Brief Note Stratigraphic Significance of a Dunkleosteus Plate from the Upper Riceville Shale1

Total Page:16

File Type:pdf, Size:1020Kb

Brief Note Stratigraphic Significance of a Dunkleosteus Plate from the Upper Riceville Shale1 Copyright © 1979 Ohio Acad. Sci. 003(MM)50/79/00().r)-0233/$1.00/0 BRIEF NOTE STRATIGRAPHIC SIGNIFICANCE OF A DUNKLEOSTEUS PLATE FROM THE UPPER RICEVILLE SHALE1 JAMES L. MURPHY, The Ohio Historical Society, Columbus, OH 43211 OHIO J. SCI. 79(5): 233, 1979 Discovery of a Dunkleosteus arthrodiran Hay field Shale: (m) (cm) fish plate in dark shale and siltstone 4. Tnterbedded blue gray shale and siltstone, abun- (Riceville Shale) beneath the Cussewago dant mica and plant frag- Sandstone near Mcadville, Crawford Co., ments, burrow and flute Pennsylvania may help to clarify the re- casts; minute worm tubes lationship of Devonian-Mississippian and Modiolus bivalves strata in eastern Ohio and western Penn- near base 2 46 sylvania. Construction of Interstate Cussewago Sandstone: 3. Coarse, friable sandstone, Route 1-79 in 1969 exposed an important thick-bedded, containing stratigraphie section along Van Home shale pebbles 1 2 Run, slightly more than one mile south- Upper Riceville Shale: west of Meadville, Crawford Co., Penn- 2. Thin-bedded siltstones sylvania, on the north side of the high- and interbedded dark gray way. The author collected a Dunkleo- to black shale containing an abundant "Knapp" ma- steus arthrodire plate here and was able rine fauna with Mississip- to measure a stratigraphie section before pian aspects (Syringo- the road cut was seeded and covered with thyris, Sphenotus aeolus) straw. Construction had exposed a large as well as sponges and amount of the shale and siltstone im- and worn Dunkleosteus mediately beneath the Cussewago Sand- plate 4 4 stone. The loose, blasted rock has since Lower Riceville Shale: 1. Thin-bedded siltstone with been used for road fill, and the cut has minor amounts of olive- been deepened so that the fossiliferous brown shale; marine fos- beds immediately below the Cussewago sils common, replaced by Sandstone are now difficult of access. iron oxide; fauna (Cyrto- spirifer, Reticularia) iden- tical with that of upper- MEASURED SECTION most Chagrin Formation of Ohio 3 5 Stratigraphie Unit Thickness (m) (cm) This stratigraphie section was compared Orangeville Formation: with the well known Bartholomew section Bartholomew siltstone member: west of Little's Corners, Hayfield Town- 7. Fine-grained siltstone with ship (White 1881, de Witt 1951, pl. 2) abundant small worm bur- and with the Riceville section (White rows 28 1881, Caster 1934) 0.6 mile southwest of 6. Gray, micaceous shale, un- Riceville, Athens Twp. The former lo- fossiliferous 3 50 cation is the type locality for the Hay- Berea Sandstone: field Shale and the Bartholomew siltstone 5. Fine-grained, micaceous member of the Orangeville Shale. In sandstone with abundant considering the Meadville section, it plant fragments 1 22 should be noted that the terms "Upper iManuscript received 2 June 1978 and Riceville" and "Lower Riceville" are not revised form 16 November 1978 (#78-32). as yet formally defined rock-stratigraphic 233 21M JAMES L. MURPHY Vol. 79 units but informally denned divisions of on the size of the plate, its completeness, the Riceville Shale based upon paleonto- and the relative lack of wear compared to logical criteria. definitely reworked Dunkleosteus speci- Lateral and anterior views of the mens from the Cleveland and Bedford Dunkleosteus plate are shown in figure 1. formations of Ohio. Specific identifica- tion of the plate remains uncertain, but the moderate size and rounded outline indicates D. intermedius rather than D. terrelli or D. curtus. The specimen has been deposited at Orton Museum, Ohio State University (OSU-29724). The occurrence of a large Dunkleosteus plate immediately beneath the Cussewago Sandstone at Meadville has considerable stratigraphic significance, particularly when the lithology of the enclosing sedi- ment is considered. The specimen was found in place, in a thin, light gray silt- stone interbedded with dark gray, almost black, micaceous shale. Marine inver- tebrates occur in the siltstone but were not observed in the dark shale. Biotur- bation had mixed the black shale and light colored siltstone in places. The dark shale of the stratigraphic unit in which the specimen was found is believed to represent an eastern extension of the uppermost Cleveland Shale of Ohio (Szmuc, 1970). Such an interpretation is greatly strengthened by the occur- rence of Dunkleosteus. In eastern Ohio FIGURE 1. Lateral and anterior views of the Dunkleosteus intermedius plate. (OSU- Dunkleosteus is restricted to the Cleveland 29724). Maximum dimensions measured Shale, though small reworked fragments parallel to the anterolateral sensory canal occur in the basal Bedford Formation 18.9 cm and at right angles to it 23.1 cm. west of Cleveland. The present dis- Bar scale equals 5.0 cm. covery strongly indicates that the eastern- most extension of black shale deposition Though fractured by blasting, the speci- in latest Cleveland times occurred in the men is a nearly complete left anterodorsal Meadville area and that the uppermost plate. A fragment about 5 cm2 is missing Cleveland Shale or the Cleveland-Bed- from the dorsal margin and several ford transition zone is contemporaneous smaller fragments are missing from other with strata included in Caster's Knapp portions of the plate margin. Maximum faunal zone (the upper part of de Witt's dimensions measured parallel to the an- Riceville Shale). terolateral sensory canal and at right Caster (1934) suggested that the Mar- angles to it are 18.9 and 23.1 cm respec- vin Creek Limestone and the genetically tively and maximum thickness is 2.0 cm. related Kushequa Shale, both members of The mesial ridge which supports the an- his Knapp monothem, contain earliest terior condyle is 4.6 cm high. William Mississippian faunas. This opinion was J. Hlavin (formerly of Cleveland Museum confirmed by more recent work (Holland of Natural History) has noted that the 1958, Sass 1960) on the Knapp inverte- plate exhibits considerable wear along the brates. The Kushequa Shale (the lower anterior and dorsal margins, but it is part of the Knapp beds) is not found west unlikely that the plate is actually re- of Warren Co., Pennsylvania, but the worked or that it could have been trans- upper (Marvin Creek beds or equivalent) ported very far. This opinion is based strata do continue westward as far as Ohio J. Sci. DUNKLEOSTEVS PLATE 235 Riceville and Meadville, where they have shale on the basis of the Dunkleosleus oc- been included in the Riceville Shale by currence at Meadville. The depositional White (1881), de Witt (1951), and Pep- relationship of the Cussewago Sandstone, per el al (1954). Caster's recognition of the Upper Riceville, and the Lower these Knapp-equivalent beds in the Riceville shales is precisely analogous to Meadville area has been confirmed by my that of the deltaic Bedford/Berea, pro- recent field work and the discovery of the delta lower Bedford/Cleveland transition Knapp Syringothyris zone at the arthro- zone, and the Chagrin Formation of Ohio, dire locality as well as at the Taylor although the Cussewago deltaic sequence Strand School section one mile west of was deposited slightly earlier and over a Taylor Strand School, Athens Twp., smaller geographic area. where it occurs in the basal Cussewago LITERATURE CITED Sandstone. The Knapp faunal zone is Caster, Kenneth E. 1934 The stratigraphy also present below the Cussewago Sand- and paleontology of northwestern Pennsyl- stone at de Witt's (1951, pi. 2) locality L, vania. Part 1: Stratigraphy. Bull. Amer. 0.8 mile south-southwest of Beech School, Paleontol. 21: 1-185. Woodcock Twp., where several complete de Witt, Wallace, Jr. 1951 Stratigraphy of the Bcrea Sandstone and associated rocks in echinoids {Hyattechinus pentagonus Jack- northeastern Ohio and northwestern Penn- son) and Syringothyris have been found. sylvania. Bull. Gcol. Soc. Amcr. 62: 1347- At all points examined west of French 1370. Creek, I found the base of the Cussewago Holland, F. D., Jr. 1958 The brachiopoda of the Oswayo and Knapp Formations of the Sandstone is either covered or lies un- Perm-York embayment. Unpubl. PhD. conformably upon fossiliferous siltstone Thesis, Univ. of Cincinnati, Cincinnati, OH. of the Upper Devonian Chagrin Forma- Pepper, James F., Wallace de Witt, Jr., and tion. The base of the Cussewago Sand- David F. Demarest 1954 Geology of the stone has not been observed in Ohio Bedford Shale and Berea Sandstone in the (Szmuc 1970; Rau 1969). Erosion an- Appalachian Basin. U. S. Geol. Prof. Paper 259: 1-109. tecedent to deposition of the deltaic Cus- Rau, Jon L. 1969 Hydrogeology of the Berea sewago Sandstone apparently removed and' Cussewago Sandstones in northeastern the Upper Riceville and Cleveland Shales Ohio. U. S. Geol. Surv. Hydrologic Investi- in the area northwest of Meadville. gations Atlas HA-341. Sass, Daniel B. 1960 Some aspects of the The existing paleontologic and strati- paleonthology, stratigraphy, and sedimenta- graphic evidence indicates that the Cusse- tion of the Corry Sandstone of northwestern wago Sandstone is a deltaic facies essenti- Pennsylvania. Bull. Amer. Paleontol. 41: ally contemporaneous with the prodelta 251-381. Szmuc, Eugene J. 1970 The Mississippian marine Upper Riceville or Knapp shale System, p. 23-67. In: Banks, P. O., and and siltstone facies. The uppermost Rodney M. Feldmann (ed.) Guide to the Cleveland Shale can be considered a geology of northeastern Ohio. No. Ohio black shale facies deposited further off- Geol. Soc. Kent State Univ. shore from the stratigraphically higher White, I. C. 1881 The geology of Erie and Crawford Counties. Second Geol. Surv. Cussewago delta sands and can be cor- Pennsylvania Prog. Rept. 1879. QQQQ: 1- related with the Upper Riceville prodelta 355..
Recommended publications
  • FISHING for DUNKLEOSTEUS You’Re Definitely Gonna Need a Bigger Boat by Mark Peter
    OOhhiioo GGeeoollooggyy EEXXTTRRAA July 31, 2019 FISHING FOR DUNKLEOSTEUS You’re definitely gonna need a bigger boat by Mark Peter At an estimated maximum length of 6 to 8.8 meters (20–29 sediments that eroded from the Acadian Mountains, combined feet), Dunkleosteus terrelli (Fig. 1) would have been a match for with abundant organic matter from newly evolved land plants even the Hollywood-sized great white shark from the and marine plankton, settled in the basin as dark organic movie Jaws. Surfers, scuba divers, and swimmers can relax, muds. Over millions of years, accumulation of additional however, because Dunkleosteus has been extinct for nearly 360 overlying sediments compacted the muds into black shale rock. million years. Dunkleosteus was a placoderm, a type of armored The rocks that formed from the Late Devonian seafloor fish, that lived during the Late Devonian Period from about sediments (along with fossils of Dunkleosteus) arrived at their 375–359 million years ago. Fossil remains of the large present location of 41 degrees north latitude after several species Dunkleosteus terrelli are present in the Cleveland hundred million years of slow plate tectonic movement as the Member of the Ohio Shale, which contains rocks that are North American Plate moved northward. approximately 360–359 million years old. Figure 1. A reconstruction of a fully-grown Dunkleosteus terrelli, assuming a length of 29 feet, with angler for scale. Modified from illustration by Hugo Salais of Metazoa Studio. Dunkleosteus cruised Late Devonian seas and oceans as an Figure 2. Paleogeographic reconstruction of eastern North America during apex predator, much like the great white shark of today.
    [Show full text]
  • Subsurface Facies Analysis of the Devonian Berea Sandstone in Southeastern Ohio
    SUBSURFACE FACIES ANALYSIS OF THE DEVONIAN BEREA SANDSTONE IN SOUTHEASTERN OHIO William T. Garnes A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 2014 Committee: James Evans, Advisor Jeffrey Snyder Charles Onasch ii ABSTRACT James Evans, Advisor The Devonian Berea Sandstone is an internally complex, heterogeneous unit that appears prominently both in outcrop and subsurface in Ohio. While the unit is clearly deltaic in outcrops in northeastern Ohio, its depositional setting is more problematic in southeastern Ohio where it is only found in the subsurface. The goal of this project was to search for evidence of a barrier island/inlet channel depositional environment for the Berea Sandstone to assess whether the Berea Sandstone was deposited under conditions in southeastern Ohio unique from northeastern Ohio. This project involved looking at cores from 5 wells: 3426 (Athens Co.), 3425 (Meigs Co.), 3253 (Athens Co.), 3252 (Athens Co.), and 3251 (Athens Co.) In cores, the Berea Sandstone ranges from 2 to 10 m (8-32 ft) thick, with an average thickness of 6.3 m (20.7 ft). Core descriptions involved hand specimens, thin section descriptions, and core photography. In addition to these 5 wells, the gamma ray logs from 13 wells were used to interpret the architecture and lithologies of the Berea Sandstone in Athens Co. and Meigs Co. as well as surrounding Vinton, Washington, and Morgan counties. Analysis from this study shows evidence of deltaic lobe progradation, abandonment, and re-working. Evidence of interdistributary bays with shallow sub-tidal environments, as well as large sand bodies, is also present.
    [Show full text]
  • Guide to the Geology of Northeastern Ohio
    SDMS US EPA REGION V -1 SOME IMAGES WITHIN THIS DOCUMENT MAY BE ILLEGIBLE DUE TO BAD SOURCE DOCUMENTS. GUIDE TO THE GEOLOGY of NORTHEASTERN OHIO Edited by P. O. BANKS & RODNEY M. FELDMANN 1970 Northern Ohio Geological Society ELYP.i.A PU&UC LIBRARt as, BEDROCK GEOLOGY OF NORTHEASTERN OHIO PENNSYLVANIAN SYSTEM MISSISSIPPIAN SYSTEM DEVONIAN SYSTEM \V&fe'£:i£:VS:#: CANTON viSlSWSSWM FIGURr I Geologic map of northeastern Ohio. Individual formations within each time unit are not dis- -guished, and glacial deposits have been omitted. Because the bedding planes are nearly ••.crizontal, the map patterns of the contacts closely resemble the topographic contours at those z evations. The older and deeper units are most extensively exposed where the major rivers rave cut into them, while the younger units are preserved in the intervening higher areas. CO «< in Dev. Mississippian r-c Penn. a> 3 CO CD BRADF. KINOERHOOK MERAMEC —1 OSAGE CHESTER POTTSVIUE ro to r-» c-> e-> e= e-i GO n « -n V) CO V* o ^_ ^ 0. = -^ eo CO 3 c= « ^> <C3 at ta B> ^ °» eu ra to a O9 eo ^ a* s 1= ca \ *** CO ^ CO to CM v» o' CO to CO 3 =3 13- *•» \ ¥\ A. FIGURE 1. Columnar section ol the major stratigraphic units in northeastern Ohio showing their relative positions in the standard geologic time scale. The Devonian-Mississippian boundary is not known with certainty to lie within the Cleveland Shale. The base of the Mississippian in the northern part of the state is transitional with the Bradford Series of the Devonian System and may lie within the Cleveland Shale (Weller er a/., 1948).
    [Show full text]
  • GEOLOGIC SUMMARY of the APPALACHIAN BASIN, with REFERENCE to the SUBSURFACE DISPOSAL of RADIOACTIVE WASTE SOLUTIONS by George W
    TEI-791 UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY" GEOLOGIC SUMMARY OF THE APPALACHIAN BASIN, WITH;REFERENCE TO THE SUBSURFACE DISPOSAL OF RADIOACTIVE WASTE SOLUTIONS* By George W. Colton June 1961 Report TEI-791 This report is preliminary and ha^;not been edited for conformity with G^logical Survey format and nomenclature. ?1 ^Prepared on behalf of the U. S. Atomic Energy Commission. CONTENTS Abstract* .......................... 5 Introduction. ........................ 7 Purpose of report. ................... 7 Organization of report .................. 7 Location and extent of area. .............. Q Acknowledgments. .................... 10 Geologic framework. ..................... 10 Depositional framework ................. 10 Structural framework .................. llj. Stratigraphy. ........................ 17 Late Precambrian stratified sequence .......... 17 Early Cambrian clastic sequence. ............ 18 Thickness and depth ................ 22 Cambrian-Ordovician carbonate sequence ......... 23 Thickness and depth . , ........... 35 Late Ordovician clastic sequence ............ 35 Thickness and depth ................ Mi- Early Silurian clastic sequence. ............ kk Thickness and depth ................ 51 Silurian-Devonian carbonate sequence .......... 52 Thickness and depth ................ 62 Devonian classic sequence. ............... 63 Thickness and depth ................ 69 Mississippian sequence ................. 70 Thickness and depth ................ 79 Pennsylvanian sequence ................. 79 Waste
    [Show full text]
  • Geologic Cross Section C–C' Through the Appalachian Basin from Erie
    Geologic Cross Section C–C’ Through the Appalachian Basin From Erie County, North-Central Ohio, to the Valley and Ridge Province, Bedford County, South-Central Pennsylvania By Robert T. Ryder, Michael H. Trippi, Christopher S. Swezey, Robert D. Crangle, Jr., Rebecca S. Hope, Elisabeth L. Rowan, and Erika E. Lentz Scientific Investigations Map 3172 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2012 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested citation: Ryder, R.T., Trippi, M.H., Swezey, C.S. Crangle, R.D., Jr., Hope, R.S., Rowan, E.L., and Lentz, E.E., 2012, Geologic cross section C–C’ through the Appalachian basin from Erie County, north-central Ohio, to the Valley and Ridge province, Bedford County, south-central Pennsylvania: U.S. Geological Survey Scientific Investigations Map 3172, 2 sheets, 70-p.
    [Show full text]
  • Late Devonian and Early Mississippian Distal Basin-Margin Sedimentation of Northern Ohio1
    Late Devonian and Early Mississippian Distal Basin-Margin Sedimentation of Northern Ohio1 THOMAS L. LEWIS, Department of Geological Sciences, Cleveland State University, Cleveland, OH 44115 ABSTRACT. Clastic sediments, derived from southeastern, eastern and northeastern sources, prograded west- ward into a shallow basin at the northwestern margin of the Appalachian Basin in Late Devonian and Early Mississippian time. The western and northwestern boundary of the basin was the submerged Cincinnati Arch. The marine clastic wedges provided a northwest paleoslope and a distal, gentle shelf-edge margin that controlled directional emplacement of coarse elastics. Rising sea levels coupled with differences in sedimen- tation rates and localized soft-sediment deformation within the basin help explain some features of the Bedford and Berea Formations. The presence of sand-filled mudcracks and flat-topped symmetrical ripple marks in the Berea Formation attest to very shallow water deposition and local subaerial exposure at the time of emplacement of part of the formation. Absence of thick, channel-form deposits eastward suggests loss of section during emergence. OHIO J. SCI. 88 (1): 23-39, 1988 INTRODUCTION The Bedford Formation (Newberry 1870) is the most The Ohio Shale, Bedford, and Berea Formations of lithologically varied formation of the group. It is com- northern Ohio are clastic units which record prograda- prised of gray and red mudshales, siltstone, and very tional and transgressional events during Late Devonian fine-grained sandstone. The Bedford Formation thins and Early Mississippian time. The sequence of sediments both to the east and west and reaches its maximum is characterized by (1) gray mudshale, clayshale, siltstone, thickness in the Cleveland area.
    [Show full text]
  • Mississippian Stratigraphy of Northwestern Pennsylvania
    Mississippian Stratigraphy of Northwestern Pennsylvania GEOLOGICAL SURVEY BULLETIN 1351-A Prepared in cooperation with the Pennsylvania Topographic and Geologic Survey r ' > 'I . t. I i 7 IT! i . * r * A »« ft - » '" * / 1 f V 4 1* / I 'i'- I 4 I Mississippian Stratigraphy of Northwestern Pennsylvania By GEORGE R. SCHINER and GRANT E. KIMMEL CONTRIBUTIONS TO GENERAL GEOLOGY GEOLOGICAL SURVEY BULLETIN 1331-A Prepared in cooperation with the Pennsylvania Topographic and Geologic Survey UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1972 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C B. MORTON, Secretary GEOLOGICAL SURVEY V, E. McKelvey, Director Library of Congress catalog-card No. 72-600086 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price $1.25 (paper cover) Stock Number 2401-2169 CONTENTS Page Abstract ____________________________ Al Introduction _______________________-__ 2 General geologic setting ____________ 3 Methods of investigation ________________ 3 Nomenclature ___________________________ _ 6 Stratigraphy ____________________________ _ 9 Cussewago Sandstone ______________ _ 9 Bedford Shale ____________________________ 11 Unnamed sandstone _____________________ 12 Berea Sandstone ___________________ _ 13 Corry Sandstone _________________________ 14 Shellhammer Hollow Formation _______________ 16 Cuyahoga Group (Orangeville Shale, Sharpsville Sandstone, Mead- ville Shale) ________________________________ 17 Orangeville Shale ___________________ _ 18 Bartholomew
    [Show full text]
  • Redescription of Yinostius Major (Arthrodira: Heterostiidae) from the Lower Devonian of China, and the Interrelationships of Brachythoraci
    bs_bs_banner Zoological Journal of the Linnean Society, 2015. With 10 figures Redescription of Yinostius major (Arthrodira: Heterostiidae) from the Lower Devonian of China, and the interrelationships of Brachythoraci YOU-AN ZHU1,2, MIN ZHU1* and JUN-QING WANG1 1Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China 2University of Chinese Academy of Sciences, Beijing 100049, China Received 29 December 2014; revised 21 August 2015; accepted for publication 23 August 2015 Yinosteus major is a heterostiid arthrodire (Placodermi) from the Lower Devonian Jiucheng Formation of Yunnan Province, south-western China. A detailed redescription of this taxon reveals the morphology of neurocranium and visceral side of skull roof. Yinosteus major shows typical heterostiid characters such as anterodorsally positioned small orbits and rod-like anterior lateral plates. Its neurocranium resembles those of advanced eubrachythoracids rather than basal brachythoracids, and provides new morphological aspects in heterostiids. Phylogenetic analysis based on parsimony was conducted using a revised and expanded data matrix. The analysis yields a novel sce- nario on the brachythoracid interrelationships, which assigns Heterostiidae (including Heterostius ingens and Yinosteus major) as the sister group of Dunkleosteus amblyodoratus. The resulting phylogenetic scenario suggests that eubrachythoracids underwent a rapid diversification during the Emsian, representing the placoderm response to the Devonian Nekton Revolution. The instability of the relationships between major eubrachythoracid clades might have a connection to their longer ghost lineages than previous scenarios have implied. © 2015 The Linnean Society of London, Zoological Journal of the Linnean Society, 2015 doi: 10.1111/zoj.12356 ADDITIONAL KEYWORDS: Brachythoraci – Heterostiidae – morphology – phylogeny – Placodermi.
    [Show full text]
  • Development of Drinking Water and Ecological Unusually Sensitive Areas (Usas): Examples Using the Water and Biological Resources of Ohio
    Development of Drinking Water and Ecological Unusually Sensitive Areas (USAs): Examples Using the Water and Biological Resources of Ohio Colin Plank, Scott Zengel, Heidi Hinkeldey, Elaine Inouye, William Holton, Jeffery Dahlin, and Jacqueline Michel Research Planning, Inc., 1121 Park Street, Columbia, SC 29201, [email protected], 803-256-7322 (voice); 803-254-6445 (fax); and Christina Sames and Samuel Hall, Office of Pipeline Safety, Research and Special Programs Administration, U.S. Department of Transportation, Washington, D.C. 1.0 INTRODUCTION The U.S. Department of Transportation’s Research and Special Programs Administration (RSPA) is required to identify areas unusually sensitive to environmental damage in the event of a hazardous liquid pipeline accident. Pipeline operators that can affect "unusually sensitive areas" (USAs) must develop and follow an integrity management program to assess and evaluate the integrity of their pipelines. After extensive consultation with experts, government agencies, and other stakeholders, a process was developed to identify USAs for drinking water and ecological resources. In general the USA identification process involves selecting a subset of USA candidates from the larger group of Environmentally Sensitive Areas (ESAs), and then applying various filter criteria to the candidates to determine final USAs. For drinking water USAs this means identifying potentially sensitive public water systems (PWS), specifically surface water intakes and ground water wells, and subjecting them to filter
    [Show full text]
  • Assessing the Petroleum Geology and Future Development of the Clendenin Gas Field in Kanawha County, West Virginia
    Assessing the Petroleum Geology and Future Development of the Clendenin Gas Field in Kanawha County, West Virginia By: Jonathan Prevatte August 2020 Director of Thesis: Donald W. Neal Major Department: Geological Sciences Petroleum is one of the main sources for energy production in the US and is therefore important for the continuation of economic growth. Future development of petroleum resources in the US to meet supply demands is equally important. Understanding the controls on petroleum production will help in determining where and how to development these resources for maximum production. West Virginia is home to many gas fields and is underlain by one of the more prominent gas producing shales, the Marcellus Shale. The Clendenin Gas Field in Kanawha County is one of the historical gas producing areas found in West Virginia. This assessment is focused on the Devonian strata throughout the field including the Marcellus Shale. Using available geophysical logs, production data, and historic well records obtained from the West Virginia Geologic and Economic Survey (WVGES), cross-sections, isopach maps, and structure contour maps were created to give a visual representation of the subsurface geology across the field. Construction of the cross-sections and maps in conjunction with production and well record data aided in the identification of controls influencing production throughout the field. Applying the findings of this assessment to future production may reduce costs and improve yields of future petroleum wells. Results of this study indicate several options should be considered when planning for future production wells within the field. Target areas include the areas to the east of the field where formations tend to thicken.
    [Show full text]
  • Geology of Fairfield County, Ohio
    This dissertation has been 61—5134 microfilmed exactly as received WOLFE, Edward Winslow, 1936- GEOLOGY OF FAIRFIELD COUNTY, OHIO. The Ohio State University, Ph.D., 1961 Geology University Microfilms, Inc., Ann Arbor, Michigan GEOLOGY OF FAIRFIELD COUNTY, OHIO DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of the Ohio State University By Edward Winslow Wolfe, B. A. The Ohio State University 1961 Approved by Department of Geology ! ACKNOWLEDGMENTS Thanks are due Mr. R. J. Bernhagen, State Geologist, who suggest­ ed the need for an investigation of the geology of Fairfield County. The writer is particularly indebted to Dr. Aurele La Rooque who di­ rected the investigation and guided the writer throughout the prepara­ tion of this report. Many others gave freely of their time in dis­ cussing with the writer the geology of Fairfield County. Among these, special thanks are due Dr. Jane L. Forsyth of the Ohio Division of Geological Survey, Mr. George J. Franklin, who is presently completing a report on the geology of Licking County, and the writer's colleagues in the Department of Geology at the College of Wooster. The writer thanks several members of the Ohio Division of Geological Survey, in­ cluding Miss Pauline Smyth, Mr. Karl V. Hoover, and Mr. Harold J. Flint, for their valuable assistance. Most helpful, too, was the as­ sistance of Mr. Jon S. Galehouse during the summer of i960. The field work was sponsored and financed by the Ohio Division of Geological Survey. Additional financial aid, in the form of a William H.
    [Show full text]
  • Synoptic Taxonomy of Major Fossil Groups
    APPENDIX Synoptic Taxonomy of Major Fossil Groups Important fossil taxa are listed down to the lowest practical taxonomic level; in most cases, this will be the ordinal or subordinallevel. Abbreviated stratigraphic units in parentheses (e.g., UCamb-Ree) indicate maximum range known for the group; units followed by question marks are isolated occurrences followed generally by an interval with no known representatives. Taxa with ranges to "Ree" are extant. Data are extracted principally from Harland et al. (1967), Moore et al. (1956 et seq.), Sepkoski (1982), Romer (1966), Colbert (1980), Moy-Thomas and Miles (1971), Taylor (1981), and Brasier (1980). KINGDOM MONERA Class Ciliata (cont.) Order Spirotrichia (Tintinnida) (UOrd-Rec) DIVISION CYANOPHYTA ?Class [mertae sedis Order Chitinozoa (Proterozoic?, LOrd-UDev) Class Cyanophyceae Class Actinopoda Order Chroococcales (Archean-Rec) Subclass Radiolaria Order Nostocales (Archean-Ree) Order Polycystina Order Spongiostromales (Archean-Ree) Suborder Spumellaria (MCamb-Rec) Order Stigonematales (LDev-Rec) Suborder Nasselaria (Dev-Ree) Three minor orders KINGDOM ANIMALIA KINGDOM PROTISTA PHYLUM PORIFERA PHYLUM PROTOZOA Class Hexactinellida Order Amphidiscophora (Miss-Ree) Class Rhizopodea Order Hexactinosida (MTrias-Rec) Order Foraminiferida* Order Lyssacinosida (LCamb-Rec) Suborder Allogromiina (UCamb-Ree) Order Lychniscosida (UTrias-Rec) Suborder Textulariina (LCamb-Ree) Class Demospongia Suborder Fusulinina (Ord-Perm) Order Monaxonida (MCamb-Ree) Suborder Miliolina (Sil-Ree) Order Lithistida
    [Show full text]