Green Week 2012 4.3 « Seting targets for efficient and sustainable water use »

Definition and implementation of scenarios and targets for Sustainable Water Resource Management at River Basin Scale by Joaquin Andreu (Universitat Politecnica de Valencia – ) [email protected] SUSTAINABILITY CONCEPT(S) -General concept: A sustainable society is a society that “meets the needs of the present generation without compromising the ability of future generations to meet their own needs, in which each human being has the opportunity to develop itself in freedom, within a well-balanced society and in harmony with its surroundings” (UN 1987). -Simple concept: “Improving the quality of life of humans while living within the carrying capacity of supporting ecosystems” (Van de Kerk and Manuel 2008;IUCN, UNEP and WWF 1991). -Sust. Water Resources Systems: “those systems designed and -managed to contribute fully to the objectives of society, now and in the future, while maintaining their ecological, environmental and hydrological integrity.” (Loucks, 1997).

SUSTAINABILITY CONCEPT(S) -Intuitively easy to conceive. But -Practically difficult to define and assess (measure) -Many attempts by institutions & programs - Levels of sustainablility: -General -Sectorial: -Water. Space scales: -Basin -WRS -Element (e.g., city) - Does aggregation of sistainable elements ensure sustainability of upper levels? And vice-versa.

INDICATORS OF SUSTAINABLE DEVELOPMENT: GUIDELINES AND METHODOLOGIES (CSD, 1995): social, environmental, economic and ionstitutional indicators, among them: THEORETICAL APPROACHES 1. Sustainability indicator (Sandoval-Solis et al., 2011): -From probabilistic performance criteria (e.g., reliability, resilience, vulnerability, max. Deficit, …) -Define Sustainability Index as:

THEORETICAL APPROACHES 1. Sustainability indicator (Sandoval-Solis et al., 2011):

-SI for: user, environment, group, ¿why not basin? -Compute SI for future scenarios using models (WEAP) in Rio Grande:

THEORETICAL APPROACHES 1. Sustainability indicator (Sandoval-Solis et al., 2011):

-Useful for comparison between alternatives, BUT: -Not explicit representation of trade-offs -No targets (or minimum acceptable values) -Not easily understood by stakeholders. (not clear physical meaning) -Subjectivity in weightings, and environmental “demands”

THEORETICAL APPROACHES 2. Sustainability of Urban Water Cycle (van Leeuwen et al., 2012): -Propose 24 indicators grouped in Water Security, Water Quality, Drinking water, Sanitation, Infrastructures, Climate Robustness, Biodiversity, and Governance -Results are shown for a given situation: -Very intuitive picture -Might be easy to obtain for cities, but not so for basins or WR Systems.

THEORETICAL APPROACHES Other: 3. Water footprint 4. Water Ecosystem Services 5. Water Accounting

What is needed: -Avoid subjectivities -Show explicitly the trade-offs -Be easy to obtain by means of models or DSS -Broadly accepted or in a methodological guide. -Usefull for participatory decision making PRACTICAL EXAMPLES (SPANISH BASINS) WATER EXPLOITATION INDEX ≈1 Aquifer over-exploitation / Spain

Pumping/recharge ratio in hydrogeological units

Source: Libro Blanco del Agua (MIMA, 1998) 12 EUROPEAN WATER FRAMEWORK DIRECTIVE (WFD) Article 5: Environmental Analysis

Surface water bodies in risk

Groundwater bodies in risk • PERFORMANCE CRITERIA RELATED TO DEMAND SATISFACTION

• Impossible to satisty 100% demand 100% of time • Concept of FAILURE VARIABLES RELATED TO FAILURE • Failure: When supply < demand – Intensity, duration, magnitude • Reliability: Probability of satisfactory supply (not in failure). • Risk es la probability of faiulre. • Resiliency: Average probability of system recovering when in failure. (Related to the inverse of time to get back to satisfaction situation after a failure). • Vulnerability: Expected value of the deficits (or of the costs associated) (average deficit or average cost).

PRACTICAL CRITERIA (IN MODELS AND ANALYSIS) Criterio Tipo Mensual Fallo en un mes: déficit es mayor que A% (umbral) de la demanda mensual æ nº fallos ö Garantía Mensual (Gm): G = ç1 - ÷ *100 è nº mesestotales ø

Criterio Tipo Anual: Fallo en un año: déficit en un mes mayor que B% (umbral) de la demanda mensual o el déficit total anual es mayor que C% (umbral)de la demanda anual æ nº fallos ö Garantía Anual (Ga): G = ç1 - ÷ *100 è nº añostotales ø Valores habituales: - B=25 y permitir un solo mes de fallo - Ga= 95% abastecimiento, 85% riegos PRACTICAL CRITERIA (IN MODELS AND ANALYSIS) • The reliability criteria based on failure frequency does not allow to capture: – Magnitude of the failures (e.g., catastrophic) – Duration of failure

• Criteria based on the deficit that can be assumed for given time periods.

PRACTICAL CRITERIA (IN MODELS AND ANALYSIS) • Deficit indexes: – Max. Monthly def. – Máx. def. in two consecutive months – Probability (or frequency) estimation for different magnitudesof deficit (pdf of deficits). PRACTICAL CRITERIA (IN MODELS AND ANALYSIS)

Spanish IPH-2008 -Methodological guide for sustainable integrated WRS `planning & management -Each element (water body, demand, …) must be sustainable -The whole WRS must be sustainable -Sets targets for performance criteria -Sets procedures for obtaining trade-offs between objectives -Sets participatory processes

PRACTICAL CRITERIA (IN MODELS AND ANALYSIS)

Spanish IPH-2008 Urban demands:

DEF1month <= 10% DEM1month DEF10years <= 8% DEMannual Agric. demands:

DEF1year <= 50% DEMannual DEF2years <= 75% DEMannual DEF10years <= 100% DEMannual

PRACTICAL CRITERIA (IN MODELS AND ANALYSIS)

• FACTORS that AFFECT THE VALUES OF THE INDICATORS AND DEMAND SATISFACTION: – Hydrology (cantidad, varianza, …) – Ratio resources/demands – Infraestructures (regulación, conectividad, acuíferos, …) – MANAGEMENT OF THE W.R. SYSTEM (Operatin rules) • Must be OPTIMAL (OPTIMIZACIÓN y/o SIMULACIÓN)

ENVIRONMENTAL FLOWS AT SPANISH LAW

LAW 46/1999: environmental flows are “restricction” over all the other demands except human supply.

IPH-2008. - Objective of this decret is to establish criteria to develop Water Basin Plans (as a requirement of the European Water Framework Directive). - It establishes methods to estimate environmental flows. - Also it requires to estimate the effect of environmental flows application over the other uses of the system.

IPH-2008. METHODS TO ESTIMATE ENVIRONMENTAL FLOWS STATISTICAL HABITAT SIMULATION APPROACHES

Curva SPU

600 100%

500 400 80% 300

200 50% 100 30

0 %

0 5 8 3

14 17 20 11

0.6 0.9 1.2 1.8 2.4 6.5 8.5 9.5 0.3 4.2 Q (m3/s) ¿HOW TO DEFINE NEW ¿HOW TO ESTIMATE THE EFFECT ENVIRONMENTAL FLOWS OF NEW ENVIRONMENTAL FLOWS WITHIN THE RANGE? OVER THE SYSTEM?

JUST DO IT EXPERTISE JUDGEMENT DECISSION SUPPORT SYSTEM (MODELS) SPAIN l Water adm. at basin scale since 1927: River Basin Agencies (Authorities) across administrative boundaries l Users represented at the Agencies Decision Boards: active participation

CANTABRIA Valencia PRINCIPADO DE ASTURIAS PAIS GALICIA VASCO NAVARRA LA RIOJA CATALUÑA CASTILLA-LEON ARAGON

MADRID

CASTILLA-LA MANCHA EXTREMADURA VALENCIA

BALEARES

MURCIA Júcar

ANDALUCIA

CEUTA

MELILLA

CANARIAS

Map of River Basin Authorities Map of adminitrative autonomous regions Júcar River Basin Authority (CHJ)

Surface (km2) 43.000 Permanent population 4.792.528 Equivalent population due to 367.322 tourism Irrigation surface (ha) 347.275 Water demand (hm3/year) 3.172 (Hm3/year = Gigaliters/year)

Total demand by uses 0% Irrigation 1% Urban supply 3% Industrial supply 17% Cattle HALF OF THE AREA IS SEMIARID Recreation +HIGHEST Total Demand by source of water 2% VARIABILITY IN 0% Surface water EUROPE 79% 4% (IN SPACE AND

CANTABRIA Groundwater PRINCIPADO DE ASTURIAS PAIS GALICIA VASCO NAVARRA LA RIOJA TIME) CATALUÑA 42% CASTILLA-LEON ARAGON Pdia/Paño (%) Direct WasteWater MADRID Reuse

CASTILLA-LA MANCHA EXTREMADURA VALENCIA BALEARES 52% Desalination

MURCIA Júcar

ANDALUCIA Imports (MCT)

CEUTA

MELILLA

CANARIAS Nattura regime Demand / Nattura System Demand 2015 resourcel regime resource Cenia- Maestrazgo 117 312 0,38 Mijares 300 531 0,56 • Aridity (climate) Palancia 101 117 0,87 Turia 666 496 1,34 • Scarcity (Human needs) Júcar 1.546 1.671 0,93 Serpis 125 190 0,66 • Droughts (Fhigh Marina Alta 94 222 0,42 hydrological Marina Baja 75 74 1,01 Vinalopó - • Variability) Alacantí 256 97 2,64 2800 Total DHJ 3.280 3.711 0,88 2600 2400 2200 2000 1800 1600

hm3 1400 1200 1000 800

600

400 200 0

año

1958/59 1974/75 1976/77 1954/55 1956/57 1960/61 1962/63 1964/65 1966/67 1968/69 1970/71 1972/73 1978/79 1980/81 1982/83 1984/85 1986/87

1992/93 1940/41 1942/43 1944/45 1946/47 1948/49 1950/51 1952/53 1988/89 1990/91 1994/95 1996/97 1998/99 2000/01 2002/03 2004/05 2006/07 Annual values Avegare contribution of historical Natural Regime Average since 1980 in Natural Regime In Spanish River Basin Plans for WFD, water licenses and ecological flows are key issues

Need for tools and models • Process of making good decisions: information must be managed and analyzed about – feasible alternatives, – their impact on the multiple objectives, – the tradeoffs among them, as well as – risks associated with them. • To elaborate and analyze such information, sound science, technology, and expertise have to be involved. • Tools for data management and analysis, and models are needed to cope with the complexity, the basin scale scope, and the huge amount of information, alternatives, and scenarios. Need for Decision Support Systems (DSS)

• We agree that the political process is important, but insist that debates must be on the basis of transparency and knowledge • Frequently, decision makers, stakeholders and general public (Policy Making Actors -PMA), are not prepared to produce and understand such information. • a transfer of technology and ideas from scientist to PMA is needed: effective transfer: PMA must be able to apply the technology easily and in a repeatable and scientifically defensible manner (NRC 2000). • Development of DSS: best way to conduct this transfer & build a shared vision of the basin DSS • suites of computer programs including, among others: – geographically based design facilities, – geographically based databases handling, – integrated simulation and/or optimization models, including several aspects (rainfall-runoff, w.rights, w.allocation, quality, economics, …) – capabilities for analyzing and displaying the results, • essential feature: a unique and user friendly interface that provides easiness of data management, model use and results analysis. WR Systems INTEGRATE at the BASIN SCALE: WaterBodies, W.Uses (Demands), Infrastructures

Complex relationships that affect water availability both in SPACE &TIME Implications on all aspects AQUIFERS (w. quality, environment, economy, …) can only be captured by means of adequate integrated modeling Integrative DSS • In order to complete basin identification, and for the development of further analysis activities, it is crucial to have • a DSS integrating, in a single model and for the entire basin, all the relevant – surface water elements (e.g., river reaches, lakes, ...), – aquifers, – infrastructures (e.g., dams, reservoirs, diversions, returns, groundwater abstraction, ...), – water uses (e.g., agricultural uses, urban uses, industrial uses, ...), – environmental requirements on flows, – water rights and priorities, and operating rules for the system. DSS Shells (DSSS) • Generalized tools to build DSS, • bring the possibility of relatively easy, systematic and homogeneous application of DSS over wide regions, as for instance many river basins in Spain • provide guidance in the development of the DSS • Example: AQUATOOL DSSS (Andreu et. al. 1996), AQUATOOL: DSSS designed for integrated management of complex water resource systems

J. Andreu, J. Capilla, y E. Sanchis, “Generalized decision support system for water resources planning and management including conjunctive water use”, Journal of Hydrology, Vol. 177, pp. 269-291, 1996.

ELEMENTS NODES RESERVOIRS SW. INFLOWS

DEMANDS CONDUITS (stream & canal reaches)

HYDROELECTRIC PLANTS AQUIFER MODELS

ARTIFICIAL RECHARGE RETURNS DEMAND INTAKES

Additional G.W. PUMPING

MANAGEMENT INDICATORS

The DSS allows the user to:  Input and modify the space configuration of a water resource system  Edit and manage geo-referenced data bases containing physical characteristics, management characteristics RESERVOIRS

PHYSICAL CHARACTERISTICS FILTRATION (INTO AN AQUIFER) AND EVAPORATION LOSSES OPERATING RULES AQUIFERS

Wide range of models available to embed aquifers in the basin model: – Distributed approaches: – Lumped approaches: » Analytical solution for » Reservoir homogeneous & » Single cell connected to stream rectangular shape » Single cell with spring » Numerical solution for » Multiple cells connected to stream heterogeneous and/or irregular shape: AQUIVAL module Integrated Basin model: Jucar Basin integratingPhysical properties Water rights and priorities Operating rules (normal & Drought) SIMULATION for given hydrologic inflows scenarios

INTERNAL PROCESS: In every month, a network flow optimization algorithm (Out-of- kilter) finds a flow solution which is compatible with the physical restrictions, and tries to minimize weighted deviations from operating rules (Target supplies, flows, and reservoir storage); respecting priorities. Iteration is needed to take into account non-linearities and V surface-groundwater relationships. Zon.superio máx V

Zon.intermedr obj

Zon.ia n V*= (V mín +

inferior Vmí V obj) / 2 Zona de reserva Integrative DSS • purpose of this model is to simulate the management of the basin • Once the system is completely defined, the user can perform simulation runs of the management for multiple different alternatives, time horizons and scenarios, using different hydrological data and also different operating policies.

• Easiness in changing the infrastructures, scenarios, etc., and getting and analyzing the results is essential RESULTS

•Results for all model variables (flows and state) either in graphical or numerical way. Exporting & printing capabilities. Mean values. •Complete reports (data and results) in files that can be visualized, or printed. •multi-objective performance indicators (reliability, resiliency and vulnerability); and environmental requirements indicators. Integrative DSS • Useful for the evaluation of alternatives, to analyze planning decisions in terms of the aspects included in the model and to assess tradeoffs between alternatives. • Provide flow conditions for the assessment of integrated water quality, environmental, and economic analysis models. AQUATOOL MODULES Modular structure  flexibility WATER PRE-PROCESSORS MANAGEMENT POSTPROCESORS MODELLING

HYDROGEOLOGY PLANNING STAGE INTEGRATED MODELING AQUIVAL SIMGES

HYDROLOGY OPTIGES GESCAL: WATER QUALITY

ACTVAL R. TIME MANAGEMENT CAUDECO: MASHWIN RISK ESTIMATION ECOLOGICAL

OPTIRISK ECOGES: SIMRISK ECONOMICAL ASPECTS WATER QUALITY SIMULATION MODULE Water quality model coupled with a simulation model..  SIMULATES W.Q. FOR THE ENTIRE SYSTEM  Mechanicistic model for rivers and reservoirs.  Conventional constituents. o Temperature o Nitrogen cycle o Arbitrary constituents o Eutrophication problem. o DO + OM EUTROPHICATION PROCESSES

Sed Sed Norg Organic C Reaireation SOD Min DO Degrad

OrgP Flux + NH4 Sed Grow Death/Resp Mineralización Nitrif

Chl-a Inorg P. - Flux NO3 Desnitrif Sed

W.Q. results used to modify constraints in simulation & to predict the impact of corrective measures in an integrated way at basin scale and assessing the real efficiency of the measures CAUDECO– Ecological flows module

OBJECTIVE OF THE MODULE •Estimation of Total Habitat Series in different water bodies, species and ages for different Caudales. Simulacion base 12 management alternatives. 10

8

6

4

2

0

Hábitat Total. (Masa28.01/Barbo/Adulto)

00 89

92 81 03

80 02 91

83 94 95 84 05

82 87 88 89 98 04 93 99 00

90 97 01 86

85 96

- -

- - -

- - -

- -

- - -

- - - - -

- - - -

- - - -

- -

jul jul jul

dic dic

oct oct oct jun

jun 600000

feb feb

abr abr

sep sep sep

ago ago ago

nov nov

ene ene

mar mar

may may

m3/s 500000

400000

Curva SPU 300000 600 200000 500 100000 400

0

84 84 94 94 99 04 04 89 89 99

88 98 83 93 03

80 90 00 85 95 05

82 92 02 87 97

86 96 81 91 01

------

- - - -

300 -

------

- - - - -

- - - - -

dic dic dic dic dic

oct oct oct oct oct oct

jun jun jun jun jun

feb feb feb feb feb

abr abr abr abr abr

ago ago ago ago 200 ago

100 Bioperiodos Especie Etapa Oct Nov Dic Ene Feb Mar Abr May Jun Jul Ago Sep

0 Barbo Alevín

0 5 8 3

14 17 20

11 Barbo Adulto

0.6 0.9 1.2 1.8 2.4 6.5 8.5 9.5 0.3 4.2 Q (m3/s) Cacho Alevín Cacho Juvenil Cacho Adulto INCORPORTAING ECOLOGICAL ASPECTS IN PLANNING AND MANAGEMENT STUDIES TRADE-OFFS BETWEEN ENVIRONMENTAL FLOWS, ECOLOGICAL HABITATS LEVEL, AND ECONOMIC USES Caudal ecológico: Duero en Toro 350 90

300 80 70 250 60 200 Caudal ecológico: Duero en Toro 50 40 8280 350 150 30 8260 300 100 8240 20 250 50 8220 10

8200 200 0 0 Déficit Medio Anual hm3/año Anual DéficitMedio

8180 150 0 5 10 15 20 25 30 35 40 45 Boga habitat. Adulto de 8160 100 8140 m3/s 75% desuperación de Percentil 50 8120 Deficit medio demanda agraria Percentil Superacion Hábitat 75% Producción Media GWh/año Media Producción 8100 0 Déficit Medio Anual hm3/año Anual DéficitMedio Caudal ecológico: Duero en Toro 0 5 10 15 20 25 30 35 40 45 8280 90 m3/s 8260 80 Producción media Energía Deficit medio demanda agraria 8240 70 8220 60 8200 50 8180 40 8160 30 8140 20

8120 10 habitat. Adulto Boga Adulto habitat. Producción Media GWh/año Media Producción 8100 0

0 5 10 15 20 25 30 35 40 45 Percentil de 75% de superación de superación de 75% dePercentil m3/s

Producción media Energía Percentil Superacion Hábitat 75% ECONOMIC EVALUATION MODULE • ASSESS ECONOMIC VALUE OF AN ALTERNATIVE • USED to estimate OPPORTUNITY COSTS of WATER USE and ENVIRONMENTAL FLOW increments DSS in Planning Phase of ASA

• transparency, participation, negotiation, and conflict resolution are essential factors • use of described Integrative DSS, for evaluation of alternatives, as shared vision of the system, generally as a result of joint model and DSS building, enhances very much this process: Jucar- Vinalopó participatory water conflict solution (CHJ, 2005b) Real case of application of DSS by the Technical Committee to assess the JÚCAR-VINALOPÓ PROJECT (CONFLICT) CONFEDERACIÓN HIDROGRÁFICA DEL JÚCAR

Jucar-Vinalopó Transfer under construction in 2003-2004: - Intake in Muela de Cortes reservoir. - Opposition from: - Lower Bassin traditional irrigation farmers - Ecologists Jucar-Vinalopó conflict participatory solution

• Technical Committee: Policy Making actors + experts: – Ministry of environment – Regional Governments (Castilla La Mancha and Valencia) – Jucar Basin Authority – Traditional Farmers and industrial users of donor basin – Farmers and urban users at receptor basin – NGO’s (2) – Experts from universities and other research institutions • Working for 4 months • Joint development of DSS

Fuente: Engineering News Record, 1993 JOINT DSS DEVELOPMENT AND USE

DSS including a Simulation model of Júcar RB management Example of summary of results for every single simulation (400 of these were produced) Synthesis of results: Trade-offs between urban water deficits and environmental requirements at Jucar River and Albufera wetland.

Inflows to Albufera Lake Urb. Def.

Environmental flow Déficit medio Abastecimiento de Valencia (hm3/año). Media de la última serie de 25 años. Modernización 2ª Fase. Simulación: Otras medidas racionales sin el Vinalopó. Valores para las diferentes alternativas de asignación a La Albufera (hm3/año) y de caudales ecológicos (m3/s) Synthesis of results: Trade-offs between agricultural water deficits and environmental requirements at Jucar River and Albufera wetland.

Inflows to Albufera Lake Agr. Def.

Environmental flow

Déficit medio Ribera Baja (hm3/año). Media de la última serie de 25 años. Modernización 2ª Fase. Simulación: Otras medidas racionales sin el Vinalopó. Valores para las diferentes alternativas de asignación a La Albufera (hm3/año) y de caudales ecológicos (m3/s)

CAUDECO PROGRAM

• To estimate HTS when data on WUA-flow curves are available • The great advantage of CAUDECO is its linkage to the simulation model SIMGES m HTS = WUAQ(i) BIOP(i)  LONG   SI j C(i) j=1 • HTS as well as the WUA, are specific for each species (species and size class in some cases); in each study site or water body • Results in m2 or % over maximum WUA. • Habitat Duration Curves (HDC, accumulated frequency curves), which provide a more comprehensive result for comparing alternatives, • HTS curves can be accumulated or aggregated for a practical evaluation of the subsystem or basin status. RESULTS: TOTAL SERIES OF HABITAT

Carrión en /Bordallo/Adulto. Curva de duración de hábitat (m2)

1000 Reasons of these stress 900

800 ) 2 700 habitat situations: too 600 500 much water, too little? Hábitat (m 400 300 200 100

0

5%

45% 15% 25% 35% 55% 65% 75% 85% 95%

Percentil DEFINING AND OPTIMIZING MINIMUM ENVIRONMENTAL FLOWS IN DUERO RIVER BASIN

“IMPLEMENTING ENVIRONMENTAL FLOWS IN COMPLEX WATER RESOURCES SYSTEMS - CASE STUDY: THE DUERO RIVER BASIN, SPAIN.” J. Paredes-Arquiola, F. Martinez-Capel, A. Solera, V. Aguilella. River Research & Applications OBJECTIVES

1. EFFECT. TO ASSES THE EFFCET OF 40 “NEW” ENVIRONMENTAL FLOWS IN THE DUERO RIVER BASIN OVER THE SUPPLY OF AGRICULTURAL DEMANDS, HYDROELECTRIC PRODUCTION AND HABITAT OF OTHER SPECIES.

2. OPTIMIZATION. TO DEFINE ENVIRONMENTAL FLOWS IN THE BASIN THAT REPRESENT THE MAXIMUM POTENCIAL HABITAT SITUATION MAINTAINING RELIABILITY OF WATER SUPPLY DEMANDS AND HYDROELECTRIC PRODUCTION STEP 0. CONSTRUCTION OF WATER MANAGEMENT & HABITAT MODEL

WATER Flows in water bodies (t) INPUT DATA MANAGEMENT Water volume aquifers (t) AQUATOOL MODEL Water Resources Water Demands INTERFACE Supply or Deficit (t) Groundwater inputs (river- Reliability/Resilency/vulnerability Physical Habitat Simulation SIMGES MODULE aquifer, pumping, artificial (WUA vs. Flow curves) Energy production (t) recharge) CAUDECO Management Rules Infrastructure HABITAT HTS & HDC: (dams, channels, etc.) MODULE MODEL Reliability/Resilency/vulnerability of Habitat

STEP 1. ASSESMENT OF E-FLOWS EFFECTS

OUTPUT DATABASE Initial E-FLOWS (range and flow 80.00 7600 75.00 7550 70.00 7500 variation across months; n sites) 65.00 Deficit/Supply (t) 60.00 7450 WATER 55.00 7400 50.00 Sistema Dotación anual Incrementos en %7350 sobre Dotación anual Incremento 45.00 (hm3) Déficit Suma de Suma de Suma de en el nº de Q : [Q ; Q ] → 10 MANAGEMEN medio anual déficit 7300 déficit déficit Fallos 1 1,min 1,max Reliability/Resiliency/vulnerabil 40.00 máximo 1 máximo 2 máximo 10 UTAH año 7250años consec. años consec. T MODEL 35.00 Tera 133.90 1.44 18.19 21.33 21.33 0 intervals 30.00 Órbigo 432.78 0.52 0.72 7200 0.93 7.33 0 Esla-Valderaduey 978.44 -0.16 -0.37 -0.84 -2.93 -25 ity 7 10.66 14.33 18 21.66 25.33 29 32.66 36.33 40 Carrión 281.47 1.48 4.52 11.36 25.34 0 Pisuerga 212.26 1.43 2.92 4.19 15.39 1 63.25 0.04 1.14 1.14 1.14 0 HABITAT Alto Duero 163.21 1.13 22.17 22.07 28.90 -2 … Riaza 115.73 0.95 4.88 4.80 9.20 -5 MODEL Adaja-Cega 170.56 -1.95 -4.93 -8.07 -25.10 -14 Energy production (t) Bajo Duero 130.07 0.04 0.19 0.25 0.46 0 Tormes 277.03 1.64 18.33 18.92 18.92 5 Águeda 15.65 0.22 5.65 5.65 5.65 0

Qn: [Qn,min; Qn,max] → 10 Habitat indicators intervals PUBLIC PARTICIPATORY PROCESS STEP 2. E-FLOWS OPTIMIZATION

AGRUPATION AND FINAL E-FLOWS E-FLOWS* (from public agreement) ORDER OF INCREMENT OPTIMIZATION

WATER Environmental Flow Regime Q1: [Q*1,min; Q*1,max] Q1/Q3/Q4 MANAGEMEN (12 monthly flows per site) Q2/Q9/Q11 T MODEL … Reliability of Water Supply Q : [Q* ; Q* ] … HABITAT (at legal levels) n n,min n,max MODEL

RESOURCES AND DEMANDS

Demanda Recurso natural

2724

3000 1770 2500 1436 1229 2000 904 844 818 857 614 612 /año) 1500 921 360 3 651 219 662 672 1000 486 362 246 290 254 175 117 49 (hm 500

0

Tera

Cega

Riaza

-

Órbigo

Carrión

Arlanza

Tormes

Águeda

Pisuerga

Alto Duero Alto

Bajo Duero Bajo

Adaja

Valderaduey

- Esla

Recurso 12387.9 natural

Demanda 4883.64 Totales

0 5000 10000 15000 (hm3/año) RESOURCES AND DEMANDS

Demanda agraria y recursos hídricos (hm3/año). Variabilidad temporal 1800 1600 1400 1200 1000 800 600 400 200 0 Oct Nov Dic Ene Feb Mar Abr May Jun Jul Ago Sep Demandas Recursos INITIAL ASSUMPTIONS

Studies about environmental flows (INFRAECO, JAN 2009) Statistical and Habitat Simulation Results 40 environmental flows

Tramos analizados Rango m3/s Correspondecia modelo aquatool general Duero Adaja en Arévalo De 0.5 a 2 r. Adaja 452 Águeda, en Castillejo De 0.5 a 2 r. Águeda 525 Range of Arlanzón en Villasur de Herreros De 0.5 a 2 r. Arlanzón 184 Duero en Toro De 7 a 40 r. Duero 408_b environmental flows Duero, en Quintanilla de Onésimo De 5 a 10 r. Duero 344

Duratón, aguas debajo de Las Vencias De 0.5 a 2 r. Duratón 407 Eresma, debajo de Segovia De 0.5 a 2 r. Eresma 544 Esgueva en Villanueva de los Infantes De 0.2 a 1 r. Esgueva 311 Esla, antes del Porma De 4 a 8 r. Esla 38 c Órbigo, en La Bañeza De 2 a 10 r. Órbigo 46 Pisuerga, en Herrera de Pisuerga De 2 a 4 r. Pisuerga 57 Porma, antes del Esla De 2 a 5 r. Porma 829

Riaza, aguas abajo del embalse de De 0.2 a 1 Puede ser en r. Riaza 372_b o r. Linares de Arroyo Riaza 372_c Tera, en Quiruelas de Vidriales De 2 a 5 r. Tera 258 Tormes, debajo de La Almendra De 0.5 a 5 r. Tormes 412 Tuerto, en Astorga De 0.2 a 2 r. Tuerto 102

LOCATIONS

LocalizaciónLocations wherede tramos E-flows de estimación were annalyzed del HPU ± Porma en Secos de Porma Pisuerga en Herrera de Pisuerga

Esla en Villomar Tuerto antes de Duerna Valderaduey en Santervás de Campos Carrión en Palencia Arlanzón en Villasur de Herreros Órbigo en Cebrones

Tera en Mozar de Valverde Arlanza en Quintana del Puente

Esla en Bretó Pisuerga entre Arlanza y Carrión Duero en Garray Esgueva en Villanueva de los Infantes Duero después del río Riaza Rituerto en Sauquillo de Boñices Esla en Villalcampo Duero en Toro Duero en Peñafiel Riaza aguas abajo de Linares del Arroyo Duero en Aldeadávila Guareña en Toro Duratón aguas abajo de Las Vencías Zapardiel antes del Duero Tormes aguas abajo de Almendra Voltoya en Coca Tormes en Contiensa Adaja en Arévalo Huebra en Puente Resbala Eresma en Segovia

Tormes aguas abajo de Villagonzalo simulado

Águeda en Castillejo Martín Viejo no simulado

0 25 50 100 150 200 km INITIAL ASSUMPTIONS

SIMGES model for whole Duero basin CAUDECO DEVELOPMENT MODEL

WUA Curves: 284 curves at 40 locations

DEFINING CRITERIA: DEFINING ACCUMULATION: - PERCENTILE TSH Duero en Toro/Barbo/Adulto - ACCUMLATION 80% (284) - RESILENCY Agregation by sizes

STH for location and species (125) Duero en Toro/Barbo

agregation Agregation by by species location

STH in location STH by (32) species (7)

Duero en Toro Barbo Aproach: estimation of effect of environmental flows

Range of 1 flow environmental flows

Results: Reliability of water supply (urban DATA BASE OF RESULTS and agricultural) and Energy production RESULTS. E-FLOWS WITH EFFECT ON THE WHOLE SYSTEM RESULTS. E-FLOWS WITH EFFECT ON RELIABILITY OF WATER SUPPLY RESULTS. E-FLOWS WITH EFFECT AT LOCAL SCALE DSS in Planning • DSS are essential for the purpose of providing – Integration, – Transparency – easiness of use by PMA and – shared vision for conflict resolution. • They are also very valuable for – sensitivity analysis – risk assessment – Trade-off assessment – Sustainabililty assessment DSS in Planning DSS USE DURING NEGOTIATIONS PROVIDES MANY ADVANTAGES: Development of MODELS, SHARED by the technicians, stakeholders, and policy makers: SHARED VISION OF the SYSTEM OBJECTIVE FRAMEWORK AND REFERENCE that allows each group to evaluate the consequences of the alternatives that are proposed by them and by the others. TOOL FOR the RATIONAL ANALYSIS OF MANAGEMENT AND OPERATION POLICIES of resulting systems (CRUCIAL FOR REACHING AGREEMENTS AND TO AVOID FUTURE CONFRONTATIONS) OBJETIVITY OF TECHNICAL ASPECTS that allows negotiations to be developed IN SOCIAL AND POLITICAL TERMS THAT ALLOW EQUITABLE AGREEMENTS. CONCLUSIONS

• Defining e-flows in complex basins is a difficult and multidisciplinary task because any decision affects many aspects of the system. • A methodology to define e-flows in water systems is used in Spanish basins. • Targets for demand satisfaction and environment satisfaction are incorporated • It estimates the trade-offs between the environment and hydropower production and water supply. • Sustainability assessment is achieved indirectly by these results. In case of agreed indicator, it could be easily incorporated. • Economic aspects could also be incorporated. • Sustainability assessment must be tailored to each case Thank you for your attention!