G. P. Hodsman M.B., M.R.C.P

Total Page:16

File Type:pdf, Size:1020Kb

G. P. Hodsman M.B., M.R.C.P Postgrad Med J: first published as 10.1136/pgmj.54.635.623 on 1 September 1978. Downloaded from Postgraduiate Medical Journal (September 1978) 54, 623-627. Demeclocycline in the treatment of the syndrome of inappropriate antidiuretic hormone release: with measurement of plasma ADH P. L. PADFIELD G. P. HODSMAN M.B., M.R.C.P. M.B., M.R.C.P. J. J. MORTON Ph.D. MRC Blood Pressure Unit anid Department ofMedicine, Western Infirmary, Glasgow GIl 6NT Summary fluid and electrolyte balance in a patient with A patient with the syndrome of inappropriate anti- SIADH following head injury and meningitis, diuretic hormone release (SIADH) following head together with serial measurements of plasma ADH. injury and meningitis was studied during treatment with demeclocycline, a drug known to produce a Case history reversible nephrogenic diabetes insipidus. No changes A 64-year-old male was admitted to hospital, were observed during six days of demeclocycline 4 days following a head injury, with a story of pro- 1200 mg/24 hr but urine output increased significantly, gressive confusion. A clinical diagnosis of menin- Protected by copyright. with the production of a dilute urine, when the dose gitis was confirmed by the finding of an increased was increased to 2400 mg/24 hr. The patient lost cell count in the cerebrospinal fluid with pneumo- weight, and all biochemical features of the syndrome cocci on direct film and grown on culture. He was were rapidly corrected despite an unchanged fluid started on penicillin and sulphadimidine and 12 days intake and despite the persistence of high plasma levels later was much improved. On admission his serum of ADH. The rise in serum sodium was accompanied sodium had been 139 mmol/l with a blood urea of by mild sodium retention, as measured by external 5-1 mmol/l and 12 days later 133 mmol/l and 29 balance and exchangeable sodium. mmol/l respectively. Skull radiology revealed an A complication of treatment was the development occipital fracture but chest X-rays were persistently of acute renal failure possibly induced by a nephro- normal. Seventeen days after admission he was dis- toxic effect of high circulating levels of demeclocyline. charged although his serum sodium at that time was On stopping demeclocyline renal function returned to 128 mmol/l. He was re-admitted one week later normal and, after some delay, SIADH returned, and grossly confused with no focal neurological signs. was still present 9 months after initial presentation. A repeat lumbar puncture was normal but his serum This confirms earlier reports of the efficacy of de- sodium had fallen to 112 mmol/l. On the day after http://pmj.bmj.com/ meclocycline in SIADH; but the authors advise admission, serum sodium was 108 mmol/l with a caution against increasing the dose above 1200 mg/ plasma osmolality of 219 mosmol/kg with a con- 24 hr. current urine osmolality of 473 mosmol/kg. Plasma ADH was elevated at 9 pg/ml (normal range 4-8 Introduction pg/ml); clearly inappropriate for the plasma Fluid restriction, the conventional therapy for the osmolality. Fluid restriction resulted in a rise of syndrome of inappropriate antidiuretic hormone serum sodium to 136 mmol/l with a parallel im- secretion (SIADH) (Bartter and Schwartz, 1967) can provement in clinical state. He was discharged from on October 1, 2021 by guest. be irksome and requires close supervision of fluid hospital with advice to restrict his fluid intake but intake. Both lithium carbonate (Singer, Rotenberg serum sodium fell again to 126 mmol/l. He was re- and Puschett, 1972) and demeclocycline (White admitted 3 months after his initial presentation for and Fetner, 1975; De Troyer and Demanet, 1975; assessment of the effects of demeclocycline. ^herrill et al., 1975; Cledes, Clavier and Kerbrat, 1976; Perks, Mohr and Liversedge, 1976) have been Special studies shown to be effective in the treatment of SIADH in The patient was admitted to a metabolic ward and a small number of patients. It has been possible to placed on a fixed normal intake of sodium (133 study, in detail, the effects of demeclocycline on mmol/24 hr) and potassium (53 mmol/24 hr). Fluid Requcsts for reprints to: Dr Paul L. Padfield, Western intake was arbitrarily fixed at 2000 ml/24 hr (a volume Infirmary, Glasgow, GIl 6NT. designed to ensure the presence of SIADH). During 0032-5473/78/0900-0623 $02.00 (© 1978 The Fellowship of Postgraduate Medicine Postgrad Med J: first published as 10.1136/pgmj.54.635.623 on 1 September 1978. Downloaded from 624 Case reports 160r cq 0 120 E E E 80 m 0 uC0 40 ._C O0 IlI vn) 0 C. 10 DC 2400 go i- DC 1200 J .4 Control llw mg/24 hr -1.4 mg/24hr Time (days) FIG. 1. Effect of demeclocycline (DC) on urinary sodium in the syndrome of inappropriate antidiuretic hormone release (SIADH). of demeclocycline were measured using gas-liquid chromatography (quoted antibacterial range 3-5 Plasma ' II/ 0 l±g/ml). ADH 0I'@0 (pg/mi) 6 2 ' Results of special studies Protected by copyright. 14I Fluid balance (Fig. 1) During the initial run-in period, urine output was urea u / 3 Plasmao BloodBmmol/oo demeclocycline fairly constant and averaged 1333 ml/24 hr. The 0 6 A mean early morning urine osmolality was 603 2pI 4 (mmol/l) mosmol/kg. During the first day of demeclocycline Urine 600 /"-O' * therapy urine output increased to 2200 ml although osmololity 400 0 the osmolality was not measured. Thereafter, urine (mosmol/kg) F a mean - output fell, giving daily output of 1590 ml Plsa 290 - 0I 270 during the 6 days ofthe lower dose ofdemeclocycline. osmonality 0_0 (mosmol/kg) 25 0 0* mean T ~~~0-0 The early morning urine osmolality during 140 O_- SrmSeu this period was 600 mosmol/kg. On increasing the 130 - Nao - (mmol/l) 120 0e400-- dose of demeclocycline to 2400 mg/24 hr a diuresis 74 - occurred with a daily urine output averaging 2363 ml (osmolality 266 mosmol/kg). As fluid intake and Weight0 70 (kg) -0- ambient temperature were constant, this represents http://pmj.bmj.com/ 66 6 12 18 a true fluid loss and was accompanied by a dramatic DC 1200 DC 2400 *-Control4--Conlral 4mg/24 hr 4mg/24 hr fall in weight (Fig. 2). FIG. 2. The effects of demeclocycline (DC) in the syndrome of inappropriate antidiuretic hormone release Sodium balance (Fig. 2 and 3) (SIADH). Serum sodium remained low during the run-in period and during the first 6 days of demeclocycline an run-in of 6 measure- treatment. serum initial period days, serial Thereafter sodium and plasma on October 1, 2021 by guest. ments were made of weight, serum electrolytes osmolality rose rapidly to normal (Fig. 2). During (routine automated analysis), fluid and electrolyte the run-in period exchangeable sodium was 2860 balance, exchangeable sodium and potassium mmol and exchangeable potassium 2846 mmol. At (Davies and Robertson, 1973) and urine and plasma the end of the study exchangeable sodium had in- osmolality by freezing point depression (Advanced creased to 2957 mmol and potassium had remained Osmometer). Plasma ADH was measured by radio- unchanged at 2848 mmol. Urine samples for elec- immunoassay (Morton, Padfield and Forsling, 1975). trolyte measurement were lost during the first The patient then received demeclocycline (Leder- 3 days of the study but the net balance during the mycin9) 300 mg six-hourly for 6 days followed by remaining 3 days of the run-in period and the first 600 mg six-hourly for a further 6 days. Changes in 6 days of demeclocycline therapy was constant, the above measurements were noted. Plasma levels averaging an apparent positive balance of 53 and Postgrad Med J: first published as 10.1136/pgmj.54.635.623 on 1 September 1978. Downloaded from Case reports 625 3200r- 2400k E 1600k wE .50E 800- 0 6 12 18 DC 1200 DC *-CotroOt XI-w- 2400-b rg/24hr -t*mg/24 hr Time (days) FIG. 3. The effect of demeclocycline (DC) on urine output in the syndrome of inappropriate antidiuretic hormone release (SIADH). Protected by copyright. 51 mmol/24 hr respectively. During the last 6 days nine clearance increased to 98 ml/min. Serum sodium of the study there was initially sodium retention so remained above 135 mmol/l for approximately two that the average positive balance was 68 mmol/24 hr: months and then gradually fell over a period of a net increase of 16 mmol/day over the earlier three months to stabilize at about 126 mmol/l with periods. This represents a total gain of 96 mmol a plasma osmolality of 260 mosmol/kg and urine over the 6-day period (tallying well with exchange- osmolality of 570 mosmol/kg. Despite this, he has able sodium). There was no significant change in remained well with no complaints and chest X-ray either serum potassium or external potassium has been repeatedly negative. His migration abroad balance. has precluded further study. Antidiuretic hormone Discussion With the exception of one value of 3-6 pg/ml on the SIADH in this man was related to head injury first day of demeclocycline therapy ADH levels and subsequent meningitis and this seems the likely remained high throughout the study (Fig. 2) with a aetiology (Bartter and Schwartz, 1967). The duration probable slight increase at the end of the study. of the syndrome is rather long, however, and the http://pmj.bmj.com/ possibility of an occult neoplasm must continually be Renal function borne in mind. Fluid restriction proved difficult and During the phase of acute diuresis, renal function another form of treatment was clearly desirable.
Recommended publications
  • Lithium Carbonate
    Right to Know Hazardous Substance Fact Sheet Common Name: LITHIUM CARBONATE Synonyms: Dilithium Carbonate; Carbolith CAS Number: 554-13-2 Chemical Name: Carbonic Acid, Dilithium Salt RTK Substance Number: 1124 Date: September 1998 Revision: January 2008 DOT Number: None Description and Use EMERGENCY RESPONDERS >>>> SEE BACK PAGE Lithium Carbonate is a white, light, odorless powder. It is Hazard Summary used in the production of glazes on ceramics and porcelain, in Hazard Rating NJDOH NFPA varnishes and dyes, as a coating on arc welding electrodes, HEALTH 1 - and in lubricating greases. It is also used as medication to FLAMMABILITY 0 - treat certain types of mental illness. REACTIVITY 0 - TERATOGEN POISONOUS GASES ARE PRODUCED IN FIRE Hazard Rating Key: 0=minimal; 1=slight; 2=moderate; 3=serious; 4=severe Reasons for Citation f Lithium Carbonate is on the Right to Know Hazardous f Lithium Carbonate can affect you when inhaled. Substance List because it is cited by DEP and EPA. f Lithium Carbonate may be a TERATOGEN. HANDLE f This chemical is on the Special Health Hazard Substance List. WITH EXTREME CAUTION. f Contact can irritate the skin and eyes. f Inhaling Lithium Carbonate can irritate the nose and throat. f Lithium Carbonate can cause nausea, vomiting, diarrhea and abdominal pain. f Inhaling Lithium Carbonate can irritate the lungs. Higher exposures may cause a build-up of fluid in the lungs SEE GLOSSARY ON PAGE 5. (pulmonary edema), a medical emergency. f Lithium Carbonate can cause headache, muscle FIRST AID weakness, confusion, seizures and coma. Eye Contact f Lithium Carbonate may cause a skin allergy.
    [Show full text]
  • Lithium Carbonate
    SAFETY DATA SHEET Creation Date 26-Sep-2009 Revision Date 18-Jan-2018 Revision Number 3 1. Identification Product Name Lithium Carbonate Cat No. : L119-500 CAS-No 554-13-2 Synonyms carbonic acid lithium salt; Carbonic Acid Dilithium Salt Recommended Use Laboratory chemicals. Uses advised against Not for food, drug, pesticide or biocidal product use Details of the supplier of the safety data sheet Company Fisher Scientific One Reagent Lane Fair Lawn, NJ 07410 Tel: (201) 796-7100 Emergency Telephone Number CHEMTRECÒ, Inside the USA: 800-424-9300 CHEMTRECÒ, Outside the USA: 001-703-527-3887 2. Hazard(s) identification Classification This chemical is considered hazardous by the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200) Acute oral toxicity Category 4 Skin Corrosion/irritation Category 2 Serious Eye Damage/Eye Irritation Category 1 Specific target organ toxicity (single exposure) Category 3 Target Organs - Respiratory system, Central nervous system (CNS). Label Elements Signal Word Danger Hazard Statements Harmful if swallowed Causes skin irritation Causes serious eye damage May cause respiratory irritation ______________________________________________________________________________________________ Page 1 / 7 Lithium Carbonate Revision Date 18-Jan-2018 ______________________________________________________________________________________________ Precautionary Statements Prevention Wash face, hands and any exposed skin thoroughly after handling Do not eat, drink or smoke when using this product Wear protective gloves/protective clothing/eye protection/face protection Avoid breathing dust/fume/gas/mist/vapors/spray Use only outdoors or in a well-ventilated area Inhalation IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing Call a POISON CENTER or doctor/physician if you feel unwell Skin IF ON SKIN: Wash with plenty of soap and water If skin irritation occurs: Get medical advice/attention Take off contaminated clothing and wash before reuse Eyes IF IN EYES: Rinse cautiously with water for several minutes.
    [Show full text]
  • Lithium Sulfate
    SIGMA-ALDRICH sigma-aldrich.com Material Safety Data Sheet Version 4.1 Revision Date 09/14/2012 Print Date 03/12/2014 1. PRODUCT AND COMPANY IDENTIFICATION Product name : Lithium sulfate Product Number : 203653 Brand : Aldrich Supplier : Sigma-Aldrich 3050 Spruce Street SAINT LOUIS MO 63103 USA Telephone : +1 800-325-5832 Fax : +1 800-325-5052 Emergency Phone # (For : (314) 776-6555 both supplier and manufacturer) Preparation Information : Sigma-Aldrich Corporation Product Safety - Americas Region 1-800-521-8956 2. HAZARDS IDENTIFICATION Emergency Overview OSHA Hazards Target Organ Effect, Harmful by ingestion. Target Organs Central nervous system, Kidney, Cardiovascular system. GHS Classification Acute toxicity, Oral (Category 4) GHS Label elements, including precautionary statements Pictogram Signal word Warning Hazard statement(s) H302 Harmful if swallowed. Precautionary none statement(s) HMIS Classification Health hazard: 1 Chronic Health Hazard: * Flammability: 0 Physical hazards: 0 NFPA Rating Health hazard: 1 Fire: 0 Reactivity Hazard: 0 Potential Health Effects Inhalation May be harmful if inhaled. May cause respiratory tract irritation. Aldrich - 203653 Page 1 of 7 Skin Harmful if absorbed through skin. May cause skin irritation. Eyes May cause eye irritation. Ingestion Harmful if swallowed. 3. COMPOSITION/INFORMATION ON INGREDIENTS Formula : Li2O4S Molecular Weight : 109.94 g/mol Component Concentration Lithium sulphate CAS-No. 10377-48-7 - EC-No. 233-820-4 4. FIRST AID MEASURES General advice Move out of dangerous area.Consult a physician. Show this safety data sheet to the doctor in attendance. If inhaled If breathed in, move person into fresh air. If not breathing, give artificial respiration. Consult a physician.
    [Show full text]
  • Management and Treatment of Lithium-Induced Nephrogenic Diabetes Insipidus
    REVIEW Management and treatment of lithium- induced nephrogenic diabetes insipidus Christopher K Finch†, Lithium carbonate is a well documented cause of nephrogenic diabetes insipidus, with as Tyson WA Brooks, many as 10 to 15% of patients taking lithium developing this condition. Clinicians have Peggy Yam & Kristi W Kelley been well aware of lithium toxicity for many years; however, the treatment of this drug- induced condition has generally been remedied by discontinuation of the medication or a †Author for correspondence Methodist University reduction in dose. For those patients unresponsive to traditional treatment measures, Hospital, Department several pharmacotherapeutic regimens have been documented as being effective for the of Pharmacy, University of management of lithium-induced diabetes insipidus including hydrochlorothiazide, Tennessee, College of Pharmacy, 1265 Union Ave., amiloride, indomethacin, desmopressin and correction of serum lithium levels. Memphis, TN 38104, USA Tel.: +1 901 516 2954 Fax: +1 901 516 8178 [email protected] Lithium carbonate is well known for its wide use associated with a mutation(s) of vasopressin in bipolar disorders due to its mood stabilizing receptors. Acquired causes are tubulointerstitial properties. It is also employed in aggression dis- disease (e.g., sickle cell disease, amyloidosis, orders, post-traumatic stress disorders, conduct obstructive uropathy), electrolyte disorders (e.g., disorders and even as adjunctive therapy in hypokalemia and hypercalcemia), pregnancy, or depression. Lithium has many well documented conditions induced by a drug (e.g., lithium, adverse effects as well as a relatively narrow ther- demeclocycline, amphotericin B and apeutic range of 0.4 to 0.8 mmol/l. Clinically vincristine) [3,4]. Lithium is the most common significant adverse effects include polyuria, mus- cause of drug-induced nephrogenic DI [5].
    [Show full text]
  • Endocrine Emergencies
    Endocrine Emergencies • Neuroendocrine response to Critical illness • Thyroid storm/Myxedema Coma • Adrenal Crisis/Sepsis • Hyper/Hypocalcemia • Hypoglycemia • Hyper and Hyponatremia • Pheochromocytoma crises CASE 76 year old man presents with urosepsis and is Admitted to MICU. He has chronic renal insufficiency. During his hospital course, he is intubated and treated With dopamine. Thyroid studies are performed for Inability to wean from ventilator. What labs do you want? Assessment of Thyroid Function • Hormone Levels: Total T4, Total T3 • Binding proteins: TBG, (T3*) Resin uptake • Free Hormone Levels: TSH, F T4, F T3, Free Thyroid Index, F T4 by Eq Dialysis • Radioactive Iodine uptake (RAIU); primarily for DDx of hyperthyroidism • Thyroid antibodies; TPO, Anti-Thyroglobulin, Thyroid stimulating immunoglobulins, Th receptor antibodies Labs: T4 2.4 ug/dl (5-12) T3U 40% (25-35) FTI 1.0 (1.2-4.2) FT4 0.6 (0.8-1.8) TSH 0.2 uU/ml (.4-5.0) Non-thyroidal illness • Hypothesis: NTI vs 2° Hypothyroidism –RT3 ↑ in NTI and ↓ in Hypothyroidism • Hypothesis: NTI vs Hyperthyroidism – TT3 ↓ in NTI and in ↑ Hyperthyroidism • 75 year old woman with history of hypothyroidism is found unresponsive in her home during a cold spell in houston. No heat in the home. • Exam: T° 95, BP 100/60, P 50, RR 8 • Periorbital edema, neck scar, no rub or gallop, distant heart sounds, crackles at bases, peripheral edema • ECG: Decreased voltage, runs of Torsade de pointes • Labs? Imaging? • CXR: cardiomegaly • Glucose 50 • Na+ 120, K+ 4, Cl 80, HCO3¯ 30 • BUN 30 Creat 1.4 • ABG: pH 7.25, PCO2 75, PO2 80 • CK 600 • Thyroid studies pending • Management: Manifestations of Myxedema Coma • Precipitated by infection, iatrogenic (surgery, sedation, diuretics) • Low thyroid studies • Hypothermia • Altered mental status • Hyponatremia • ↑pCO2 • ↑CK • ↑Catecholamines with ↑vascular resistance • Cardiac: low voltage, Pericardial effusion, impaired relaxation with ↓C.O.
    [Show full text]
  • Side Effects and Toxicity of Lithium
    Side Effects and Toxicity of Lithium Jeffrey T. Apter, MD, Alan S. Apter, MD, and S. Tyano, MD Belle Mead, New Jersey, and Tel Aviv, Israel Although lithium remains the most specific treatment for bipo­ lar affective disorder, it should be cautiously prescribed and used only when clinically indicated. The main indications for lithium are the manic phase of bipolar affective disorder and prophylaxis of both manic and depressive episodes. Lowering serum lithium levels will markedly reduce the incidence of side effects, and patients should be maintained at the lowest possi­ ble serum level. The serum level may be as low as 0.4 mEq/L and as high as 1.5 mEq/L, depending on the clinical response of the patient and the presence of side effects. The most contro­ versial areas are the possibility of renal toxicity and the concomi­ tant use of lithium with neuroleptics, especially haloperidol. In addition to its well-studied use in affective poisoning and serious adverse reactions. Current disorders, lithium has been used in at least 30 recommendations include monitoring kidney func­ other psychiatric and nonpsychiatric conditions.1,2 tioning, at least with serial creatinines and general Even within the therapeutic serum lithium range, chemistry, and monitoring thyroid functions with as many as two thirds of patients suffer from per­ a thyroid-stimulating hormone (TSH) level every sistent, unwanted side effects.3 In addition, the six months. concomitant use of other drugs, the presence of Patients taking other medication, especially di­ other disease states, and special physiological uretics and neuroleptics, should be followed par­ states, such as pregnancy, must also be considered ticularly closely to prevent the possibility of lith­ as potentially inducing lithium side effects.4 ium toxicity.
    [Show full text]
  • LITHIUM PRESCRIBING GUIDELINES Lithium for The
    Lithium prescribing guidelines LITHIUM PRESCRIBING GUIDELINES Lithium for the treatment and prophylaxis of mania, bipolar disorder and recurrent depression Version: Date: Author: Status: Comment: Document Author Written by: Francis Johnson Signed: Date: 1/10/2014 Job Title: Mental health specialist pharmacist Approval DAC: December 2014 Trust Executive Committee date: July 2015 CCG Board date: January 2015 Review Date: October 2019 Effective Date: October 2015 Version Control History: Version: Date: Author: Status: Comment: August 2014 1 Lithium prescribing guidelines These guidelines have been produced to support the seamless transfer of lithium prescribing and patient monitoring from secondary to primary care and provides an information resource to support clinicians providing care to the patient. This guideline was prepared using information available at the time of preparation, but users should always refer to the manufacturer’s current edition of the Summary of Product Characteristics (SPC or “data sheet”) for more details. August 2014 2 Lithium prescribing guidelines CONTENTS PAGE SECTION DESCRIPTION PAGE 1 INTRODUCTION 4 2 INDICATIONS 4 3 PREPARATION 4 4 SAFETY ISSUES 5 4.1 Dose 5 4.2 Contra-indications (also see current BNF or SPC) 5 4.3 Cautions 5 4.4 Common Side Effects (also see current BNF or SPC) 5 4.5 Drug Interactions (also see current BNF or SPC) 5 4.6 Pre-treatment Assessment 6 4.7 Routine Safety Monitoring 6 5 RESPONSIBILITY OF CONSULTANT 6 6 RESPONSIBILITY OF NURSE (if applicable) 6 7 RESPONSIBILITY OF GP 6 8 RESPONSIBILITY
    [Show full text]
  • Lithium Carbonate
    Capsules: 150 mg, 300 mg, 600 mg of lithium carbonate (3) HIGHLIGHTS OF PRESCRIBING INFORMATION These highlights do not include all the information needed to use ------------------------------ CONTRAINDICATIONS ----------------------------- LITHIUM and LITHIUM CARBONATE safely and effectively. See full prescribing information for LITHIUM and LITHIUM CARBONATE. Known hypersensitivity to any inactive ingredient in the drug product. (4) ----------------------- WARNINGS AND PRECAUTIONS ---------------------- LITHIUM oral solution, for oral use LITHIUM CARBONATE tablets, for oral use Lithium-Induced Polyuria: May develop during initiation of treatment. LITHIUM CARBONATE capsules, for oral use Increases risk of lithium toxicity. Educate patient to avoid dehydration. Monitor for lithium toxicity and metabolic acidosis. Discontinue lithium Initial U.S. Approval: 1970 or treat with amiloride as a therapeutic agent (5.2). Hyponatremia: Symptoms are more severe with faster-onset hyponatremia. Dehydration from protracted sweating, diarrhea, or WARNING: LITHIUM TOXICITY elevated temperatures from infection increases risk of hyponatremia and lithium toxicity. Educate patients on maintaining a normal diet with salt See full prescribing information for complete boxed warning. and staying hydrated. Monitor for and treat hyponatremia and lithium toxicity, which may necessitate a temporary reduction or cessation of Lithium toxicity is closely related to serum lithium concentrations, lithium and infusion of serum sodium (5.3). and can occur at doses close to therapeutic concentrations. Facilities Lithium-Induced Chronic Kidney Disease: Associated with structural for prompt and accurate serum lithium determinations should be changes in patients on chronic lithium therapy. Monitor kidney function available before initiating therapy (2.3, 5.1). during treatment with lithium (5.4). Encephalopathic Syndrome: Increased risk in patients treated with lithium and an antipsychotic.
    [Show full text]
  • Current and Future Treatment Options in SIADH
    NDT Plus (2009) 2 [Suppl 3]: iii12–iii19 doi: 10.1093/ndtplus/sfp154 Current and future treatment options in SIADH Robert Zietse, Nils van der Lubbe and Ewout J. Hoorn Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands Correspondence and offprint requests to: Robert Zietse; E-mail: [email protected] Abstract long-term treatment may be necessary. Although there are The treatment of hyponatraemia due to SIADH is not always several approaches to the treatment of SIADH, none of the as straightforward as it seems. Although acute treatment present treatment options is without problems [3]. with hypertonic saline and chronic treatment with fluid re- Before delving into specific forms of treatment, one striction are well established, both approaches have severe should consider the question: ‘Are all patients with SIADH limitations. These limitations are not readily overcome by alike?’ Although vasopressin levels appear largely indepen- addition of furosemide, demeclocycline, lithium or urea dent of serum osmolality in roughly one third of the patients, to the therapy. In theory, vasopressin-receptor antagonists many patients exhibit some form of vasopressin responsive- would provide a more effective method to treat hypona- ness albeit at a lower serum osmolality [2]. In such cases, traemia, by virtue of their ability to selectively increase excessive fluid intake appears equally important to vaso- solute-free water excretion by the kidneys (aquaresis). In pressin release in the initiation of hyponatraemia. This may this review we explore the limitations of the current treat- be due to regulation at a lower setpoint (i.e. a ‘reset os- ment of SIADH and describe emerging therapies for the mostat’) [2].
    [Show full text]
  • Vaptans and the Treatment of Water-Retaining Disorders Friedericke Quittnat and Peter Gross
    Vaptans and the Treatment of Water-Retaining Disorders Friedericke Quittnat and Peter Gross Hyponatremia is a frequent and symptomatic electrolyte disorder for which specific treat- ments have been lacking. Hyponatremia is attributable to nonosmotic vasopressin stimu- lation and continued increased fluid intake. In the past, peptidic derivatives of arginine vasopressin proved that blockade of vasopressin V-2 receptors served to improve hypo- natremia, however, these antagonists had intrinsic agonistic activity, too. In the past decade, random screening of molecules uncovered nonpeptide, orally available vasopres- sin antagonists without agonistic properties. The agents show competitive binding to the vasopressin V-2 receptor at an affinity comparable with that of arginine vasopressin. Four antagonists have undergone extensive study. Three of these agents—lixivaptan or VPA 985; SR 121 463 B; tolvaptan or OPC 41,061—are specific V-2 antagonists whereas conivaptan or YM 087 is a V-1/V-2 mixed antagonist. In animal and clinical studies all of the agents were able to correct water retention and hyponatremia in a dose-dependent manner. There was no tachyphylaxis, even when the agents were given over many weeks. It is expected that the clinical use of the agents will lead to a major improvement in the treatment of hyponatremia. Semin Nephrol 26:234-243 © 2006 Elsevier Inc. All rights reserved. KEYWORDS hyponatremia, vasopressin, vaptans, cardiac failure, syndrome of inappropriate antidiuretic hormone (SIADH) yponatremia is a water-retaining disorder that is de- in outpatients, especially when older patients are consid- Hfined by the presence of a plasma sodium concentration ered.3 of 136 mmol/L or less.
    [Show full text]
  • Medication Guide Lithium (LITH-Ee-Əm) Carbonate Capsules What Is the Most Important Information I Should Know About Lithium
    Medication Guide Lithium (LITH-ee-əm) Carbonate Capsules What is the most important information I should know about Lithium Carbonate? Lithium Carbonate can cause serious side effects, including too much lithium in your blood (lithium toxicity). Lithium toxicity can happen even if the lithium level in your blood is close to the right level for you. Your healthcare provider will need to monitor your blood levels of lithium to find the best dose for you. Take your Lithium Carbonate exactly as your healthcare provider tells you to take it. Stop taking Lithium Carbonate and call your healthcare provider right away if you have any symptoms of lithium toxicity including: • abnormal heartbeat • vomiting •diarrhea •drowsiness • weak muscles •blurred vision •clumsiness •ear ringing What is Lithium Carbonate? Lithium Carbonate are prescription medicines called mood-stabilizing agents used to treat manic episodes and as a long term treatment of bipolar disorder. Lithium Carbonate is not for people with severe kidney problems. It is not known if Lithium Carbonate is safe and effective in children. Who should not take Lithium Carbonate? Do not take Lithium Carbonate if you are allergic to any of the ingredients in Lithium Carbonate Capsules. See the end of this Medication Guide for a complete list of ingredients in Lithium Carbonate Capsules. What should I tell my healthcare provider before taking Lithium Carbonate? Before taking Lithium Carbonate, tell your healthcare provider if you: · have kidney problems · have heart problems · have thyroid problems · are pregnant or plan to become pregnant. Lithium Carbonate may harm your unborn baby. · are breastfeeding or plan to breastfeed.
    [Show full text]
  • Instructions
    Electronic Supplementary Material (ESI) for Chemistry Education Research and Practice. This journal is © The Royal Society of Chemistry 2014 Appendix 2: National 5 and Higher Simulated Peer-Assessment Activities National 5 Chemistry Mole Calculations Activity Students often find chemistry calculations one of the most difficult areas of the curriculum to master due to their complexity; similarly, teachers and exam markers often find them challenging to mark because student’s solutions are rarely clear and easy to follow. Instructions In the following pages you will find a series of questions, along with a solution to each; however, the solution is incorrect. In your pairs, you are to read through the solution, locate the error(s), discuss how the error as occurred and then re-write the correct solution in your own way. Whilst you do this it is important that you discuss the good and bad features of each solution, such as how clear the layout is or how easy it is to follow the working, and try to improve your own solutions accordingly. Remember to ask your teacher for their opinions and to check your solutions. Hopefully, by the end of the activity you will have increased your understanding of how to perform chemistry calculations and be able to write an easy to follow solution. 1 Q1 Calculate the mass of 2 moles of sodium chloride. Q2 Calculate the mass of 4 moles of CH4. 2 Q3 Calculate the mass of 0.5 moles of calcium chloride. Q4 Calculate the number of moles in 108 g of water. 3 Q5 Calculate the number of moles in 14 g of nitrogen.
    [Show full text]