Rachel Roddy's Recipe for Spaghetti Wit...Chen in Lockdown | Food
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Citrus Limon) and the Future of Its Cultivation by Using Bio-Fertilizers
Available online freely at www.isisn.org Bioscience Research Print ISSN: 1811-9506 Online ISSN: 2218-3973 Journal by Innovative Scientific Information & Services Network REVIEW ARTICLE BIOSCIENCE RESEARCH, 2021 18(1): 889-898. OPEN ACCESS The importance of lemon (Citrus limon) and the future of its cultivation by using bio-fertilizers Salem Abdelmoaty1, Mohammad Moneruzzaman Khandaker*1, Noor Afiza Badaluddin1, Khamsah Suryati Mohd1, Umar Aliu Abdullah1, Nurul Elyni Mat Shaari1, and Khairil Mahmud2 1School of Agriculture Science & Biotechnology, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut Campus, 22200 Besut, Terengganu, Malaysia 2Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Seri Kembangan 43400, Selangor, Malaysia *Correspondence: [email protected] Received 10-12-2020, Revised: 09-03-2021, Accepted: 10-03-2021 e- Published: 15-03-2021 Lemon trees (Citrus lemon L.) are among the trees scattered in Southeast Asia, especially Malaysia, The importance of lemons has increased in recent times, especially after the spread of the Covid-19 epidemic around the world, as lemon juice rich in vitamin C is fortified for the immunity of the human body. Also, it is an important source of Flavonoids, known as antioxidants, which remove free radicals that damage tissue cells within the body. Bio-fertilizers are products containing multiple genera of microorganisms in large numbers and beneficial to both plants and soil in an integrated manner. In addition bio-fertilizers have proved that increase the nutrient content inside plants, whether in leaves or fruits,which is reflected in the quantity and quality of fruits and also balance the ratio between plant nutrients in the soil. -
What to Eat on the Autoimmune Protocol
WHAT TO EAT ON THE AUTOIMMUNE PROTOCOL All the foods listed here are great to include in your It’s time to create an epidemic of - health. And it starts with learning ents that will help regulate your immune system and how to eat more nutrient-dense food. your hormones and provide the building blocks that your body needs to heal. You don’t need to eat all of these foods (it’s okay if snails, frog legs, and crickets aren’t your thing, and it’s okay if you just can’t get kangaroo meat or mizuna), but the idea is both to give Poultry innovative ways to increase variety and nutrient density • chicken • grouse • pigeon by exploring new foods. • dove • guinea hen • quail • duck • ostrich • turkey • emu • partridge (essentially, Red Meat • goose • pheasant any bird) • antelope • deer • mutton • bear • elk • pork • beaver • goat • rabbit • beef • hare • sea lion • • horse • seal • boar • kangaroo • whale • camel • lamb (essentially, • caribou • moose any mammal) Amphibians and Reptiles • crocodile • frog • snake • turtle 1 22 Fish* Shellfish • anchovy • gar • • abalone • limpet • scallop • Arctic char • haddock • salmon • clam • lobster • shrimp • Atlantic • hake • sardine • cockle • mussel • snail croaker • halibut • shad • conch • octopus • squid • barcheek • herring • shark • crab • oyster • whelk goby • John Dory • sheepshead • • periwinkle • bass • king • silverside • • prawn • bonito mackerel • smelt • bream • lamprey • snakehead • brill • ling • snapper • brisling • loach • sole • carp • mackerel • • • mahi mahi • tarpon • cod • marlin • tilapia • common dab • • • conger • minnow • trout • crappie • • tub gurnard • croaker • mullet • tuna • drum • pandora • turbot Other Seafood • eel • perch • walleye • anemone • sea squirt • fera • plaice • whiting • caviar/roe • sea urchin • • pollock • • *See page 387 for Selenium Health Benet Values. -
Antioxidant, Antimicrobial, and Other Biological Properties of Pompia Juice
molecules Article Antioxidant, Antimicrobial, and Other Biological Properties of Pompia Juice 1, , 2, 1, 3 Antonio Barberis * y , Monica Deiana y , Ylenia Spissu y , Emanuela Azara , Angela Fadda 1, Pier Andrea Serra 1,4, Guy D’hallewin 1, Marina Pisano 3 , Gabriele Serreli 2, Germano Orrù 1,5 , Alessandra Scano 5, Daniela Steri 6 and Enrico Sanjust 2,* 1 Institute of Sciences of Food Production, National Research Council, 07100 Sassari, Italy; [email protected] (Y.S.); [email protected] (A.F.); [email protected] (P.A.S.); [email protected] (G.D.); [email protected] (G.O.) 2 Department of Biomedical Sciences, University of Cagliari, 09100 Cagliari, Italy; [email protected] (M.D.); [email protected] (G.S.) 3 Institute of Biomolecular Chemistry, National Research Council, 07100 Sassari, Italy; [email protected] (E.A.); [email protected] (M.P.) 4 Department of Medical, Surgical and Experimental Medicine, University of Sassari, 07100 Sassari, Italy 5 Department of Surgical Sciences, Molecular Biology Service, University of Cagliari, 09100 Cagliari, Italy; [email protected] 6 PPD Pharmaceutical Industries, 37121 Verona, Italy; [email protected] * Correspondence: [email protected] (A.B.); [email protected] (E.S.); Tel.: +39-079-2841710 (A.B.) These authors contributed equally to this work. y Received: 15 June 2020; Accepted: 9 July 2020; Published: 13 July 2020 Abstract: Pompia is a Citrus species belonging to Sardinian endemic biodiversity. Health benefits were attributed to its flavedo rind extracts and essential oils while the juice qualities have never been investigated. In this paper, the antioxidant, antimicrobial, and other biological properties of Pompia juice were studied. -
Effect of Environmental Conditions on the Yield of Peel and Composition
agronomy Article Effect of Environmental Conditions on the Yield of Peel and Composition of Essential Oils from Citrus Cultivated in Bahia (Brazil) and Corsica (France) François Luro 1,*, Claudia Garcia Neves 2, Gilles Costantino 1, Abelmon da Silva Gesteira 3 , Mathieu Paoli 4 , Patrick Ollitrault 5 ,Félix Tomi 4 , Fabienne Micheli 2,6 and Marc Gibernau 4 1 Unité Mixte de Recherche Amélioration Génétique et et Adaptation des Plantes (UMR AGAP) Corse, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 20230 San Giuliano, France; [email protected] 2 Centro de Biotecnologia e Genética (CBG), Departamento de Ciências Biológicas (DCB), Universidade Estadual de Santa Cruz (UESC), Rodovia Ilhéus-Itabuna, km 16, Ilhéus, BA 45662-900, Brasil; [email protected] (C.G.N.); [email protected] (F.M.) 3 Empresa Brasileira de Pesquisa e Agropecuária (EMBRAPA) Mandioca e Fruticultura, Rua Embrapa, s/nº, Cruz das Almas, BA 44380-000, Brasil; [email protected] 4 Equipe Chimie et Biomasse, Unité Mixte de Recherche 6134 SPE, Université de Corse-CNRS, Route des Sanguinaires, 20000 Ajaccio, France; [email protected] (M.P.); [email protected] (F.T.); [email protected] (M.G.) 5 Unité Mixte de Recherche Amélioration Génétique et et Adaptation des Plantes (UMR AGAP) Corse, Centre de coopération Internationale en Recherche Agronomique pour le développement (CIRAD), 20230 San Giuliano, France; [email protected] 6 Unité Mixte de Recherche Amélioration Génétique et et Adaptation des Plantes (UMR AGAP), Montpellier, Centre de coopération Internationale en Recherche Agronomique pour le développement (CIRAD), 34398 Montpellier, France * Correspondence: [email protected]; Tel.: +33-4-95-59-59-46 Received: 31 July 2020; Accepted: 24 August 2020; Published: 26 August 2020 Abstract: The cosmetic and fragrance industry largely exploits citrus essential oils (EOs) because of their aromatic properties. -
S01P11 Analysis of Genetic Diversity in Tunisian Citrus
S01 Our results demonstrate that the citron group has a relatively high allelic diversity, probably due to multiple introductions of several varieties. Self-fertilization was the mode of reproduction, which most frequently led to the development of commercial varieties with specific aromas and flavors such as the cultivar ‘Corsican’, a putative ‘Common Poncire’ self-crossed hybrid. However, some varieties appeared to be interspecific hybrids related to citron but only by male parent. This varietal diversity was probably favored by spreading seeds to extend the cultivation of citron in Mediterranean countries. The chemical diversity does not always correspond to genetic diversity but nevertheless reveals specific profiles for some genotypes. S01P11 Analysis of genetic diversity in Tunisian citrus rootstocks Snoussi H.1, Duval M.F.2, Garcia-Lor A.3, Perrier X.2, Jacquemoud-Collet J.C.2, Navarro L.3, and Ollitrault P.2 1Tunisian National Agronomic Research Institute (INRAT), Horticultural Laboratory, Tunisia; 2International Center for of Agricultural Research for Development (CIRAD), Department BIOS. TGU. AGAP, France; and 3Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, Spain. [email protected] Breeding and selection of new citrus rootstocks are nowadays of the utmost importance in the Mediterranean Basin because the citrus industry faces increasing biotic and abiotic constraints. In Tunisia, citrus contributes significantly to the national economy, and its extension is favored by natural conditions and economic considerations. Sour orange, the most widespread traditional rootstock of the Mediterranean area, is also the main one in Tunisia. In addition to sour orange, other citrus rootstocks well adapted to local environmental conditions are traditionally used and should be important genetic resources for breeding. -
Chemical Variability of Peel and Leaf Essential Oils in the Citrus Subgenus Papeda (Swingle) and Few Relatives
plants Article Chemical Variability of Peel and Leaf Essential Oils in the Citrus Subgenus Papeda (Swingle) and Few Relatives Clémentine Baccati 1, Marc Gibernau 1, Mathieu Paoli 1 , Patrick Ollitrault 2,3 ,Félix Tomi 1,* and François Luro 2 1 Laboratoire Sciences Pour l’Environnement, Equipe Chimie et Biomasse, Université de Corse—CNRS, UMR 6134 SPE, Route des Sanguinaires, 20000 Ajaccio, France; [email protected] (C.B.); [email protected] (M.G.); [email protected] (M.P.) 2 UMR AGAP Institut, Université Montpellier, CIRAD, INRAE, Institut Agro, 20230 San Giuliano, France; [email protected] (P.O.); [email protected] (F.L.) 3 CIRAD, UMR AGAP, 20230 San Giuliano, France * Correspondence: [email protected]; Tel.: +33-495-52-4122 Abstract: The Papeda Citrus subgenus includes several species belonging to two genetically distinct groups, containing mostly little-exploited wild forms of citrus. However, little is known about the potentially large and novel aromatic diversity contained in these wild citruses. In this study, we characterized and compared the essential oils obtained from peels and leaves from representatives of both Papeda groups, and three related hybrids. Using a combination of GC, GC-MS, and 13C-NMR spectrometry, we identified a total of 60 compounds in peel oils (PO), and 76 compounds in leaf oils (LO). Limonene was the major component in almost all citrus PO, except for C. micrantha and C. hystrix, where β-pinene dominated (around 35%). LO composition was more variable, with different Citation: Baccati, C.; Gibernau, M.; major compounds among almost all samples, except for two citrus pairs: C. -
Essential Oil Composition and Biological Activity of “Pompia”, a Sardinian Citrus Ecotype
molecules Article Essential Oil Composition and Biological Activity of “Pompia”, a Sardinian Citrus Ecotype Guido Flamini 1,2, Laura Pistelli 2,3 , Simona Nardoni 4 , Valentina Virginia Ebani 2,4, Angela Zinnai 2,3, Francesca Mancianti 2,4, Roberta Ascrizzi 1,* and Luisa Pistelli 1,2 1 Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy; guido.fl[email protected] (G.F.); [email protected] (L.P.) 2 Centro Interdipartimentale di Ricerca “Nutraceutica e Alimentazione per la Salute” (NUTRAFOOD), Università di Pisa, Via del Borghetto 80, 56124 Pisa, Italy; [email protected] (L.P.); [email protected] (V.V.E.); [email protected] (A.Z.); [email protected] (F.M.) 3 Dipartimento di Scienze Agrarie, Alimentari e Agro-alimentari, Università di Pisa, Via del Borghetto 80, 56124 Pisa, Italy 4 Dipartimento di Scienze Veterinarie, Università di Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; [email protected] * Correspondence: [email protected] Academic Editor: Daniela Rigano Received: 20 February 2019; Accepted: 1 March 2019; Published: 5 March 2019 Abstract: Pompia is a Sardinian citrus ecotype whose botanical classification is still being debated. In the present study, the composition of Pompia peel essential oil (EO) is reported for the first time, along with that of the leaf EO, as a phytochemical contribution to the classification of this ecotype. The peel EO was tested for its antioxidant ability (with both the 2,2-diphenyl-1-picarylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) assays). Moreover, its antimicrobial activities were tested for the first time on dermatophytes (Microsporum canis, Microsporum gypseum, and Trichophyton mentagrophytes), on potentially toxigenic fungi (Fusarium solani, Aspergillus flavus, and Aspergillus niger) as well on bacteria (Escherichia coli, Staphylococcus aureus, and Staphylococcus pseudointermedius). -
Citrus Limon (Lemon) Phenomenon—A Review Of
plants Review Citrus limon (Lemon) Phenomenon—A Review of the Chemistry, Pharmacological Properties, Applications in the Modern Pharmaceutical, Food, and Cosmetics Industries, and Biotechnological Studies Marta Klimek-Szczykutowicz, Agnieszka Szopa * and Halina Ekiert Chair and Department of Pharmaceutical Botany, Jagiellonian University, Collegium Medicum, Medyczna 9, 30-688 Kraków, Poland; [email protected] (M.K.-S.); [email protected] (H.E.) * Correspondence: [email protected]; Tel.: +48-12-620-54-30 Received: 15 December 2019; Accepted: 14 January 2020; Published: 17 January 2020 Abstract: This review presents important botanical, chemical and pharmacological characteristics of Citrus limon (lemon)—a species with valuable pharmaceutical, cosmetic and culinary (healthy food) properties. A short description of the genus Citrus is followed by information on the chemical composition, metabolomic studies and biological activities of the main raw materials obtained from C. limon (fruit extract, juice, essential oil). The valuable biological activity of C. limon is determined by its high content of phenolic compounds, mainly flavonoids (e.g., diosmin, hesperidin, limocitrin) and phenolic acids (e.g., ferulic, synapic, p-hydroxybenzoic acids). The essential oil is rich in bioactive monoterpenoids such as D-limonene, β-pinene, γ-terpinene. Recently scientifically proven therapeutic activities of C. limon include anti-inflammatory, antimicrobial, anticancer and antiparasitic activities. The review pays particular attention, with references to published scientific research, to the use of C. limon in the food industry and cosmetology. It also addresses the safety of use and potential phototoxicity of the raw materials. Lastly, the review emphasizes the significance of biotechnological studies on C. -
WO 2013/077900 Al 30 May 2013 (30.05.2013) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2013/077900 Al 30 May 2013 (30.05.2013) P O P C T (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, A23G 3/00 (2006.01) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, (21) International Application Number: HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, PCT/US20 12/028 148 KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, (22) International Filing Date: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 7 March 2012 (07.03.2012) OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, (25) Filing Language: English TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (26) Publication Language: English (84) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of regional protection available): ARIPO (BW, GH, 13/300,990 2 1 November 201 1 (21. 11.201 1) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, (72) Inventor; and TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, (71) Applicant : CROWLEY, Brian [US/US]; 104 Palisades DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, Avenue, #2B, Jersey City, New Jersey 07306 (US). -
Yes, No, Maybe So List
376376 Resources Alphabetical Yes-No-Maybe So Having trouble finding a food in any of the food lists? Search for it here alphabetically to determine whether the food in question is Paleo Approach friendly! YES. Go ahead and eat it unless NO. Don’t eat it for now. Refer MAYBE. This food might be tol- MODERATION. This food you’re allergic or have a sensitivity to The Paleo Approach for infor- erated. If you aren’t sure, leave it out is okay to eat, but there are some to it. mation on if and when it might be of your diet for now. (These foods compelling reasons to keep por- reintroduced. are not included in the recipes in this tions small. Refer to The Paleo book.) Refer to The Paleo Approach Approach for more information. for more information. Food Food YES NO MAYBE MODERATION YES NO MAYBE MODERATION abalone P arracacha P A abiu P arrowroot P abusgata P arrowroot powder P açaí P artichoke P acerola P artificial flavors P acesulfame potassium P artificial food color P ackee P arugula P acrylamide P asafetida (check ingredients) P adzuki beans P ashwagandha P African moringa P asparagus P agar agar P aspartame P agave P Atlantic croaker P agave nectar P autolyzed protein P agave worm P avocado P alcohol P avocado oil P allspice P babaco P almonds P B bacon P amanatsu P baking soda P amaranth P balm P amaranth greens P balsamic vinegar P ambarella P bamboo shoot P anchovy P bamboo worm P anchovy paste (check ingredients) P banana P anemone P barcheek goby P anise seed P barley P annatto seed P barley malt P ant P barley malt syrup P antelope -
Citrus Phylogeny and Genetic Origin of Important Species As Investigated by Molecular Markers
Theor Appl Genet (2000) 100:1155–1166 © Springer-Verlag 2000 ORIGINAL PAPER E. Nicolosi · Z.N. Deng · A. Gentile · S. La Malfa G. Continella · E. Tribulato Citrus phylogeny and genetic origin of important species as investigated by molecular markers Received: 5 October 1999 / Accepted: 3 November 1999 Abstract Citrus phylogeny was investigated using for Rangpur lime and Rough lemon. For Mexican lime RAPD, SCAR and cpDNA markers. The genotypes ana- our molecular data indicated C. micrantha to be the fe- lyzed included 36 accessions belonging to Citrus to- male parent and C. medica as the male one. gether with 1 accession from each of the related genera Poncirus, Fortunella, Microcitrus and Eremocitrus. Key words Citrus · RAPD · SCAR · cpDNA · Phylogenetic analysis with 262 RAPDs and 14 SCARs Phylogeny · Origin indicated that Fortunella is phylogenetically close to Citrus while the other three related genera are distant from Citrus and from each other. Within Citrus, the sep- Introduction aration into two subgenera, Citrus and Papeda, desig- nated by Swingle, was clearly observed except for C. Different hypotheses have been formulated on the origin celebica and C. indica. Almost all the accessions be- of Citrus. In general, Citrus is believed to have originat- longing to subgenus Citrus fell into three clusters, each ed in the tropical and subtropical regions of Southeast including 1 genotype that was considered to be a true Asia and then spread to other continents (Webber 1967; species. Different phylogenetic relationships were re- Calabrese 1992). Citrus taxonomy and phylogeny, how- vealed with cpDNA data. Citrus genotypes were sepa- ever, are very complicated, controversial and confusing, rated into subgenera Archicitrus and Metacitrus, as pro- mainly due to sexual compatibility between Citrus and posed by Tanaka, while the division of subgenera Citrus related genera, the high frequency of bud mutations and and Papeda disappeared. -
Citrus Limon Var. Pompia Camarda Var. Nova
Quad. Bot. Amb. Appl., 24 (2013): 109-118. Pubblicato online il 31.07.2015 Un agrume nella storia della Sardegna: Citrus limon var. pompia Camarda var. nova I. CAMARDA 1, P. MAZZOLA 2, A. BRUNU 1, G. FENU 3, G. LOMBARDO 4 & F. PALLA 4 1 Dipartimento di Agraria,Università di Sassari. 2 Pietro Mazzola: Dipartimento di Scienze Agrarie e Forestali, Università di Palermo, via Archirafi 38 – 90123 Palermo. 3 Dipartimento di Scienze Biomediche, Università di Sassari. 4 Dipartimento STEBICEF / Sezione di Botanica ed Ecologia vegetale, Università di Palermo, via Archirafi 38 – 90123 Palermo. Abstract – A citrus fruit in the history of Sardinia: Citrus limon var. pompia Camarda var. nova. – Lime and lemon have left traces of various kind in their slow diffusion from the far China along the route towards West. The presence of Citrus in the Mediterranean basin has a long history of gradual spreading from the Middle-East to the West. Important witnesses have attested in ancient Greek and Roman literature as well as in sculptures, paints and mosaics. The long period of cultivation and selection led to the spring up of numerous cultivated varieties also used for ornamental purposes. Old information on citrus crops in the Sardinian island dates back to the fifth century AD, but the crop called “pompia”, a citrus fruit growing primarily in the Baronia, a historical region of central-eastern Sardinia, was first mentioned by Moris which treated it as a variety of Citrus medica. This fruit is by tradition locally used to prepare candied fruits and recently also a liqueur. The anal- ysis of its morphological characteristics, phytochemical and genetic aspects, also considering its vegetative reproduction as well as poliembryonic seed production, the crop in question is here described at the infraspecific rank with the name Citrus limon var.