Molecular Manufacturing Technology Development

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Manufacturing Technology Development International Journal of Scientific Engineering and Applied Science (IJSEAS) – Volume-2, Issue-4,April 2016 ISSN: 2395-3470 www.ijseas.com Molecular Manufacturing Technology Development: A Review 1 2 3 Chanduri Rajendra Prasad , Rentala Girish Srivatsa , Sarap Raghavendra 1, 2, 3 Department of Mechanical Engineering, Lords Institute of Engineering & Technology, Hyderabad, India. Abstract products with every atom in its specified place. Today the theories for using mechanical chemistry to Research and development of molecular directly fabricate Nanoscale structures. These are manufacturing and related, enabling technologies are well-developed and awaiting progress in enabling proceeding at an accelerating pace. As its name technologies. implies, molecular manufacturing will be achieved when we are able to build things from the molecule Molecular manufacturing is different from biology. up, and we will be able to rearrange matter with In those biological systems, they are not engineered. atomic precision. Other terms such as molecular The functional properties of a cell or even a protein engineering or productive molecular nanosystems are are complex and hard to predict. However, the also often applied when describing this emerging process of building protein molecules from small technology. The general capability to synthesize molecular fragments is quite programmable, and macroscopic objects and devices to atomic scientists are developing the ability to design and specification brings with it some surprising and synthesize proteins with desired properties. This will important consequences, which are outlined in this allow protein chemistry to be used in engineering, presentation. This new emerging technology is now rather than a biological, context. This would be one receiving attention at the highest level of government approach to molecular manufacturing. Other all over the world. The aim of this present paper is to approaches using different kinds of chemistry may understand the basic terminology and concept of also work, producing better materials. molecular building blocks, like nanofibers and nanowires in terms of size, properties, manufacturing Discussion of molecular manufacturing has been process and their applications. The information distorted by several factors. From the beginning, it presented in this paper can be a part asset to the has been associated with "grey goo" (runaway engineer who wish to work in the field of biosphere-eating self-replicators), leading to nanotechnology. excessive fear and attempts to counteract that fear. It has also been associated with extreme science- Keywords: Molecular Manufacturing, fictional projections-though it can be hard to tell Nanotechnology, Molecular Nanosystems. fantasy from the sober calculation because the calculations predict some pretty amazing capabilities. 1. Introduction In reaction to these factors, some mainstream scientists have attempted to shut down discussion Manufacturing today works by cutting or deforming entirely by declaring that molecular manufacturing is large chunks of matter, then fastening together the impossible or that its major proponents are not remaining pieces into products. Molecular credible. The discussion has been further distorted by manufacturing plans to be more efficient and make a variety of widespread conceptual confusions. better products by assembling products directly from the smallest pieces: atoms and molecules. The basic The position that molecular manufacturing is idea is to develop a small set of chemical reactions impossible is not supportable. Living organisms are that can be applied repeatedly to build large not an example of molecular manufacturing because molecules, and then control the sequence and/or they are not based on engineering but rather on position of the reactions by the computer in order to interlocking complex systems. However, the build engineered molecular systems. biochemistry of life could be adopted almost unchanged to a molecular manufacturing system. Molecular manufacturing (MM) means the ability to build devices, machines and eventually whole 151 International Journal of Scientific Engineering and Applied Science (IJSEAS) – Volume-2, Issue-4,April 2016 ISSN: 2395-3470 www.ijseas.com A few prominent scientists have nonetheless claimed current computer technology, we could then direct that molecular manufacturing is impossible, and fabricators to secure and position compounds at the others have echoed them. However, the study of their precise locations where chemical reactions occur. objections shows that the arguments are weak, based Using this method, a network of fabricators working on intuition rather than calculation. Some of the in tandem (such as a nano factory) can construct arguments elevate engineering difficulties to the atomically perfect objects of any size by initiating status of fundamental limitations. Others are built on multiple sequences of controlled chemical reactions. basic misunderstandings of the proposals. A simplified way to visualize this concept is to think of a fabricator as an atomic magnet able to attract and repel molecules. 2. The Coming Era of Molecular Manufacturing This generation will witness the greatest 2.2 How Molecular Manufacturing Might Be technological breakthrough in human history, the Developed development of molecular manufacturing and personal nano factories. Molecular manufacturing Molecular manufacturing will most likely be (MM) refers to a process that builds complicated developed under the auspices of a massive machines out of precisely designed molecules. This governmental defense project for a major world emerging technology will allow us to guide the power. Likely candidates are the United States, the molecular assembly of objects by mechanically European Union, Japan, India, Israel, or China - positioning reactive molecules. although most nations in the world community have developed limited nanotechnology initiatives. In all This new manufacturing process, sometimes referred likelihood, the events of September 11th provided the to as molecular nanotechnology (MNT), should not necessary incentive for the United States (and other be confused with “structural nanotechnology” which world powers) to undertake organized and concerted refers to the present-day and near-future efforts to accelerate the development of molecular incorporation of nanoscale elements in modern manufacturing. Given the enormous benefits, as well industrial products. Nanoscale components are as the unacceptable national security consequences of already present in many products, such as fabrics, losing this new arms race to an unfriendly power, it electronics, and pharmaceuticals. appears most capable nations have instituted such projects and are fervently racing toward the But molecular manufacturing harbors far greater construction of the world’s first self-contained abilities. Promising to deliver a monumental impact molecular manufacturing system. on human society, molecular manufacturing will provide us the means to manufacture products from 2.3 Why Molecular Manufacturing Will Be the bottom up and enable us to rearrange matter with Developed atomic precision. Once molecular manufacturing is developed, it will provide us with a thorough and National security concerns will constitute the initial inexpensive system for controlling the structure of driving force to develop molecular manufacturing matter. In a relatively short time period following the and reach the assembler breakthrough as soon as development of the first nano-factory, mankind will possible. Able to replicate swiftly, assemblers can appear to have complete dominion over the physical become abundant in a very short period (if the self- universe. replication period for an assembler is 15 minutes, then a single assembler can replicate into two to the 2.1 How Molecular Manufacturing Works ninety-fifth power assemblers in the first 24 hour period). Those assemblers can then be used to create The central, but not the only, component necessary to weapons pre-designed in anticipation of the future achieve molecular manufacturing is a fabricator or development of molecular manufacturing, weapons assembler. A fabricator will be a nanoscale device capable of enormous destructive power - weapons capable of precisely positioning molecules. Using that most people would find difficult to imagine. 152 International Journal of Scientific Engineering and Applied Science (IJSEAS) – Volume-2, Issue-4,April 2016 ISSN: 2395-3470 www.ijseas.com In addition to its national security implications, molecular manufacturing promises to change every Nanotechnology advocates have yet to introduce a aspect of human life. Molecular manufacturing will specific set of policy initiatives to be undertaken also yield the following: following the development of molecular manufacturing. Specific policies must be developed • A cleaner environment to deal with the implications of molecular • The eradication of diseases manufacturing within the framework of international • The elimination of poverty order and security, the world economic order, and • Safer, inexpensive space travel safeguards must be put in place to protect our • Acceleration in the development of advanced environment. In the end, no one will realize the artificial intelligence. benefits of molecular manufacturing if we fail to preserve human life and liberty. 2.4 The Dangers of Molecular Manufacturing The Centre for Responsible Nanotechnology is We must remain alert and vigilant
Recommended publications
  • Randal Koene Page 3
    CRYONICS 4th Quarter 2019 | Vol 40, Issue 4 www.alcor.org Scholar Profile: Randal Koene page 3 Cryonics in China and Australia Cryonics and Public Skepticism: page 19 Meeting The Challenges to Our Credibility page 24 CRYONICS Editorial Board Contents Saul Kent Ralph C. Merkle, Ph.D. R. Michael Perry, Ph.D. 3 Scholar Profile: Randal Koene Accomplished neuroscientist and founder of the only dedicated Editor whole brain emulation nonprofit in existence, Dr. Randal Koene Aschwin de Wolf is no stranger to standing out. Responsible for coining the term Contributing Writers that put this niche but growing field on the map, Koene is working Ben Best hard to make humans more adaptable than ever before. In his Randal Koene R. Michael Perry, Ph.D. vision of the future, minds will be substrate-independent, with Nicole Weinstock full or even enhanced functioning on a limitless and changing Aschwin de Wolf menu of platforms. Copyright 2019 by Alcor Life Extension Foundation 19 Cryonics in China and Australia All rights reserved. Ben Reports on the emerging cryonics industry in China and the plans to create a Reproduction, in whole or part, new cryonics organization in Australia. without permission is prohibited. 24 FOR THE RECORD Cryonics magazine is published Cryonics and Public Skepticism: Meeting the Challenges to Our quarterly. Credibility Cryonics has been viewed with skepticism or hostility by some, including some Please note: If you change your scientists, ever since it started in the 1960s, even though (we like to remind the address less than a month before the naysayers) its intended basis is strictly scientific.
    [Show full text]
  • Nanoscience and Nanotechnologies: Opportunities and Uncertainties
    ISBN 0 85403 604 0 © The Royal Society 2004 Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the UK Copyright, Designs and Patents Act (1998), no part of this publication may be reproduced, stored or transmitted in any form or by any means, without the prior permission in writing of the publisher, or, in the case of reprographic reproduction, in accordance with the terms of licences issued by the Copyright Licensing Agency in the UK, or in accordance with the terms of licenses issued by the appropriate reproduction rights organization outside the UK. Enquiries concerning reproduction outside the terms stated here should be sent to: Science Policy Section The Royal Society 6–9 Carlton House Terrace London SW1Y 5AG email [email protected] Typeset in Frutiger by the Royal Society Proof reading and production management by the Clyvedon Press, Cardiff, UK Printed by Latimer Trend Ltd, Plymouth, UK ii | July 2004 | Nanoscience and nanotechnologies The Royal Society & The Royal Academy of Engineering Nanoscience and nanotechnologies: opportunities and uncertainties Contents page Summary vii 1 Introduction 1 1.1 Hopes and concerns about nanoscience and nanotechnologies 1 1.2 Terms of reference and conduct of the study 2 1.3 Report overview 2 1.4 Next steps 3 2 What are nanoscience and nanotechnologies? 5 3 Science and applications 7 3.1 Introduction 7 3.2 Nanomaterials 7 3.2.1 Introduction to nanomaterials 7 3.2.2 Nanoscience in this area 8 3.2.3 Applications 10 3.3 Nanometrology
    [Show full text]
  • Chapter 3 Green Grass, Red Blood, Blueprint
    Chapter 3 Green grass, red blood, blueprint: reflections on life, self-replication, and evolution M. Ciofalo Dipartimento di Ingegneria Nucleare, Università degli Studi di Palermo, Italy. Abstract Following pioneering work by von Neumann in the late 1940s, the goal of achieving self- replication in artefacts has been pursued by a variety of approaches, involving either virtual entities like cellular automata and computer programs or, to a lesser extent, real physical devices. An ample review of the major achievements in these diverse fields is given, and their practical and theoretical relevance is discussed. Possible future developments, notably regarding nanotech- nology and space exploration, are also outlined. The most relevant theoretical problems posed by self-replication are discussed in the light of current knowledge regarding life and its origins. Living entities are semiotic systems, in which physical structures have come to perform symbolic functions. The great complexity of biomolecules and of even the most primitive organisms is not a gratuitous complication, but a necessary condition for homeostasis, self-replication and open- ended evolution in a changing environment. Such requisites will have to be matched by artificial devices if their non-trivial self-replication and autonomous development are to be attained. 1 Of crystals and colloids Wordsworth’s God had his dwelling in the light of setting suns. But the God who dwells there seems to me most probably the God of the atom, the star, and the crystal. Mine, if I have one, reveals Himself in another class of phenomena. He makes the grass green and the blood red. (J.W. Krutch, 1950, [1]) The lines in the epigraph are excerpted from the famous essay ‘The colloid and the crystal’, written in 1950 by the American literary naturalist Joseph Wood Krutch.
    [Show full text]
  • Molecular Nanotechnology - Wikipedia, the Free Encyclopedia
    Molecular nanotechnology - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Molecular_manufacturing Molecular nanotechnology From Wikipedia, the free encyclopedia (Redirected from Molecular manufacturing) Part of the article series on Molecular nanotechnology (MNT) is the concept of Nanotechnology topics Molecular Nanotechnology engineering functional mechanical systems at the History · Implications Applications · Organizations molecular scale.[1] An equivalent definition would be Molecular assembler Popular culture · List of topics "machines at the molecular scale designed and built Mechanosynthesis Subfields and related fields atom-by-atom". This is distinct from nanoscale Nanorobotics Nanomedicine materials. Based on Richard Feynman's vision of Molecular self-assembly Grey goo miniature factories using nanomachines to build Molecular electronics K. Eric Drexler complex products (including additional Scanning probe microscopy Engines of Creation Nanolithography nanomachines), this advanced form of See also: Nanotechnology Molecular nanotechnology [2] nanotechnology (or molecular manufacturing ) Nanomaterials would make use of positionally-controlled Nanomaterials · Fullerene mechanosynthesis guided by molecular machine systems. MNT would involve combining Carbon nanotubes physical principles demonstrated by chemistry, other nanotechnologies, and the molecular Nanotube membranes machinery Fullerene chemistry Applications · Popular culture Timeline · Carbon allotropes Nanoparticles · Quantum dots Colloidal gold · Colloidal
    [Show full text]
  • An Abstract Scripting Language for Assembly of Mechanical Nanocomputer Architectures
    MolML: An Abstract Scripting Language for Assembly of Mechanical Nanocomputer Architectures Bryan W. Wagner and Thomas P. Way Applied Computing Technology Laboratory Department of Computing Sciences Villanova University, Villanova, PA 19085 [email protected] [email protected] Abstract Sizes of computer components are reaching nanoscale dimensions, causing physical limitations to be met in traditional computer architectures. This study surveys the field of alternative nanocomputer architectures, including the nano-mechanical computational machines first proposed by Eric Drexler. A high-level XML programming language, MolML, is introduced as a scripting language for hydrocarbon assembly of mechanical nanocomputers. Keywords: Nanocomputer, hydrocarbon assembler, scripting, simulation 1. Introduction As Moore’s Law continues to predict the trend of continually increasing densities of transistors on ever diminishing surface dimensions, components for computer architectures are rapidly approaching sizes that can be measured in nanometers, one billionth of a meter. However, as silicon transistors become measurable on the nanoscale, certain physical properties hinder their ability to function properly as they do on the macroscale. Among these well-known physical limitations are leakage, threshold voltage control, tunneling, electro-migration, high interconnect resistance, and crosstalk. These issues can restrict electrical silicon transistor functionality to the extent that future computing designs will need to consider alternative materials and architectures [1]. Nanoscale computer architectures introduce other challenges as well. Processors are still manufactured using lithographic techniques. Lithography involves the use of a printing press to stamp, or otherwise etch or inscribe, a design into a smooth surface. Computer circuitry is constructed in this manner, and defective units are discarded. Thus, there is a probabilistic factor for error in the manufacturing process.
    [Show full text]
  • Superfluidity at Room Temperature Extreme Cosmic Rays Reveal Clues to Origin
    CERN Courier December 2017 CERN Courier December 2017 Sciencewatch Astrowatch C OMPILED BY J OHN S WAIN , N ORTHEASTERN U NIVERSITY C OMPILED BY M ERLIN K OLE , D EPARTMENT OF PARTICLE P HYSICS , U NIVERSITY OF G ENEVA Superfluidity at room temperature Extreme cosmic rays reveal clues to origin The energy spectrum of cosmic rays 90 A sky map in equatorial continuously bombarding the Earth spans 0.46 co-ordinates showing the Superfluidity, like superconductivity, is Interference fringes in a polariton many orders of magnitude, with the highest cosmic-ray flux above typically thought of as needing very low condensate as it transitions to a fluid with energy events topping 108 km 8 EeV, revealing a clear TeV. Where these –2 temperatures that alter the fundamental zero viscosity, from simulations. extreme particles come from, however, has sr dipole structure with a quantum-mechanical behaviour of materials. remained a mystery since their discovery 360 0 0.42 –1 significance of 5. 2σ. The yr Pierre Auger Collaboration Surprisingly, Giovanni Lerario of CNR thin amorphous layer of fluorescent organic more than 50 years ago. Now the Pierre Auger –1 galactic centre is marked NANOTEC Institute of Nanotechnology in material between them. A laser pulse collaboration has published results showing with an asterisk and the Italy and colleagues now report what appears creates a polariton flow with well-defined that the arrival direction of ultra-high-energy galactic plane is shown by to be superfluidity at room temperature. The energy, revealing itself as a superfluid by 0.38 cosmic rays (UHECRs) is far from uniform, –90 a dashed line.
    [Show full text]
  • Nanotechnology and Preventive Arms Control Altmann, Jürgen
    www.ssoar.info Nanotechnology and preventive arms control Altmann, Jürgen Veröffentlichungsversion / Published Version Forschungsbericht / research report Zur Verfügung gestellt in Kooperation mit / provided in cooperation with: SSG Sozialwissenschaften, USB Köln Empfohlene Zitierung / Suggested Citation: Altmann, J. (2005). Nanotechnology and preventive arms control. (Forschung DSF, 3). Osnabrück: Deutsche Stiftung Friedensforschung. https://nbn-resolving.org/urn:nbn:de:0168-ssoar-260275 Nutzungsbedingungen: Terms of use: Dieser Text wird unter einer Deposit-Lizenz (Keine This document is made available under Deposit Licence (No Weiterverbreitung - keine Bearbeitung) zur Verfügung gestellt. Redistribution - no modifications). We grant a non-exclusive, non- Gewährt wird ein nicht exklusives, nicht übertragbares, transferable, individual and limited right to using this document. persönliches und beschränktes Recht auf Nutzung dieses This document is solely intended for your personal, non- Dokuments. Dieses Dokument ist ausschließlich für commercial use. All of the copies of this documents must retain den persönlichen, nicht-kommerziellen Gebrauch bestimmt. all copyright information and other information regarding legal Auf sämtlichen Kopien dieses Dokuments müssen alle protection. You are not allowed to alter this document in any Urheberrechtshinweise und sonstigen Hinweise auf gesetzlichen way, to copy it for public or commercial purposes, to exhibit the Schutz beibehalten werden. Sie dürfen dieses Dokument document in public, to perform, distribute or otherwise use the nicht in irgendeiner Weise abändern, noch dürfen Sie document in public. dieses Dokument für öffentliche oder kommerzielle Zwecke By using this particular document, you accept the above-stated vervielfältigen, öffentlich ausstellen, aufführen, vertreiben oder conditions of use. anderweitig nutzen. Mit der Verwendung dieses Dokuments erkennen Sie die Nutzungsbedingungen an.
    [Show full text]
  • Nanophysics and Nanotechnology
    Nanophysics and Nanotechnology An Introduction to Modern Concepts in Nanoscience Bearbeitet von Edward L. Wolf 3. Auflage 2015. Buch. XX, 336 S. Kartoniert ISBN 978 3 527 41324 9 Format (B x L): 17 x 24,4 cm Gewicht: 722 g Weitere Fachgebiete > Technik > Technik Allgemein > Nanotechnologie Zu Leseprobe schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. VII Contents Preface XV Glossary of abbreviations XVII 1 Introduction 1 1.1 Nanometers, Micrometers, and Millimeters 3 1.1.1 Plenty of Room at the Bottom 4 1.1.2 Scaling the Xylophone 4 1.1.3 Reliability of Concepts and Approximate Parameter Values Down to About L = 10 nm (100 Atoms) 5 1.1.4 Nanophysics Built into the Properties of Bulk Matter 6 1.2 Moore’s Law 7 1.3 Esaki’s Quantum Tunneling Diode 9 1.4 QDs of Many Colors 10 1.5 GMR and TMR 100–1000 Gb Hard Drive “Read Heads” 11 1.6 Accelerometers in Your Car 14 1.7 Nanopore Filters 15 1.8 Nanoscale Elements in Traditional Technologies 15 References 16 2 Systematics of Making Things Smaller, Pre-quantum 17 2.1 Mechanical Frequencies Increase in Small Systems 17 2.2 Scaling Relations Illustrated by a Simple Harmonic Oscillator 20 2.3 Scaling Relations Illustrated by Simple Circuit
    [Show full text]
  • Metadata of the Chapter That Will Be Visualized Online
    Metadata of the chapter that will be visualized online Chapter Title Diamondoid Mechanosynthesis for Tip-Based Nanofabrication Chapter Sub-Title Chapter CopyRight - Year Springer Science+Business Media, LLC 2011 (This will be the copyright line in the final PDF) Book Name Tip-Based Nanofabrication Corresponding Author Family Name Freitas Particle Given Name Robert A. Suffix Jr Division Organization Institute for Molecular Manufacturing Address Palo Alto, CA, 94301, USA Email [email protected] Abstract Diamond mechanosynthesis (DMS), or molecular positional fabrication, is the formation of covalent chemical bonds using precisely applied mechanical forces to build nanoscale diamondoid structures via manipulation of positionally controlled tooltips, most likely in a UHV working environment. DMS may be automated via computer control, enabling programmable molecular positional fabrication. The Nanofactory Collaboration is coordinating a combined experimental and theoretical effort involving direct collaborations among dozens of researchers at institutions in multiple countries to explore the feasibility of positionally controlled mechanosynthesis of diamondoid structures using simple molecular feedstocks, the first step along a direct pathway to developing working nanofactories. Keywords (separated by '-') Carbon placement - Diamond - Diamondoid - DMS - Hydrogen abstraction - Hydrogen donation - Mechanosynthesis - Minimal toolset - Molecular manufacturing - Nanofactory - Nanofactory Collaboration - Nanopart - Positional assembly - Positional fabrication - tooltips SPB-217859 Chapter ID 11 April 11, 2011 Time: 04:18pm Proof 1 01 Chapter 11 02 Diamondoid Mechanosynthesis for Tip-Based 03 04 Nanofabrication 05 06 07 Robert A. Freitas Jr. 08 09 10 Abstract Diamond mechanosynthesis (DMS), or molecular positional fabrication, 11 is the formation of covalent chemical bonds using precisely applied mechanical 12 forces to build nanoscale diamondoid structures via manipulation of positionally 13 controlled tooltips, most likely in a UHV working environment.
    [Show full text]
  • Nanotech Ideas in Science-Fiction-Literature
    Nanotech Ideas in Science-Fiction-Literature Nanotech Ideas in Science-Fiction-Literature Text: Thomas Le Blanc Research: Svenja Partheil and Verena Knorpp Translation: Klaudia Seibel Phantastische Bibliothek Wetzlar Special thanks to the authors Karl-Ulrich Burgdorf and Friedhelm Schneidewind for the kind permission to publish and translate their two short stories Imprint Nanotech Ideas in Science-Fiction-Literature German original: Vol. 24 of the Hessen-Nanotech series by the Ministry of Economics, Energy, Transport and Regional Development, State of Hessen Compiled and written by Thomas Le Blanc Svenja Partheil, Verena Knorpp (research) Phantastische Bibliothek Wetzlar Turmstrasse 20 35578 Wetzlar, Germany Edited by Sebastian Hummel, Ulrike Niedner-Kalthoff (Ministry of Economics, Energy, Transport and Regional Development, State of Hessen) Dr. David Eckensberger, Nicole Holderbaum (Hessen Trade & Invest GmbH, Hessen-Nanotech) Editor For NANORA, the Nano Regions Alliance: Ministry of Economics, Energy, Transport and Regional Development, State of Hessen Kaiser-Friedrich-Ring 75 65185 Wiesbaden, Germany Phone: +49 (0) 611 815 2471 Fax: +49 (0) 611 815 49 2471 www.wirtschaft.hessen.de The editor is not responsible for the truthfulness, accuracy and completeness of this information nor for observing the individual rights of third parties. The views and opinions rendered herein do not necessarily reflect the opinion of the editor. © Ministry of Economics, Energy, Transport and Regional Development, State of Hessen Kaiser-Friedrich-Ring 75 65185 Wiesbaden, Germany wirtschaft.hessen.de All rights reserved. No part of this brochure may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without prior permission in writing from the publisher.
    [Show full text]
  • Synthetic Ion Channels and DNA Logic Gates As Components of Molecular Robots Ryuji Kawano*[A]
    DOI:10.1002/cphc.201700982 Minireviews Synthetic Ion Channels and DNA Logic Gates as Components of Molecular Robots Ryuji Kawano*[a] Amolecular robot is anext-generation biochemical machine sensorsare useful components for molecular robots with that imitates the actions of microorganisms. It is made of bio- bodies consisting of alipid bilayer because they enablethe in- materials such as DNA, proteins,and lipids. Three prerequisites terface between the inside and outside of the molecular robot have been proposedfor the construction of such arobot:sen- to functionasgates. After the signal molecules arrive inside sors, intelligence, and actuators. This Minireviewfocuseson the molecular robot, they can operate DNA logic gates, which recent research on synthetic ion channels and DNA computing perform computations. These functions will be integrated into technologies, which are viewed as potential candidate compo- the intelligence and sensor sections of molecularrobots. Soon, nents of molecularrobots. Synthetic ion channels, which are these molecular machines will be able to be assembled to op- embedded in artificial cell membranes (lipid bilayers), sense erate as amass microrobot and play an active role in environ- ambient ions or chemicals and import them. These artificial mental monitoring and in vivo diagnosis or therapy. 1. Molecular Robots and the Lipid Bilayer Platform Molecular robots have recently emerged based on biomole- source by chemotaxis. These accomplished functions are inte- cules andbiochemical processes. Approximately30years ago, grated in amicron-sized body surrounded with abilayer lipid aself-constructing machine, aso-called “assembler,” was origi- membrane (BLM). Sato et al. reported the development of a nally proposed by Drexler.[1] Based on the idea of an assembler, sophisticated molecularrobot prototype in 2017.[9] Their devel- molecular machinesthat operate autonomously have been de- oped amoeba-type robot has light-induced DNA clutches for velopedusing DNA or RNA.
    [Show full text]
  • Nanotechnologies
    КАЗАНСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ ИНСТИТУТ МЕЖДУНАРОДНЫХ ОТНОШЕНИЙ, ИСТОРИИ И ВОСТОКОВЕДЕНИЯ Кафедра иностранных языков для физико-математического направления и информационных технологий С.М. ПЕРЕТОЧКИНА, Г.М. ГАТИЯТУЛЛИНА, Е.В. МАРТЫНОВА NANOTECHNOLOGIES Учебное пособие по английскому языку КАЗАНЬ 2018 УДК 53 ББК 22.3 П27 Печатается по рекомендации учебно-методической комиссии Института международных отношений, истории и востоковедения КФУ (протокол № 9 от 21 июня 2018 года) Рецензенты: кандидат педагогических наук, доцент кафедры иностранных языков для физико-математического направления и информационных технологий КФУ Х.Ф. Макаев; кандидат филологических наук, доцент кафедры иностранных языков КНИТУ-КАИ им. А.Н. Туполева Е.В. Мусина Переточкина С.М. П27 Nanotechnologies: учеб. пособие по английскому языку / С.М. Переточкина, Г.М. Гатиятуллина, Е.В. Мартынова. – Казань: Изд-во Казан. ун-та, 2018. – 146 с. Данное пособие предназначено для студентов Института физики, обу- чающихся по направлению 28.03.01 «Нанотехнологии и микросистемная техника». Пособие может быть использовано как для аудиторной работы, так и для самостоятельной работы студентов. УДК 53 ББК 22.3 © Переточкина С.М., Гатиятуллина Г.М., Мартынова Е.В., 2018 © Издательство Казанского университета, 2018 Предисловие Настоящее учебное пособие предназначено для занятий со студентами 2 курса Института физики Казанского (Приволжского) федерального универ- ситета), обучающихся по направлению 28.03.01 «Нанотехнологии и микро- системная техника». Учебное пособие разработано для развития навыков чтения текстов по специальности, создания у студентов необходимого в профессиональной дея- тельности лексического запаса, отработки навыков перевода специальных и научных текстов, а также навыков устной и письменной речи. При отборе текстового материала в качестве основного критерия слу- жила информативная ценность текстов и их соответствие специальности сту- дентов. Большинство текстов пособия взято из оригинальной английской и американской литературы.
    [Show full text]