Synthetic Ion Channels and DNA Logic Gates As Components of Molecular Robots Ryuji Kawano*[A]

Total Page:16

File Type:pdf, Size:1020Kb

Synthetic Ion Channels and DNA Logic Gates As Components of Molecular Robots Ryuji Kawano*[A] DOI:10.1002/cphc.201700982 Minireviews Synthetic Ion Channels and DNA Logic Gates as Components of Molecular Robots Ryuji Kawano*[a] Amolecular robot is anext-generation biochemical machine sensorsare useful components for molecular robots with that imitates the actions of microorganisms. It is made of bio- bodies consisting of alipid bilayer because they enablethe in- materials such as DNA, proteins,and lipids. Three prerequisites terface between the inside and outside of the molecular robot have been proposedfor the construction of such arobot:sen- to functionasgates. After the signal molecules arrive inside sors, intelligence, and actuators. This Minireviewfocuseson the molecular robot, they can operate DNA logic gates, which recent research on synthetic ion channels and DNA computing perform computations. These functions will be integrated into technologies, which are viewed as potential candidate compo- the intelligence and sensor sections of molecularrobots. Soon, nents of molecularrobots. Synthetic ion channels, which are these molecular machines will be able to be assembled to op- embedded in artificial cell membranes (lipid bilayers), sense erate as amass microrobot and play an active role in environ- ambient ions or chemicals and import them. These artificial mental monitoring and in vivo diagnosis or therapy. 1. Molecular Robots and the Lipid Bilayer Platform Molecular robots have recently emerged based on biomole- source by chemotaxis. These accomplished functions are inte- cules andbiochemical processes. Approximately30years ago, grated in amicron-sized body surrounded with abilayer lipid aself-constructing machine, aso-called “assembler,” was origi- membrane (BLM). Sato et al. reported the development of a nally proposed by Drexler.[1] Based on the idea of an assembler, sophisticated molecularrobot prototype in 2017.[9] Their devel- molecular machinesthat operate autonomously have been de- oped amoeba-type robot has light-induced DNA clutches for velopedusing DNA or RNA. For example, DNA walkers move sensors and kinesin-microtubule proteins as actuators, all inte- autonomously,onthe basis of energy supplied from the hy- grated in acell-sized liposome. Light irradiation acts as atrig- bridization of fuel oligonucleotides, from one binding site to ger for the releaseofthe signal molecules and disengagement another on aDNA-modified surface.[2,3] Rothemund has also of the DNA clutches to change the shape of the liposome. proposed amethodbywhich DNA molecules can be folded The fabrication process used for existing mechanical robots into any desired two-dimensional shape to make “DNA origa- is viewed as ablueprint for the manufacture of these molecu- mi.”[4] In the field of synthetic chemistry,nanosized machines lar robots. In the case of humanoid robots, the arms and legs such as motors and ratchets have been developed based on are manufactured individually andthen assembled. Similarly, organic or supramolecular chemistry.[5–7] Thiswas viewed as individual fabrication would be astraightforward process in ground-breaking technology and the pioneers have since been the manufacturing of molecularrobots. Hence, aprototyping honored with the Nobel Prize in Chemistry 2016. factory is required, as well as an industrial manufacturing pro- Inspiredbythe idea of amolecular assembler,molecular ro- cess. botics, whichinvolvesconstruction with amuch higherdimen- In this Minireview,Ifocusonmanufacturing the body of the sion of assembly,was proposed in 2014.[8] Molecularrobots are molecular robot using BLM with membrane receptors composed of sensors,calculators, andactuators that are all im- (Figure 1). BLM is the ideal materialfor the body of molecular plementedinliposomes or hydrogels. White blood cells, the robots because it is naturallybiocompatible and can host re- most imageable example, senses the chemical signals secreted ceptor proteins. In addition, physicaldynamics such as mem- from atarget bacterium, calculates the direction and length brane fusion and endo- or exocytosis, such as molecular between the target and itself, and moves towardthe signal uptake processes, are useful for the interfaceofthe robots. We previously developed ahigh-throughput planar BLM (pBLM) [a] Dr.R.Kawano system that will be apowerful tool for the manufacturing of [10–12] Department of Biotechnologyand LifeScience the lipid body of molecular robots. ApBLM is generally Tokyo University of Agricultureand Technology(TUAT) used as the ion current measurement of an ion channel or 2-24-16 Naka-cho, Koganei-shi, Tokyo 184-8588 (Japan) pore-forming proteins. Because the reproducibility and stability E-mail:[email protected] of pBLMs are conventionally insufficient, variousmethods have The ORCID identification number for the authorofthis articlecan be found under: https://doi.org/10.1002/cphc.201700982. been proposed to overcome this, primarily using microfluidic [13] An invited contribution to aSpecialIssue on Reactions in Confined technology. The most promising method is the dropletcon- Spaces tact method,[14,15] in which two microdroplets surrounding the ChemPhysChem 2018, 19,359 –366 359 2018 Wiley-VCH Verlag GmbH &Co. KGaA, Weinheim Minireviews DNA computing technology with nanopore proteins will be able to connect the sensorand intelligence functions. 2. Synthetic Ion Channels and Transport Control at the Lipid Bilayer Membrane Receptor proteins sense specific molecules in the cell mem- brane.When the ligand molecule binds to areceptor,the re- ceptor senses the binding and produces asignal that is trans- mitteddownstream to control ion transport through ion chan- nels, as it cascades.Furthermore, pore-formingproteins play a key role in the transportation of molecules with the gradient of membrane potential or the substrate concentration.Artificial ion channels or pores have been created using synthetic chemistry to mimic the structure or functionofnatural pro- Figure 1. Conceptual illustration of amolecular robot. The body consists of [19,20] alipid bilayer with synthetic ion channels as the gate. DNA computing archi- teins. In the last three decades, synthetic chemists have tecture is integratedinside the robot as the intelligence. (This illustration is proposed various compounds that actively exhibit ion channel used courtesy of Professor S. Murata of TohokuUniversity). structures and functions.[21] As part of the design,chemists try to add functions such as pore size, ion or substitute selectivity, lipid monolayer are brought into contact and astable and re- and voltage or ligand gating.Inthe early studies, researchers producible pBLM is formed at the droplet interface,asthe imitated natural compounds, such as valinomycin or gramici- droplet–interface bilayer.This methodissimple and rapid, and din, forthe structuralframework of synthetic channels (Fig- the formed pBLM is extremely stable. Based on this method, ure 2a). Valinomycinisamacrocyclic polypeptideused in the severalhigh-throughput pBLM formation methods have been transportofpotassium, as an antimicrobial peptide. Gramicidin proposed and appliedtolarge-scale measurement of ion chan- is also apolypeptide and forms a b-helix structure in the lipid nels or nanopore measurements.[16–18] monolayer;[22] within the bilayer,two gramicidin molecules In the following section, two recent efforts are introduced form an end-to-end dimer,which in turn forms atransmem- that attempted 1) to use asynthetic ion channel as the artifi- brane structure in the bilayer.These macrocyclic or dimer cial receptor protein, and 2) autonomous sensing and calcula- structures have been modeledfor the design of synthetic tion using DNA computing with nanopore technologyusing a channels, and chemistssynthesized the mimicking structure high-throughput pBLM system. Synthetic channels are poten- using synthetic peptides or macromolecules. More recently, tial candidates for the sensor sections of molecular robots. other functional materials such as DNA origami and carbon nanotubes have been proposed as potential candidates for ar- tificial ion channels.[19,23, 24] One of the most soughtafter properties is ion selectivity for Ryuji Kawano was born in Oita, Japan + + 2+ Na ,K ,Ca ,ClÀ ,and other ions. Most studies have focused in 1976. He received his Ph.D. in 2005 on synthesis of the channel structure in the lipid membrane, from Yokohama National University and assessed the ion selectivity.Among them,the first report under the supervision of Prof. Ma- of aselective channel was for K+ ions.[25] In nature, potassium- sayoshi Watanabe, working on dye- channel proteins use aselective filter that has five amino acids, sensitized solar cells using ionic liquid TVGYG, within each of the four subunits.The hydrated K+ ion electrolytes and analyzing the charge is dehydrated by interacting with these motifs, and then transport mechanism using electro- passesthrough the filter pore with high ion selectivity chemistry.Subsequently,hespent ap- (Figure 2b).[26] Conversely,inthe synthetic channels, the proximately three years in Prof. K+-selective filter is composed of an aromatic ring (primarily Henry S. White’slaboratory at the Uni- formed by four tyrosine residues)that provides aweak electric versity of Utah as apostdoctoral re- field, allowing complete dehydration of K+ ions, but not of searcher,where he conducted research on nanopore measure- Na+ ions. ments with glass materials. He then joined Prof. Shoji Takeuchi’s In this system, the p electrons of the aromatic rings contrib- group at the Kanagawa Academy of Science and
Recommended publications
  • Randal Koene Page 3
    CRYONICS 4th Quarter 2019 | Vol 40, Issue 4 www.alcor.org Scholar Profile: Randal Koene page 3 Cryonics in China and Australia Cryonics and Public Skepticism: page 19 Meeting The Challenges to Our Credibility page 24 CRYONICS Editorial Board Contents Saul Kent Ralph C. Merkle, Ph.D. R. Michael Perry, Ph.D. 3 Scholar Profile: Randal Koene Accomplished neuroscientist and founder of the only dedicated Editor whole brain emulation nonprofit in existence, Dr. Randal Koene Aschwin de Wolf is no stranger to standing out. Responsible for coining the term Contributing Writers that put this niche but growing field on the map, Koene is working Ben Best hard to make humans more adaptable than ever before. In his Randal Koene R. Michael Perry, Ph.D. vision of the future, minds will be substrate-independent, with Nicole Weinstock full or even enhanced functioning on a limitless and changing Aschwin de Wolf menu of platforms. Copyright 2019 by Alcor Life Extension Foundation 19 Cryonics in China and Australia All rights reserved. Ben Reports on the emerging cryonics industry in China and the plans to create a Reproduction, in whole or part, new cryonics organization in Australia. without permission is prohibited. 24 FOR THE RECORD Cryonics magazine is published Cryonics and Public Skepticism: Meeting the Challenges to Our quarterly. Credibility Cryonics has been viewed with skepticism or hostility by some, including some Please note: If you change your scientists, ever since it started in the 1960s, even though (we like to remind the address less than a month before the naysayers) its intended basis is strictly scientific.
    [Show full text]
  • S41467-019-13834-7.Pdf
    ARTICLE https://doi.org/10.1038/s41467-019-13834-7 OPEN Ionophore constructed from non-covalent assembly of a G-quadruplex and liponucleoside transports K+-ion across biological membranes Manish Debnath1, Sandipan Chakraborty1, Y. Pavan Kumar1, Ritapa Chaudhuri1, Biman Jana1 & Jyotirmayee Dash1* 1234567890():,; The selective transport of ions across cell membranes, controlled by membrane proteins, is critical for a living organism. DNA-based systems have emerged as promising artificial ion transporters. However, the development of stable and selective artificial ion transporters remains a formidable task. We herein delineate the construction of an artificial ionophore using a telomeric DNA G-quadruplex (h-TELO) and a lipophilic guanosine (MG). MG stabi- lizes h-TELO by non-covalent interactions and, along with the lipophilic side chain, promotes the insertion of h-TELO within the hydrophobic lipid membrane. Fluorescence assays, elec- trophysiology measurements and molecular dynamics simulations reveal that MG/h-TELO preferentially transports K+-ions in a stimuli-responsive manner. The preferential K+-ion transport is presumably due to conformational changes of the ionophore in response to different ions. Moreover, the ionophore transports K+-ions across CHO and K-562 cell membranes. This study may serve as a design principle to generate selective DNA-based artificial transporters for therapeutic applications. 1 School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 West Bengal, India. *email: [email protected] NATURE COMMUNICATIONS | (2020) 11:469 | https://doi.org/10.1038/s41467-019-13834-7 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13834-7 he transport of ions across the semi-permeable cell mem- Binding studies of MG with h-TELO G-quadruplex.
    [Show full text]
  • Nanoscience and Nanotechnologies: Opportunities and Uncertainties
    ISBN 0 85403 604 0 © The Royal Society 2004 Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the UK Copyright, Designs and Patents Act (1998), no part of this publication may be reproduced, stored or transmitted in any form or by any means, without the prior permission in writing of the publisher, or, in the case of reprographic reproduction, in accordance with the terms of licences issued by the Copyright Licensing Agency in the UK, or in accordance with the terms of licenses issued by the appropriate reproduction rights organization outside the UK. Enquiries concerning reproduction outside the terms stated here should be sent to: Science Policy Section The Royal Society 6–9 Carlton House Terrace London SW1Y 5AG email [email protected] Typeset in Frutiger by the Royal Society Proof reading and production management by the Clyvedon Press, Cardiff, UK Printed by Latimer Trend Ltd, Plymouth, UK ii | July 2004 | Nanoscience and nanotechnologies The Royal Society & The Royal Academy of Engineering Nanoscience and nanotechnologies: opportunities and uncertainties Contents page Summary vii 1 Introduction 1 1.1 Hopes and concerns about nanoscience and nanotechnologies 1 1.2 Terms of reference and conduct of the study 2 1.3 Report overview 2 1.4 Next steps 3 2 What are nanoscience and nanotechnologies? 5 3 Science and applications 7 3.1 Introduction 7 3.2 Nanomaterials 7 3.2.1 Introduction to nanomaterials 7 3.2.2 Nanoscience in this area 8 3.2.3 Applications 10 3.3 Nanometrology
    [Show full text]
  • Chapter 3 Green Grass, Red Blood, Blueprint
    Chapter 3 Green grass, red blood, blueprint: reflections on life, self-replication, and evolution M. Ciofalo Dipartimento di Ingegneria Nucleare, Università degli Studi di Palermo, Italy. Abstract Following pioneering work by von Neumann in the late 1940s, the goal of achieving self- replication in artefacts has been pursued by a variety of approaches, involving either virtual entities like cellular automata and computer programs or, to a lesser extent, real physical devices. An ample review of the major achievements in these diverse fields is given, and their practical and theoretical relevance is discussed. Possible future developments, notably regarding nanotech- nology and space exploration, are also outlined. The most relevant theoretical problems posed by self-replication are discussed in the light of current knowledge regarding life and its origins. Living entities are semiotic systems, in which physical structures have come to perform symbolic functions. The great complexity of biomolecules and of even the most primitive organisms is not a gratuitous complication, but a necessary condition for homeostasis, self-replication and open- ended evolution in a changing environment. Such requisites will have to be matched by artificial devices if their non-trivial self-replication and autonomous development are to be attained. 1 Of crystals and colloids Wordsworth’s God had his dwelling in the light of setting suns. But the God who dwells there seems to me most probably the God of the atom, the star, and the crystal. Mine, if I have one, reveals Himself in another class of phenomena. He makes the grass green and the blood red. (J.W. Krutch, 1950, [1]) The lines in the epigraph are excerpted from the famous essay ‘The colloid and the crystal’, written in 1950 by the American literary naturalist Joseph Wood Krutch.
    [Show full text]
  • Maintext Frac Final-Accepted
    Delft University of Technology Electro-Mechanical Conductance Modulation of a Nanopore Using a Removable Gate Zhao, Shidi; Restrepo-Pérez, Laura; Soskine, Misha; Maglia, Giovanni; Joo, Chirlmin; Dekker, Cees; Aksimentiev, Aleksei DOI 10.1021/acsnano.8b09266 Publication date 2019 Document Version Accepted author manuscript Published in ACS Nano Citation (APA) Zhao, S., Restrepo-Pérez, L., Soskine, M., Maglia, G., Joo, C., Dekker, C., & Aksimentiev, A. (2019). Electro-Mechanical Conductance Modulation of a Nanopore Using a Removable Gate. ACS Nano, 13(2), 2398-2409. https://doi.org/10.1021/acsnano.8b09266 Important note To cite this publication, please use the final published version (if applicable). Please check the document version above. Copyright Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim. This work is downloaded from Delft University of Technology. For technical reasons the number of authors shown on this cover page is limited to a maximum of 10. Electro-Mechanical Conductance Modulation of a Nanopore Using a Removable Gate Shidi Zhao‡a, Laura Restrepo-Pérez‡b, Misha Soskine c, Giovanni Maglia c, Chirlmin Joo b, Cees Dekker b and Aleksei Aksimentiev a a Center for Biophysics and Quantitative Biology, Department of Physics and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
    [Show full text]
  • Molecular Nanotechnology - Wikipedia, the Free Encyclopedia
    Molecular nanotechnology - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Molecular_manufacturing Molecular nanotechnology From Wikipedia, the free encyclopedia (Redirected from Molecular manufacturing) Part of the article series on Molecular nanotechnology (MNT) is the concept of Nanotechnology topics Molecular Nanotechnology engineering functional mechanical systems at the History · Implications Applications · Organizations molecular scale.[1] An equivalent definition would be Molecular assembler Popular culture · List of topics "machines at the molecular scale designed and built Mechanosynthesis Subfields and related fields atom-by-atom". This is distinct from nanoscale Nanorobotics Nanomedicine materials. Based on Richard Feynman's vision of Molecular self-assembly Grey goo miniature factories using nanomachines to build Molecular electronics K. Eric Drexler complex products (including additional Scanning probe microscopy Engines of Creation Nanolithography nanomachines), this advanced form of See also: Nanotechnology Molecular nanotechnology [2] nanotechnology (or molecular manufacturing ) Nanomaterials would make use of positionally-controlled Nanomaterials · Fullerene mechanosynthesis guided by molecular machine systems. MNT would involve combining Carbon nanotubes physical principles demonstrated by chemistry, other nanotechnologies, and the molecular Nanotube membranes machinery Fullerene chemistry Applications · Popular culture Timeline · Carbon allotropes Nanoparticles · Quantum dots Colloidal gold · Colloidal
    [Show full text]
  • An Abstract Scripting Language for Assembly of Mechanical Nanocomputer Architectures
    MolML: An Abstract Scripting Language for Assembly of Mechanical Nanocomputer Architectures Bryan W. Wagner and Thomas P. Way Applied Computing Technology Laboratory Department of Computing Sciences Villanova University, Villanova, PA 19085 [email protected] [email protected] Abstract Sizes of computer components are reaching nanoscale dimensions, causing physical limitations to be met in traditional computer architectures. This study surveys the field of alternative nanocomputer architectures, including the nano-mechanical computational machines first proposed by Eric Drexler. A high-level XML programming language, MolML, is introduced as a scripting language for hydrocarbon assembly of mechanical nanocomputers. Keywords: Nanocomputer, hydrocarbon assembler, scripting, simulation 1. Introduction As Moore’s Law continues to predict the trend of continually increasing densities of transistors on ever diminishing surface dimensions, components for computer architectures are rapidly approaching sizes that can be measured in nanometers, one billionth of a meter. However, as silicon transistors become measurable on the nanoscale, certain physical properties hinder their ability to function properly as they do on the macroscale. Among these well-known physical limitations are leakage, threshold voltage control, tunneling, electro-migration, high interconnect resistance, and crosstalk. These issues can restrict electrical silicon transistor functionality to the extent that future computing designs will need to consider alternative materials and architectures [1]. Nanoscale computer architectures introduce other challenges as well. Processors are still manufactured using lithographic techniques. Lithography involves the use of a printing press to stamp, or otherwise etch or inscribe, a design into a smooth surface. Computer circuitry is constructed in this manner, and defective units are discarded. Thus, there is a probabilistic factor for error in the manufacturing process.
    [Show full text]
  • 10Th ISMSC-2015 Strasbourg, France (June 28Th - July 2Nd, 2015)
    10th ISMSC-2015 Strasbourg, France (June 28th - July 2nd, 2015) Code Presenting Author Title Authors Perspectives in Chemistry: From Supramolecular Chemistry towards PL-1 Jean-Marie Lehn Jean-Marie Lehn Adaptive Chemistry PL-2 E.W. (Bert) Meijer Folding of Macromolecules; Functional single-chain polymer nanoparticles E.W. (Bert) Meijer PL-3 Samuel Stupp Bio-Inspired Supramolecular Materials Samuel Stupp Functional Materials Constructed by Combining Traditional Polymers and PL-4 Feihe Huang Feihe Huang, Xiaofan Ji, Mingming Zhang, Xiaodong Chi Host-Guest Molecular Recognition Motifs Supramolecular Liquid-Crystalline Materials for Energy, Water, and PL-5 Takashi Kato Takashi Kato Environment PL-6 Tanja Weil Programmed Self-Assembly of Bioactive Architectures Tanja Weil, David Y. W. Ng PL-7 Paul D. Beer Interlocked Host Molecules for Anion Recognition and Sensing Paul D. Beer PL-8 Takuzo Aida Rational Strategy for Chain-Growth Supramolecular Polymerization Takuzo Aida IL-1 Pablo Ballester Mechanically Interlocked Molecules Containing Calix[4]pyrrole Scaffolds Pablo Ballester IL-2 Davide Bonifazi Supramolecular Colorlands Davide Bonifazi IL-3 Kentaro Tanaka Columnar Liquid Crystalline Macrocycles Kentaro Tanaka IL-4 Ian Manners Recent Advances in “Living” Crystallization-Driven Self-Assembly Ian Manners Light-driven catenation and intermolecular communication in solution and Nathan D. McClenaghan, A. Tron, R. Bofinger, J. IL-5 Nathan McClenaghan nanocapsules Thevenot, S. Lecommandoux, J.H.R. Tucker Supramolecular Chemistry and Photophysics of Light-Harvesting IL-6 Harry Anderson Harry Anderson Nanorings Jeroen J. L. M. IL-7 Supramolecular Protein Assemblies, from Cages to Tubes Jeroen J. L. M. Cornelissen Cornelissen Light-driven liquids, particles, and interfaces: from microfluidics to coffee IL-8 Damien Baigl Damien Baigl rings B.C.
    [Show full text]
  • Superfluidity at Room Temperature Extreme Cosmic Rays Reveal Clues to Origin
    CERN Courier December 2017 CERN Courier December 2017 Sciencewatch Astrowatch C OMPILED BY J OHN S WAIN , N ORTHEASTERN U NIVERSITY C OMPILED BY M ERLIN K OLE , D EPARTMENT OF PARTICLE P HYSICS , U NIVERSITY OF G ENEVA Superfluidity at room temperature Extreme cosmic rays reveal clues to origin The energy spectrum of cosmic rays 90 A sky map in equatorial continuously bombarding the Earth spans 0.46 co-ordinates showing the Superfluidity, like superconductivity, is Interference fringes in a polariton many orders of magnitude, with the highest cosmic-ray flux above typically thought of as needing very low condensate as it transitions to a fluid with energy events topping 108 km 8 EeV, revealing a clear TeV. Where these –2 temperatures that alter the fundamental zero viscosity, from simulations. extreme particles come from, however, has sr dipole structure with a quantum-mechanical behaviour of materials. remained a mystery since their discovery 360 0 0.42 –1 significance of 5. 2σ. The yr Pierre Auger Collaboration Surprisingly, Giovanni Lerario of CNR thin amorphous layer of fluorescent organic more than 50 years ago. Now the Pierre Auger –1 galactic centre is marked NANOTEC Institute of Nanotechnology in material between them. A laser pulse collaboration has published results showing with an asterisk and the Italy and colleagues now report what appears creates a polariton flow with well-defined that the arrival direction of ultra-high-energy galactic plane is shown by to be superfluidity at room temperature. The energy, revealing itself as a superfluid by 0.38 cosmic rays (UHECRs) is far from uniform, –90 a dashed line.
    [Show full text]
  • Nanotechnology and Preventive Arms Control Altmann, Jürgen
    www.ssoar.info Nanotechnology and preventive arms control Altmann, Jürgen Veröffentlichungsversion / Published Version Forschungsbericht / research report Zur Verfügung gestellt in Kooperation mit / provided in cooperation with: SSG Sozialwissenschaften, USB Köln Empfohlene Zitierung / Suggested Citation: Altmann, J. (2005). Nanotechnology and preventive arms control. (Forschung DSF, 3). Osnabrück: Deutsche Stiftung Friedensforschung. https://nbn-resolving.org/urn:nbn:de:0168-ssoar-260275 Nutzungsbedingungen: Terms of use: Dieser Text wird unter einer Deposit-Lizenz (Keine This document is made available under Deposit Licence (No Weiterverbreitung - keine Bearbeitung) zur Verfügung gestellt. Redistribution - no modifications). We grant a non-exclusive, non- Gewährt wird ein nicht exklusives, nicht übertragbares, transferable, individual and limited right to using this document. persönliches und beschränktes Recht auf Nutzung dieses This document is solely intended for your personal, non- Dokuments. Dieses Dokument ist ausschließlich für commercial use. All of the copies of this documents must retain den persönlichen, nicht-kommerziellen Gebrauch bestimmt. all copyright information and other information regarding legal Auf sämtlichen Kopien dieses Dokuments müssen alle protection. You are not allowed to alter this document in any Urheberrechtshinweise und sonstigen Hinweise auf gesetzlichen way, to copy it for public or commercial purposes, to exhibit the Schutz beibehalten werden. Sie dürfen dieses Dokument document in public, to perform, distribute or otherwise use the nicht in irgendeiner Weise abändern, noch dürfen Sie document in public. dieses Dokument für öffentliche oder kommerzielle Zwecke By using this particular document, you accept the above-stated vervielfältigen, öffentlich ausstellen, aufführen, vertreiben oder conditions of use. anderweitig nutzen. Mit der Verwendung dieses Dokuments erkennen Sie die Nutzungsbedingungen an.
    [Show full text]
  • Nanophysics and Nanotechnology
    Nanophysics and Nanotechnology An Introduction to Modern Concepts in Nanoscience Bearbeitet von Edward L. Wolf 3. Auflage 2015. Buch. XX, 336 S. Kartoniert ISBN 978 3 527 41324 9 Format (B x L): 17 x 24,4 cm Gewicht: 722 g Weitere Fachgebiete > Technik > Technik Allgemein > Nanotechnologie Zu Leseprobe schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. VII Contents Preface XV Glossary of abbreviations XVII 1 Introduction 1 1.1 Nanometers, Micrometers, and Millimeters 3 1.1.1 Plenty of Room at the Bottom 4 1.1.2 Scaling the Xylophone 4 1.1.3 Reliability of Concepts and Approximate Parameter Values Down to About L = 10 nm (100 Atoms) 5 1.1.4 Nanophysics Built into the Properties of Bulk Matter 6 1.2 Moore’s Law 7 1.3 Esaki’s Quantum Tunneling Diode 9 1.4 QDs of Many Colors 10 1.5 GMR and TMR 100–1000 Gb Hard Drive “Read Heads” 11 1.6 Accelerometers in Your Car 14 1.7 Nanopore Filters 15 1.8 Nanoscale Elements in Traditional Technologies 15 References 16 2 Systematics of Making Things Smaller, Pre-quantum 17 2.1 Mechanical Frequencies Increase in Small Systems 17 2.2 Scaling Relations Illustrated by a Simple Harmonic Oscillator 20 2.3 Scaling Relations Illustrated by Simple Circuit
    [Show full text]
  • Novel Principles
    Part I Self-Assembly and Nanoparticles: Novel Principles Nanobiotechnology II. Edited by Chad A. Mirkin and Christof M. Niemeyer Copyright 8 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 978-3-527-31673-1 3 1 Self-Assembled Artificial Transmembrane Ion Channels Mary S. Gin, Emily G. Schmidt, and Pinaki Talukdar 1.1 Overview Natural ion channels are large, complex proteins that span lipid membranes and allow ions to pass in and out of cells. These multimeric channel assemblies are capable of performing the complex tasks of opening and closing in response to specific signals (gating) and allowing only certain ions to pass through (selectiv- ity). This controlled transport of ions is essential for the regulation of both intra- cellular ion concentration and the transmembrane potential. Ion channels play an important role in many biological processes, including sensory transduction, cell proliferation, and blood-pressure regulation; abnormally functioning channels have been implicated in causing a number of diseases [1]. In addition to large ion channel proteins, peptides (e.g., gramicidin A) and natural small-molecule antibiotics (e.g., amphotericin B and nystatin) form ion channels in lipid mem- branes. Due to the complexity of channel proteins, numerous research groups have during recent years been striving to develop artificial analogues [2–7]. Initially, the synthetic approach to ion channels was aimed at elucidating the minimal structural requirements for ion flow across a membrane. However, more recently the focus has shifted to the development of synthetic channels that are gated, pro- viding a means of controlling whether the channels are open or closed.
    [Show full text]