics that have the However, NSW DPI is providing a six month potential to trigger, or contribute to, aquatic pest or advisory period, which commenced on 1 March disease outbreaks, impacting upon natural 2017 to provide time for advisory materials to be biodiversity and fisheries resources. Weatherloach distributed and ornamental fish owners to comply and Tilapia are two examples of pest species with the new additions to the NSW pest fish list which, when released, are known to have impacts on our natural aquatic systems. The National Note: advisory period is ONLY for the new listings, Strategy aims to reduce the occurrence of similar indicated by an asterisk (*) and highlighted in bold invasions in the future. type on an orange background in the tables inside this brochure. The complete NSW Pest Fish List is presented inside this brochure. Please note that a six The advisory period ends on 1 September 2017 month advisory period for new additions to the and compliance for the newly listed species will be enforced from this date. list – indicated by an asterix (*) and highlighted in bold type on an orange background – commenced on 1 March 2017. The advisory Ornamental fish owners are required to destroy period ends on 1 September 2017 and any pest fish they have using suitable humane compliance for the newly listed species will be methods as advised by the Animal Biosecurity and enforced from this date. Compliance with all Welfare Branch of NSW DPI. Approved methods other species is already mandatory by law. are percussive stunning and ice slurry. Find welfare of fish at www.dpi.nsw.gov.au for more information. Pest fish should then be disposed of What rules apply to the newly by burying away from any water source, or in a listed pest fish? secure disposal unit. All pest fish listed as prohibited matter in Schedule Note: Release of these fish into our waterways is 2 of Biosecurity Act 2015 are prohibited for sale illegal and poses a significant risk to or native and possession. Additional pest fish listed in the species and environments. Ornamental fish update Species Common name family) Alfaro amazonus (Poeciliidae family)* Alfaro amazonus (Poeciliidae family) Alfaro cultratus (Poeciliidae family) Knife-edged livebearer Alfaro huberi (Poeciliidae family) Allomogurnda nesolepis (Eleotridae family) Yellowbelly gudgeon Tilapia, Oreochromis mossambicus (Photo: Qld DAF) Ameiurus brunneus (Ictaluridae family) Snail bullhead NSW Pest Fish List (prohibited Ameiurus catus (Ictaluridae family) White catfish matter) Ameiurus melas (Ictaluridae family) Black bullhead Ameiurus natalis (Ictaluridae family) Yellow bullhead Species Common name Ameiurus nebulosus (Ictaluridae family) Brown bullhead Acestrorhynchus microlepis (Acestrorhynchidae Ameiurus platycephalus (Ictaluridae family) Flat bullhead family) Ameiurus serracanthus (Ictaluridae family) Spotted bullhead Acipenser baerii subsp. Baerii Siberian sturgeon Amia calva (Amiidae family) Bowfin (Acipenseridae family)* Anabas cobojius (Anabantidae family) Gangetic climbing Acipenser baerii subsp. Baicalensis Baikal sturgeon perch (Acipenseridae family) Anabas testudineus (Anabantidae family) Climbing perch Acipenser brevirostrum (Acipenseridae family) Shortnose sturgeon Anaspidoglanis macrostoma (Bagridae family) Flatnose catfish Acipenser dabryanus (Acipenseridae family) Yangtze sturgeon Apeltes quadracus (Gasterosteidae family) Four spined Acipenser fulvescens (Acipenseridae family) Lake sturgeon stickleback Acipenser gueldenstaedtii (Acipenseridae Russian sturgeon Aristichthys nobilis (Cyprinidae family) Bighead carp family) Astyanacinus moorii (Characidae family)* Acipenser medirostris (Acipenseridae family) Green sturgeon Acipenser mikadoi (Acipenseridae family) Sakhalin sturgeon Astyanax aeneus (Characidae family) Banded tetra Acipenser multiscutatus (Acipenseridae family) Japanese sturgeon Astyanax fasciatus (Characidae family) Banded astyanax Acipenser naccarii (Acipenseridae family) Adriatic sturgeon Atractosteus spp. (all species except A.spatula) American Acipenser nudiventris (Acipenseridae family) Fringebarbel (Lepisosteidae family) gar/Armoured gar sturgeon Bagrus ubangensis (Bagridae family) Ubangi shovelnose Acipenser oxyrinchus subsp. Desotoi Gulf sturgeon catfish (Acipenseridae family) Barbodes hexagonolepis (Cyprinidae family) Copper mahseer Acipenser oxyrinchus subsp. Oxyrinchus Atlantic sturgeon (Acipenseridae family)* Belonesox belizanus (Poeciliidae family) Pike minnow/Pike killifish Acipenser persicus (Acipenseridae family) Persian sturgeon Boulengerella cuvieri (Ctenoluciidae family)* Bicuda, Pirapucu Acipenser ruthenus (Acipenseridae family) Sterlet Boulengerella lucius (Ctenoluciidae family)* Golden Pike- Acipenser schrenckii (Acipenseridae family) Amur sturgeon characin, Pirapoco Acipenser sinensis (Acipenseridae family) Chinese sturgeon Boulengerella xyrekes (Ctenoluciidae Pirapoco family)* Acipenser stellatus (Acipenseridae family) Starry sturgeon Boulengerochromis microlepis (Cichlidae family) Giant cichlid/Yellow Acipenser sturio (Acipenseridae family) European sturgeon belly cichlid Acipenser transmontanus (Acipenseridae White sturgeon Catla catla (Cyprinidae family) Catla 2 | P a g e Ornamental fish update Species Common name Species Common name Catlocarpio siamensis (Cyprinidae family) Giant barb Eleotris brachyurus (Eleotridae family)* Eleotris daganensis (Eleotridae family)* Centrarchidae family Eleotris fasciatus (Eleotridae family)* Centropomus spp. (all species) (Centropomidae Snook family) Eleotris feai (Eleotridae family)* Eleotris lutea (Eleotridae family)* Lutea Sleeper Chaca bankanensis (Chacidae family) Angler catfish Eleotris macrocephala (Eleotridae family)* Chaca burmensis (Chacidae family) Burmensis frogmouth catfish Eleotris macrolepis (Eleotridae family)* Eleotris mauritianus (Eleotridae family)* Widehead Sleeper Chaca chaca (Chacidae family) Squarehead catfish Eleotris melanura (Eleotridae family)* Channa spp. (all species) (Channidae family) Snake head Eleotris oxycephala (Eleotridae family)* Cirrhinus cirrhosis (Cyprinidae family) Mrigal Eleotris pellegrini (Eleotridae family)* Clarias spp. (all species) (Clariidae family) Walking catfish Eleotris perniger (Eleotridae family)* Smallscaled Colossoma spp. (all species) (Characidae Spinycheek Sleeper family) Eleotris picta (Eleotridae family)* Spotted Sleeper Ctenobrycon hauxwellianus (Characidae Mojara, Lambari Eleotris pisonis (Eleotridae family)* Spinycheek Sleeper family)* Eleotris pseudacanthopomus (Eleotridae Ctenobrycon multiradiatus (Characidae family)* family)* Eleotris sandwicensis(Eleotridae family) Sandwich Island Ctenopharyngodon idella (Cyprinidae family) Grass carp sleeper Ctenopoma argentoventer (Anabantidae family) Silverbelly Eleotris senegalensis (Eleotridae family)* ctenopoma Eleotris soaresi (Eleotridae family)* Ctenopoma kingsleyae (Anabantidae family) Tailspot ctenopoma Eleotris tecta (Eleotridae family)* Ctenopoma multispine (Anabantidae family) Manyspined Eleotris tubularis (Eleotridae family)* ctenopoma Eleotris vittata (Eleotridae family)* Ctenopoma muriei (Anabantidae family) Ocellated labyrinth Eleotris vomerodentata (Eleotridae family)* fish Erpetoichthys calabaricus Reedfish Ctenopoma nigropannosum (Anabantidae Twospot climbing family) perch Erythrinus spp. (all species) (Erythinidae family) Ctenopoma ocellatum (Anabantidae family) Eyespot ctenopoma Esox spp. (all species) (Esocidae family) Pike Ctenopoma weeksii (Anabantidae family) Mottled ctenopoma Gambusia spp. (all species except G. holbrooki) Mosquitofish (Poeciliidae family) Culaea inconstans (Gasterosteidae family) Gobiomorphus gobioides (Eleotridae family) Giant bully Dormitator latifrons (Eleotridae family) Pacific fat sleeper Gobiomorphus huttoni (Eleotridae family) Redfin bully Dormitator lebretonis (Eleotridae family) Gobiomorus dormitory (Eleotridae family) Bigmouth sleeper Dormitator maculatus (Eleotridae family) Pacific sleeper Gobiomorus maculatus (Eleotridae family) Elassoma spp. (all species) Pygmy sunfish Gymnarchus niloticus (Gymnarchidae family) Aba aba Electrophorus electricus (Gymnotidae family) Electric eel Helicophagus leptorhynchus (Pangasiidae Eleotris
Recommended publications
  • Chapter One Introduction
    CHAPTER ONE INTRODUCTION 1.1 Project Overview The lubricant sub-sector of the downstream industry is one with so many potential that is capable of being a major source of revenue earner for the country, and has grown over the years with increase in the number of second hand passenger and commercial vehicles in the country calling for more frequent lubricant changes. Though Nigeria has an installed lubricant capacity of 600, 000 metric tonnes the current demand is 700 million litres which is about 1% of global demand. The lubricants market is driven by various steps being taken by government such as initiatives to increase the ease of doing business to boost manufacturing sector activities and the Nigeria Economic Recovery and Growth Plan (ERGP) to emphasize investment in infrastructure. With the increase of import duty on finished lubricants to 30% and the recent 7.5 percent VAT on finished lubes in the country, the sectors have been opened up for further investment and the proposed project considered in this study is set to explore the given opportunity. Though there are presently 34 lube blending plants in Nigeria, only two of these (5.9%) are located in the south- south region of the country (DPR, 2020). This proposed lubricating oil blending plant project by Eraskon Nigeria Ltd is thus a private effort to support the government of Nigeria on how local production of lubricant can be increased to boost its domestic availability especially in the south-south region of the country. 1.2 Project Proponent Eraskon Nigeria Limited is a lubricant oil manufacturing company incorporated in Nigeria by the Corporate Affairs Commission (CAC) with RC No.
    [Show full text]
  • Research Funding (Total $2,552,481) $15,000 2019
    CURRICULUM VITAE TENNESSEE AQUARIUM CONSERVATION INSTITUTE 175 BAYLOR SCHOOL RD CHATTANOOGA, TN 37405 RESEARCH FUNDING (TOTAL $2,552,481) $15,000 2019. Global Wildlife Conservation. Rediscovering the critically endangered Syr-Darya Shovelnose Sturgeon. $10,000 2019. Tennessee Wildlife Resources Agency. Propagation of the Common Logperch as a host for endangered mussel larvae. $8,420 2019. Tennessee Wildlife Resources Agency. Monitoring for the Laurel Dace. $4,417 2019. Tennessee Wildlife Resources Agency. Examining interactions between Laurel Dace (Chrosomus saylori) and sunfish $12,670 2019. Trout Unlimited. Southern Appalachian Brook Trout propagation for reintroduction to Shell Creek. $106,851 2019. Private Donation. Microplastic accumulation in fishes of the southeast. $1,471. 2019. AZFA-Clark Waldram Conservation Grant. Mayfly propagation for captive propagation programs. $20,000. 2019. Tennessee Valley Authority. Assessment of genetic diversity within Blotchside Logperch. $25,000. 2019. Riverview Foundation. Launching Hidden Rivers in the Southeast. $11,170. 2018. Trout Unlimited. Propagation of Southern Appalachian Brook Trout for Supplemental Reintroduction. $1,471. 2018. AZFA Clark Waldram Conservation Grant. Climate Change Impacts on Headwater Stream Vertebrates in Southeastern United States $1,000. 2018. Hamilton County Health Department. Step 1 Teaching Garden Grants for Sequoyah School Garden. $41,000. 2018. Riverview Foundation. River Teachers: Workshops for Educators. $1,000. 2018. Tennessee Valley Authority. Youth Freshwater Summit $20,000. 2017. Tennessee Valley Authority. Lake Sturgeon Propagation. $7,500 2017. Trout Unlimited. Brook Trout Propagation. $24,783. 2017. Tennessee Wildlife Resource Agency. Assessment of Percina macrocephala and Etheostoma cinereum populations within the Duck River Basin. $35,000. 2017. U.S. Fish and Wildlife Service. Status surveys for conservation status of Ashy (Etheostoma cinereum) and Redlips (Etheostoma maydeni) Darters.
    [Show full text]
  • United States National Museum Bulletin 282
    Cl>lAat;i<,<:>';i^;}Oit3Cl <a f^.S^ iVi^ 5' i ''*«0£Mi»«33'**^ SMITHSONIAN INSTITUTION MUSEUM O F NATURAL HISTORY I NotUTus albater, new species, a female paratype, 63 mm. in standard length; UMMZ 102781, Missouri. (Courtesy Museum of Zoology, University of Michigan.) UNITED STATES NATIONAL MUSEUM BULLETIN 282 A Revision of the Catfish Genus Noturus Rafinesque^ With an Analysis of Higher Groups in the Ictaluridae WILLIAM RALPH TAYLOR Associate Curator, Division of Fishes SMITHSONIAN INSTITUTION PRESS CITY OF WASHINGTON 1969 IV Publications of the United States National Museum The scientific publications of the United States National Museum include two series, Proceedings of the United States National Museum and United States National Museum Bulletin. In these series are published original articles and monographs dealing with the collections and work of the Museum and setting forth newly acquired facts in the fields of anthropology, biology, geology, history, and technology. Copies of each publication are distributed to libraries and scientific organizations and to specialists and others interested in the various subjects. The Proceedings, begun in 1878, are intended for the publication, in separate form, of shorter papers. These are gathered in volumes, octavo in size, with the publication date of each paper recorded in the table of contents of the volume. In the Bulletin series, the first of which was issued in 1875, appear longer, separate publications consisting of monographs (occasionally in several parts) and volumes in which are collected works on related subjects. Bulletins are either octavo or quarto in size, depending on the needs of the presentation. Since 1902, papers relating to the botanical collections of the Museum have been published in the Bulletin series under the heading Contributions from the United States National Herbarium.
    [Show full text]
  • Reintroduction Plan for the Purple- Spotted Gudgeon in the Southern Murray–Darling Basin
    Reintroduction plan for the Purple- spotted Gudgeon in the southern Murray–Darling Basin Photo: Arthur Mostead Authors - Michael Hammer, Thomas Barnes, Leanne Piller & Dylan Sortino Aquasave Consultants, Adelaide Published by Murray–Darling Basin Authority. MDBA Publication No 45/12 ISBN 978-1-922068-54-5 (online) © Murray–Darling Basin Authority for and on behalf of the Commonwealth of Australia, 2012. With the exception of the Commonwealth Coat of Arms, the MDBA logo, all photographs, graphics and trademarks, this publication is provided under a Creative Commons Attribution 3.0 Australia Licence. http://creativecommons.org/licenses/by/3.0/au The MDBA’s preference is that you attribute this publication (and any material sourced from it) using the following wording: Title: Reintroduction Plan for the Southern Purple-spotted Gudgeon in the southern Murray— Darling Basin Source: Licensed from the Murray–Darling Basin Authority, under a Creative Commons Attribution 3.0 Australia Licence. Authors: Michael Hammer, Thomas Barnes, Leanne Pillar and Dylan Sortino. Editor: Jane Tuckwell The MDBA provides this information in good faith but to the extent permitted by law, the MDBA and the Commonwealth exclude all liability for adverse consequences arising directly or indirectly from using any information or material contained within this publication. Cover Image: Lower Murray Southern Purple-spotted Gudgeon in captivity–adults, eggs and juveniles. Photos by Michael Hammer i Reintroduction plan for the Southern Purple-spotted Gudgeon in the southern Murray—Darling Basin. Summary The Southern Purple-spotted Gudgeon is a small, colourful freshwater fish with a distinct genetic conservation unit in the southern Murray–Darling Basin (MDB).
    [Show full text]
  • Phylogenetic Relationships Within the Speciose Family Characidae
    Oliveira et al. BMC Evolutionary Biology 2011, 11:275 http://www.biomedcentral.com/1471-2148/11/275 RESEARCH ARTICLE Open Access Phylogenetic relationships within the speciose family Characidae (Teleostei: Ostariophysi: Characiformes) based on multilocus analysis and extensive ingroup sampling Claudio Oliveira1*, Gleisy S Avelino1, Kelly T Abe1, Tatiane C Mariguela1, Ricardo C Benine1, Guillermo Ortí2, Richard P Vari3 and Ricardo M Corrêa e Castro4 Abstract Background: With nearly 1,100 species, the fish family Characidae represents more than half of the species of Characiformes, and is a key component of Neotropical freshwater ecosystems. The composition, phylogeny, and classification of Characidae is currently uncertain, despite significant efforts based on analysis of morphological and molecular data. No consensus about the monophyly of this group or its position within the order Characiformes has been reached, challenged by the fact that many key studies to date have non-overlapping taxonomic representation and focus only on subsets of this diversity. Results: In the present study we propose a new definition of the family Characidae and a hypothesis of relationships for the Characiformes based on phylogenetic analysis of DNA sequences of two mitochondrial and three nuclear genes (4,680 base pairs). The sequences were obtained from 211 samples representing 166 genera distributed among all 18 recognized families in the order Characiformes, all 14 recognized subfamilies in the Characidae, plus 56 of the genera so far considered incertae sedis in the Characidae. The phylogeny obtained is robust, with most lineages significantly supported by posterior probabilities in Bayesian analysis, and high bootstrap values from maximum likelihood and parsimony analyses.
    [Show full text]
  • Prosanta Chakrabarty
    Prosanta Chakrabarty Museum of Natural Science, Dept. of Bio. Sci., 119 Foster Hall, Louisiana State University Baton Rouge, LA 70803 USA Office (225) 578-3079 | Fax: (225) 578-3075 e-mail: [email protected] webpage: http://www.prosanta.net EDUCATION 2006 Doctor of Philosophy in Ecology and Evolutionary Biology, University of Michigan, Dissertation: "Phylogenetic and Biogeographic Analyses of Greater Antillean and Middle American Cichlidae." 2000 Bachelor of Science in Applied Zoology, McGill University, Montréal, Québec. RECENT RESEARCH AND ADMINISTRATIVE POSITIONS 2014 – Present Associate Professor/Curator of Fishes, Louisiana State University, Department of Biological Sciences, Museum of Natural Science, LA. 2016 - Present Research Associate National Museum of Natural History Smithsonian, Washington, D.C. 2012 - Present Research Associate, Division of Vertebrate Zoology, American Museum of Natural History, NY. 2016 - 2017 Program Director for National Science Foundation (Visiting Scientist, Engineer Program), Systematics and Biodiversity Sciences Cluster in the Division of Environmental Biology, Directorate for Biological Sciences, VA. 2008 - 2014 Assistant Professor/Curator of Fishes, Louisiana State University, Department of Biological Sciences, Museum of Natural Science, LA. 2006 - 2008 Postdoctoral Fellow, American Museum of Natural History, Department of Ichthyology, NY. MAJOR GRANTS AND FELLOWSHIPS Over $2 million total as PI • NSF DEB: Collaborative Research: Not so Fast - Historical biogeography of freshwater fishes in Central America and the Greater Antilles, 2014-2019. • NSF IOS: Research Opportunity, 2018. • NSF: CSBR: Imminent and Critical Integration and Renovations to Herps and Fishes at the LSU Museum of Natural Science, 2016-2019. • National Academies Keck Futures Initiative: Crude Life: A Citizen Art and Science Investigation of Gulf of Mexico Biodiversity after the Deepwater Horizon Oil Spill, 2016-2018.
    [Show full text]
  • Isolation of Intestinal Parasites of Schilbe Mystus from the Mid Cross River Flood System Southeastern Nigeria
    AASCIT Journal of Health 2015; 2(4): 26-31 Published online July 20, 2015 (http://www.aascit.org/journal/health) Isolation of Intestinal Parasites of Schilbe mystus from the Mid Cross River Flood System Southeastern Nigeria Uneke Bilikis Iyabo, Egboruche Joy Dept of Applied Biology, Faculty of Biological Sciences, Ebonyi State University, Abakaliki, Ebonyi State, Nigeria Email address [email protected] (U. B. Iyabo), [email protected] (U. B. Iyabo) Citation Keywords Uneke Bilikis Iyabo, Egboruche Joy. Isolation of Intestinal Parasites of Schilbe mystus from the Intestinal Parasites, Mid Cross River Flood System Southeastern Nigeria. AASCIT Journal of Health. Nematodes, Vol. 2, No. 4, 2015, pp. 26-31. Trematodes, Cestodes, Abstract Protozoans, A survey of Schilbe mystus of the mid Cross River flood system was conducted between Acanthocephalans, August and October, 2014 to determine the presence of parasitic infection in S. mystus . Schilbe mystus The fish were collected with gill nets, hook and line. Seventy five out of the one hundred fish examined were infected (75.0%) with parasites. The end oparasites recovered were mostly nematodes, trematodes, cestodes, protozoa and acanthocephalans. Numerical abundance of parasites showed that a total of 128 species of end oparasites occurred in Received: June 30, 2015 the fish examined. Nematodes had 33.6% (43/128), trematodes 11.7% (15/128), Revised: July 10, 2015 cestodes 24.2% (31/128), protozoa 12.5% (16/128) and acanthocephalan 18.0% Accepted: July 11, 2015 (23/128). The prevalence of end oparasites of the fish showed that parasites were most prevalent in fishes with length Class 14.1-16 cm TL with 67.2% while class 21.1-22cm had the least prevalence (1.60%).
    [Show full text]
  • Fish, Various Invertebrates
    Zambezi Basin Wetlands Volume II : Chapters 7 - 11 - Contents i Back to links page CONTENTS VOLUME II Technical Reviews Page CHAPTER 7 : FRESHWATER FISHES .............................. 393 7.1 Introduction .................................................................... 393 7.2 The origin and zoogeography of Zambezian fishes ....... 393 7.3 Ichthyological regions of the Zambezi .......................... 404 7.4 Threats to biodiversity ................................................... 416 7.5 Wetlands of special interest .......................................... 432 7.6 Conservation and future directions ............................... 440 7.7 References ..................................................................... 443 TABLE 7.2: The fishes of the Zambezi River system .............. 449 APPENDIX 7.1 : Zambezi Delta Survey .................................. 461 CHAPTER 8 : FRESHWATER MOLLUSCS ................... 487 8.1 Introduction ................................................................. 487 8.2 Literature review ......................................................... 488 8.3 The Zambezi River basin ............................................ 489 8.4 The Molluscan fauna .................................................. 491 8.5 Biogeography ............................................................... 508 8.6 Biomphalaria, Bulinis and Schistosomiasis ................ 515 8.7 Conservation ................................................................ 516 8.8 Further investigations .................................................
    [Show full text]
  • Fish Species of Saskatchewan
    Introduction From the shallow, nutrient -rich potholes of the prairies to the clear, cool rock -lined waters of our province’s north, Saskatchewan can boast over 50,000 fish-bearing bodies of water. Indeed, water accounts for about one-eighth, or 80,000 square kilometers, of this province’s total surface area. As numerous and varied as these waterbodies are, so too are the types of fish that inhabit them. In total, Saskatchewan is home to 67 different fish species from 16 separate taxonomic families. Of these 67, 58 are native to Saskatchewan while the remaining nine represent species that have either been introduced to our waters or have naturally extended their range into the province. Approximately one-third of the fish species found within Saskatchewan can be classed as sportfish. These are the fish commonly sought out by anglers and are the best known. The remaining two-thirds can be grouped as minnow or rough-fish species. The focus of this booklet is primarily on the sportfish of Saskatchewan, but it also includes information about several rough-fish species as well. Descriptions provide information regarding the appearance of particular fish as well as habitat preferences and spawning and feeding behaviours. The individual species range maps are subject to change due to natural range extensions and recessions or because of changes in fisheries management. "...I shall stay him no longer than to wish him a rainy evening to read this following Discourse; and that, if he be an honest Angler, the east wind may never blow when he goes a -fishing." The Compleat Angler Izaak Walton, 1593-1683 This booklet was originally published by the Saskatchewan Watershed Authority with funds generated from the sale of angling licences and made available through the FISH AND WILDLIFE DEVELOPMENT FUND.
    [Show full text]
  • Endangered Species
    FEATURE: ENDANGERED SPECIES Conservation Status of Imperiled North American Freshwater and Diadromous Fishes ABSTRACT: This is the third compilation of imperiled (i.e., endangered, threatened, vulnerable) plus extinct freshwater and diadromous fishes of North America prepared by the American Fisheries Society’s Endangered Species Committee. Since the last revision in 1989, imperilment of inland fishes has increased substantially. This list includes 700 extant taxa representing 133 genera and 36 families, a 92% increase over the 364 listed in 1989. The increase reflects the addition of distinct populations, previously non-imperiled fishes, and recently described or discovered taxa. Approximately 39% of described fish species of the continent are imperiled. There are 230 vulnerable, 190 threatened, and 280 endangered extant taxa, and 61 taxa presumed extinct or extirpated from nature. Of those that were imperiled in 1989, most (89%) are the same or worse in conservation status; only 6% have improved in status, and 5% were delisted for various reasons. Habitat degradation and nonindigenous species are the main threats to at-risk fishes, many of which are restricted to small ranges. Documenting the diversity and status of rare fishes is a critical step in identifying and implementing appropriate actions necessary for their protection and management. Howard L. Jelks, Frank McCormick, Stephen J. Walsh, Joseph S. Nelson, Noel M. Burkhead, Steven P. Platania, Salvador Contreras-Balderas, Brady A. Porter, Edmundo Díaz-Pardo, Claude B. Renaud, Dean A. Hendrickson, Juan Jacobo Schmitter-Soto, John Lyons, Eric B. Taylor, and Nicholas E. Mandrak, Melvin L. Warren, Jr. Jelks, Walsh, and Burkhead are research McCormick is a biologist with the biologists with the U.S.
    [Show full text]
  • Northern Pike Esox Lucius ILLINOIS RANGE
    northern pike Esox lucius Kingdom: Animalia FEATURES Phylum: Chordata The northern pike's average life span is eight to 10 Class: Osteichthyes years. The average weight is two pounds. It may Order: Esociformes attain a maximum length of 53 inches. The fins are rounded, and all except the pectoral fins have dark Family: Esocidae spots. Scales are present on the cheek and half of ILLINOIS STATUS the gill cover. The eyes are yellow. The long, green body has yellow spots on the sides. The belly is common, native white to dark yellow. The duckbill-shaped snout is easily seen. BEHAVIORS The northern pike lives in lakes, rivers and marshes. It prefers water without strong currents and with many plants. This fish reaches maturity at age two to three years. Spawning occurs in March. The female deposits up to 150,000 eggs that are scattered in marshy areas or other shallow water areas. Eggs hatch in 12-14 days. This fish eats fishes, insects, crayfish, frogs and reptiles. ILLINOIS RANGE © Illinois Department of Natural Resources. 2020. Biodiversity of Illinois. Unless otherwise noted, photos and images © Illinois Department of Natural Resources. close up of head close up of side © Illinois Department of Natural Resources. 2020. Biodiversity of Illinois. Unless otherwise noted, photos and images © Illinois Department of Natural Resources. © Engbretson Underwater Photography adult Aquatic Habitats lakes, ponds and reservoirs; rivers and streams; marshes Woodland Habitats none Prairie and Edge Habitats none © Illinois Department of Natural Resources. 2020. Biodiversity of Illinois. Unless otherwise noted, photos and images © Illinois Department of Natural Resources..
    [Show full text]
  • DISTRIBUTION, ECOLOGY, and REPRODUCTIVE BIOLOGY of the ORANGEFIN MADTOM (NOTURUS GILBERTI) by Timothy Dale Simonson
    DISTRIBUTION, ECOLOGY, AND REPRODUCTIVE BIOLOGY OF THE ORANGEFIN MADTOM (NOTURUS GILBERTI) by Timothy Dale Simonson Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Fisheries and Wildlife Sciences APPROVED: Richard J. Neves, Chair Dona:;[d J. Orth Johm J. Ney Louis A. Hel:frich April 1987 Blacksburg, Virginia DISTRIBUTION, ECOLOGY, AND REPRODUCTIVE BIOLOGY OF THE ORANGEFIN MADTOM (NOTURUS GILBERTI) by Timothy Dale Simonson Richard J. Neves, Chair Fisheries and Wildlife Sciences (ABSTRACT) Distribution of the orangefin madtom (Noturus gilberti) was determined from 347 sites sampled in Virginia and North Carolina. This species inhabited 264 stream kilometers, over twice the reported range, in the following systems: Craig Creek, Roanoke River, Dan River, Big Chestnut Creek, South Mayo River, Pigg River, and Smith River. The orangefin madtom was somewhat common; 33% (Dan River) to 70% (Craig Creek) of the sites sampled were occupied. Negative interspecific associates of orangefin madtoms included chubs, mountain redbelly dace, rosyside dace, crescent shiners, and crayfish; only Roanoke darters were considered positive associates. Sand and silt levels were significantly lower at sites with !L. gilberti, while per- centage of small cobble, local gradient, and depth were sig- nificantly higher. Discriminant function analysis identified large gravel, local gradient, silt, and occurrence of rosyside dace and crayfish, as significant predictors of the occurrence of the orangefin madtom. Seasonal samples from Craig Creek consisted of three age groups. The smallest individual captured was 33 mm total length (TL) and the largest was 111 mm TL.
    [Show full text]