Ultrasonic Emission by Noctuid Moths (Lepidoptera, Noctuidae): Main Characteristics of Signals and Possible Mechanisms of Their Generation D

Total Page:16

File Type:pdf, Size:1020Kb

Ultrasonic Emission by Noctuid Moths (Lepidoptera, Noctuidae): Main Characteristics of Signals and Possible Mechanisms of Their Generation D Entomological Review, Vol. 80, No. 9, 2000, pp. 1157-1169. Translated from Zoologicheskii Zhumal, Vol. 79, No. 10, 2000. Original Russian Text Copyright © 2000 by Lapshin, Vorontsov. English Translation Copyright © 2000 by MAIK "Naulca /Interperiodica" (Russia). Ultrasonic Emission by Noctuid Moths (Lepidoptera, Noctuidae): Main Characteristics of Signals and Possible Mechanisms of Their Generation D. N. Lapshin1 and D. D. Vorontsov2 JInstitute for Problems of Information Transmission, Russian Academy of Sciences, Moscow, 127994 Russia 2Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 117808 Russia Received November 19,1999 Abstract—Morphological and acoustic studies of the sound-producing mechanism in noctuid moths were carried out on Amphipyra perflua. Two laterally symmetrical pairs of complementary areas adjacent to each other are responsible for generation of ultrasonic bursts. One pair is located on the ventral surface of the fore-wing base, and the other, on the metascutum. The surface of these areas is covered with inclined cone-like structures 18-25 µm high. The density of cones is as high as 3 per 100 µm2. The aculeae of both the complementary areas are oriented toward each other and can serve to couple the wings to scutum. When uncoupling, these structures produce an ultrasonic pulse. Moths with removed wing coupling areas cannot emit clicks. Noctuid moths produce ultrasonic clicks during flight. The peak amplitude of these clicks varies between 79 and 84 dB SPL at a distance of 5 cm from a moth, with their mean duration being 67 µs. The clicks have a broad-band (> 100 kHz) spectrum with the main peaks, at 57 and 78 kHz. Artificially generated clicks have a similar spectrum. The regular pattern of emission with one click per second or every third wing-beat was often observed in the nature and in conditions of tethered flight. The adaptive importance of the acoustic behavior of moths is discussed. Noctuid moths are known to emit ultrasonic bursts in nism, proposed by Agee. It should be mentioned that short flight. This phenomenon was first discovered by Roeder and ultrasonic pulses do appear at the upper point in mutual Treat (1957). According to Kay (1969), signals of the contact of the hind wings of a flying moth (Waters and noctuid moth Heliothis zea have the form of rapidly damped Jones, 1994), but their amplitude, as a rule, does not exceed paired clicks with filling frequency of 50 kHz and duration 65 dB SPL, which is at least 10 dB (20 dB on the average) of 180 us each. The pulses in a pair are separated by 190 µs. less than the amplitude of clicks recorded by Kay and Agee. The sound intensity is 98.6 dB SPL at a distance of 1.5 cm In the paper by Zhantiev et al. (1993), the basic types of noctuid signals and examples of their spectra were given. from the source. Kay assumed that the acoustic pulse gen- The free-flying moths were demonstrated to produce ultra- erator is of the tymbal type and, by analogy with arctiid sound too, i.e. the acoustic emission of noctuids cannot be moths (Arctiidae), is located on the metepisterna. However, accounted for by insect fixation in experimental conditions. this assumption has not been verified experimentally so far. Parameters of the recorded signals were independent of Relying on stroboscope observations of flying noctuid species, sex, and age of moths. moths, Agee (1971) concluded that acoustic pulses may Several noctuid moth species are known, hypothetically either arise from the wing flapping at the upper point or be using the acoustic signals for intraspecific communication: an experimental error resulting from the contact of wings Thecophora fovea employs the stridulation mechanism of with the mounting holder. In 1993, Agee's conclusions were emission (Surlykke and Gogala, 1986); Amyna natalis, the revised in view of new data. Using the technique of moth tymbal mechanism on the wings (Heller and Achmann, photographing at the moments of click recording, Zhantiev 1993); and Pseudoips fagana, the tymbal mechanism on the et al. (1993) demonstrated that, in noctuid moths, the abdominal segment (Skals et at., 1996). However, only position of wings in emission is close to horizontal. This fact males emit sounds in all the examples. In all three cases, the is contradictory to the model of the generation mecha- intensity of the acoustic signals is 1-2 orders of magni- 1157 1158 LAPSHIN, VORONTSOV tude higher than the values recorded by Kay and by Zhantiev by noctuids—amplitude, duration, spectrum and dynamics of et al. Up to now, the search for a more general mechanism of the click sequence; (2) investigate the possibility of generation of the sound emission for noctuid moths has not been ultrasonic signals by the areas of the wing-thorax coupling successful. and by the cuticular structures on the body of noctuids In many nocturnal moths, including noctuid moths, the (including metepisterna); and (3) carry out a comparative fore wing in the resting position is coupled with the body by analysis of the acoustic parameters of both natural and means of complementary areas covered with cone-shaped artificial clicks. processes—microtrichia (Kuijten, 1974). The first area is located on the posterior margin of the hind wing, and the MATERIALS AND METHODS second one lies on the metascutum surface. Both males and females possess such structures. When these areas are For the most part, experiments was carried out with uncoupled artificially (manually), a loud click is distinctly Amphipyra perflua F. These noctuid moths of both sexes heard. Presumably, the moths generate ultrasound by this were trapped using a food attractant (fermented mixture of mechanism. beer and honey) in Moscow and environs in July-August 1996-1999. A total of 50 specimens of this species were Roeder and Treat (1957) assumed that noctuids survey the used in the experiments. surrounding space by emitting clicks. The possibility of echolocation in moths was discussed in different aspects by In addition, 12 specimens of the noctuid moth Hydraecia all those who studied the emission of clicks. In the recent micacea Esp. captured at light of a fluorescent lamp were decade, data confirming this hypothesis have been obtained tested for capability of acoustic emission. (Lapshin et al., 1993; Lapshin, 1995; Lapshin and Vorontsov, The experiments were performed in the evening and at 1998). Thus, the biological function of the signals under night in laboratory at a temperature of 18-20°C. study became more definite. In this connection, the problem of identification of the mechanism of the ultrasonic burst A Study of Spectral Characteristics of Moths' Clicks emission has assumed special importance. An insect was pasted with warm wax to a thin wire, so It can be seen from the oscillogram of a series of bursts, that the wings did not touch the bracing in flapping. To presented in the paper by Roeder and Treat (1957), that the record acoustic signals, a RFT 301 (1/4") microphone was experimental moth produced clicks at every wing-beat. placed at a distance of 5 cm from the moth, in front of it and Similar examples were also given in other reports (Agee, above its longitudinal axis. The electric signal from the 1971; Zhantiev et al., 1993). However, the latest microphone output was amplified (microphone amplifier investigations showed that in some cases the emission rate of RFT 00023), passed through high-pass filtering (cutoff "one click per each wing-beat" is not obligatory and even not frequency 1 kHz), and fed into the input of a Hewlett the basic (Lapshin, 1996). It was found that, when presented Packard HP54601B digital storage oscilloscope. The with visual stimuli, the noctuid moth Amphipyra perflua sampling frequency of the built-in analog-to-digital converter of tends to emit with an interval 3Tb between the clicks (Tb the the oscilloscope is 1.25 MHz, which corresponds to a wing-beat period, approximately 30 ms). quantization interval of 0.8 µs. From the oscilloscope output From the standpoint of the echolocation system efficiency, the digital data were delivered to a computer by means of the the interpulse time of the probing signals is one of the basic RS-232 interface. parameters determining the rate at which the information is The subsequent processing of the results included updated. In this connection, it was necessary to investigate in normalization of click oscillograms to the maximum amplitude, more detail the dynamics of the spontaneous acoustic emission alignment of the base line slope, measuring the duration of by noctuids in addition to the studies in which the dependence signals, and calculation of their spectra, The duration of a of the click emission frequency on visual or echolocation separate impulse was conditionally taken equal to the total information was revealed (Lapshin, 1996; Lapshin and length of an integer number of component half-waves with Vorontsov, 1998). amplitude of no less than 0.2 of the maximum value. The The purposes of this study were as follows: (1) to spectra were calculated by the method of sequential analysis determine the characteristics of the acoustic emission of an inscribed piecewise linear function in the fre- ENTOMOLOGICAL REVIEW Vol. 80 No. 9 2000 ULTRASONIC EMISSION BY NOCTUID MOTHS 1159 quency range 1-100 kHz with a step of 1 kHz (D'yakonov, Another part of insects of the second set (10 specimens) 1987). Original specially designed computer programs were was used in experiments in which the coupling areas were used to solve particular problems of this study. studied as sound generating structures. A moth narcotized with chloroform was placed under the microphone, and Measurement of Click Amplitude acoustic impulses were produced by moving manually the distal part of the fore wing.
Recommended publications
  • Fauna Lepidopterologica Volgo-Uralensis" 150 Years Later: Changes and Additions
    ©Ges. zur Förderung d. Erforschung von Insektenwanderungen e.V. München, download unter www.zobodat.at Atalanta (August 2000) 31 (1/2):327-367< Würzburg, ISSN 0171-0079 "Fauna lepidopterologica Volgo-Uralensis" 150 years later: changes and additions. Part 5. Noctuidae (Insecto, Lepidoptera) by Vasily V. A n ik in , Sergey A. Sachkov , Va d im V. Z o lo t u h in & A n drey V. Sv ir id o v received 24.II.2000 Summary: 630 species of the Noctuidae are listed for the modern Volgo-Ural fauna. 2 species [Mesapamea hedeni Graeser and Amphidrina amurensis Staudinger ) are noted from Europe for the first time and one more— Nycteola siculana Fuchs —from Russia. 3 species ( Catocala optata Godart , Helicoverpa obsoleta Fabricius , Pseudohadena minuta Pungeler ) are deleted from the list. Supposedly they were either erroneously determinated or incorrect noted from the region under consideration since Eversmann 's work. 289 species are recorded from the re­ gion in addition to Eversmann 's list. This paper is the fifth in a series of publications1 dealing with the composition of the pres­ ent-day fauna of noctuid-moths in the Middle Volga and the south-western Cisurals. This re­ gion comprises the administrative divisions of the Astrakhan, Volgograd, Saratov, Samara, Uljanovsk, Orenburg, Uralsk and Atyraus (= Gurjev) Districts, together with Tataria and Bash­ kiria. As was accepted in the first part of this series, only material reliably labelled, and cover­ ing the last 20 years was used for this study. The main collections are those of the authors: V. A n i k i n (Saratov and Volgograd Districts), S.
    [Show full text]
  • Lepidoptera of North America 5
    Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera by Valerio Albu, 1411 E. Sweetbriar Drive Fresno, CA 93720 and Eric Metzler, 1241 Kildale Square North Columbus, OH 43229 April 30, 2004 Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Cover illustration: Blueberry Sphinx (Paonias astylus (Drury)], an eastern endemic. Photo by Valeriu Albu. ISBN 1084-8819 This publication and others in the series may be ordered from the C.P. Gillette Museum of Arthropod Diversity, Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, CO 80523 Abstract A list of 1531 species ofLepidoptera is presented, collected over 15 years (1988 to 2002), in eleven southern West Virginia counties. A variety of collecting methods was used, including netting, light attracting, light trapping and pheromone trapping. The specimens were identified by the currently available pictorial sources and determination keys. Many were also sent to specialists for confirmation or identification. The majority of the data was from Kanawha County, reflecting the area of more intensive sampling effort by the senior author. This imbalance of data between Kanawha County and other counties should even out with further sampling of the area. Key Words: Appalachian Mountains,
    [Show full text]
  • Pu'u Wa'awa'a Biological Assessment
    PU‘U WA‘AWA‘A BIOLOGICAL ASSESSMENT PU‘U WA‘AWA‘A, NORTH KONA, HAWAII Prepared by: Jon G. Giffin Forestry & Wildlife Manager August 2003 STATE OF HAWAII DEPARTMENT OF LAND AND NATURAL RESOURCES DIVISION OF FORESTRY AND WILDLIFE TABLE OF CONTENTS TITLE PAGE ................................................................................................................................. i TABLE OF CONTENTS ............................................................................................................. ii GENERAL SETTING...................................................................................................................1 Introduction..........................................................................................................................1 Land Use Practices...............................................................................................................1 Geology..................................................................................................................................3 Lava Flows............................................................................................................................5 Lava Tubes ...........................................................................................................................5 Cinder Cones ........................................................................................................................7 Soils .......................................................................................................................................9
    [Show full text]
  • Recent Literature on Lepidoptera
    195 5 The LepidopterIsts' News 23 RECENT LITERATURE ON LEPIDOPTERA Under this heading are listed publications on Lepidoptera from all scientific periodi­ cals available to our cooperating abstractors. It is intended that every paper and book related to Lepidoptera and published in any part of the world after 1946 will be included. Abstracts give all flew species, subspecies, genera, and higher cate­ gories, with type localities and generotypes, but varieties, aberrations, etc. are omi­ ted. Papers from The Lepidopterists' Nell's are listed but not abstracted. Initials of cooperating abstractots are as follows: [P.Bl - P. F. BELLINGER; [A.D.] - A. DIAKONOFF; [W.H.] - WALTER HACKMAN; [N.O.J - NICHOLAS OBRAZTSOV; [C.R.] - C. L. REMINGTON; [J.T.] -]. W. TILDEN; [P.V.] - PIERRE E. L. VIETTE. B. SYSTEMATICS AND NOMENCLATURE Amsel, H. G., "Ueber einige von Ragonot und Dumont beschriebene pahearktische Microlepidopteren des Pariser Museums" [in German]. Rev. Iranf. Ent., vol. 20: pp. 223-230, 11 figs. 1953. Descriptions and figures of ii genitalia of Cephis chretienelltts, Pempelia !raternella, Brephia tortilisel/a. Salebria venttstella. S. lasei­ cttlatella. S. (Laodamia) tahlaella, Capparidia ghardaialis, Eulia pierre-lovyana. Discussion of every species is given and a new genus is described: ASALEBRIA (type S. venustella Rag.). [P.V.] Aubert, Jacques F., "Revision des types et de la collection F. de Rougemont" [in French]. Rev. /ranf. Upirl. vol. 14: pp. 108-11S, 2 pis., 3 figs. 1954. Revision and srudy of the types and the collection of F. DE ROUGEMONT, author of a colleceion of the Lepidoptera from the Swiss Jura. [P.V.I Aubert, ].
    [Show full text]
  • Acoustic Communication in the Nocturnal Lepidoptera
    Chapter 6 Acoustic Communication in the Nocturnal Lepidoptera Michael D. Greenfield Abstract Pair formation in moths typically involves pheromones, but some pyra- loid and noctuoid species use sound in mating communication. The signals are generally ultrasound, broadcast by males, and function in courtship. Long-range advertisement songs also occur which exhibit high convergence with commu- nication in other acoustic species such as orthopterans and anurans. Tympanal hearing with sensitivity to ultrasound in the context of bat avoidance behavior is widespread in the Lepidoptera, and phylogenetic inference indicates that such perception preceded the evolution of song. This sequence suggests that male song originated via the sensory bias mechanism, but the trajectory by which ances- tral defensive behavior in females—negative responses to bat echolocation sig- nals—may have evolved toward positive responses to male song remains unclear. Analyses of various species offer some insight to this improbable transition, and to the general process by which signals may evolve via the sensory bias mechanism. 6.1 Introduction The acoustic world of Lepidoptera remained for humans largely unknown, and this for good reason: It takes place mostly in the middle- to high-ultrasound fre- quency range, well beyond our sensitivity range. Thus, the discovery and detailed study of acoustically communicating moths came about only with the use of electronic instruments sensitive to these sound frequencies. Such equipment was invented following the 1930s, and instruments that could be readily applied in the field were only available since the 1980s. But the application of such equipment M. D. Greenfield (*) Institut de recherche sur la biologie de l’insecte (IRBI), CNRS UMR 7261, Parc de Grandmont, Université François Rabelais de Tours, 37200 Tours, France e-mail: [email protected] B.
    [Show full text]
  • 1996 No. 4 December
    TROPICAL LEPIDOPTERA NEWS December 1996 No.4 LEPIDOPTERORUM CATALOGUS (New Series) The new world catalog of Lepidoptera renews the series title The new series (as edited by J. B. Heppner) began already in first begun in 1911. The original catalog series was published by 1989 with publication of the catalog of Noctuidae, by R. Poole. W. Junk Publishers of Berlin, Germany (later The Hague, E. J. Brill Publishers, of Leiden, Netherlands, published this first Netherlands), continuing until 1939 when the incomplete series fascicle in 3 volumes, covering already about a third of all known was deactivated due to World War II. The original series Lepidoptera. Since ATL took over the series, several families completed a large number of families between 1911 and 1939, have been readied for publication. Already this month, Fascicle totalling about 3 shelf-feet of text. Most Microlepidoptera, 48, on Epermeniidae, was published (authored by R. Gaedike, of however, were not covered, as also several macro families like the Deutsches Entomologisches Institut, Eberswalde, Germany). Noctuidae, and several families are incomplete (e.g., Geometridae In 1997, several other smaller families are expected, including and Pyralidae). Even for what was treated, the older catalogs are Acanthopteroctetidae (Davis), Acrolepiidae (Gaedike), Cecidosi­ now greatly out of date, due to the description of many new dae (Davis), Cercophanidae (Becker), Glyphipterigidae (Heppner), species and many changes in nomenclature over the last 5 to 8 Neotheoridae (Kristensen), Ochsenheimeriidae (Davis), Opostegi­ decades. dae (Davis), and Oxytenidae (Becker). Much of the publication The new series resembles the old series in some ways but it schedule depends on the cooperation of various specialists who will also have features not found in the old work.
    [Show full text]
  • Recerca I Territori V12 B (002)(1).Pdf
    Butterfly and moths in l’Empordà and their response to global change Recerca i territori Volume 12 NUMBER 12 / SEPTEMBER 2020 Edition Graphic design Càtedra d’Ecosistemes Litorals Mediterranis Mostra Comunicació Parc Natural del Montgrí, les Illes Medes i el Baix Ter Museu de la Mediterrània Printing Gràfiques Agustí Coordinadors of the volume Constantí Stefanescu, Tristan Lafranchis ISSN: 2013-5939 Dipòsit legal: GI 896-2020 “Recerca i Territori” Collection Coordinator Printed on recycled paper Cyclus print Xavier Quintana With the support of: Summary Foreword ......................................................................................................................................................................................................... 7 Xavier Quintana Butterflies of the Montgrí-Baix Ter region ................................................................................................................. 11 Tristan Lafranchis Moths of the Montgrí-Baix Ter region ............................................................................................................................31 Tristan Lafranchis The dispersion of Lepidoptera in the Montgrí-Baix Ter region ...........................................................51 Tristan Lafranchis Three decades of butterfly monitoring at El Cortalet ...................................................................................69 (Aiguamolls de l’Empordà Natural Park) Constantí Stefanescu Effects of abandonment and restoration in Mediterranean meadows .......................................87
    [Show full text]
  • Contribution to the Knowledge of the Fauna of Bombyces, Sphinges And
    driemaandelijks tijdschrift van de VLAAMSE VERENIGING VOOR ENTOMOLOGIE Afgiftekantoor 2170 Merksem 1 ISSN 0771-5277 Periode: oktober – november – december 2002 Erkenningsnr. P209674 Redactie: Dr. J–P. Borie (Compiègne, France), Dr. L. De Bruyn (Antwerpen), T. C. Garrevoet (Antwerpen), B. Goater (Chandlers Ford, England), Dr. K. Maes (Gent), Dr. K. Martens (Brussel), H. van Oorschot (Amsterdam), D. van der Poorten (Antwerpen), W. O. De Prins (Antwerpen). Redactie-adres: W. O. De Prins, Nieuwe Donk 50, B-2100 Antwerpen (Belgium). e-mail: [email protected]. Jaargang 30, nummer 4 1 december 2002 Contribution to the knowledge of the fauna of Bombyces, Sphinges and Noctuidae of the Southern Ural Mountains, with description of a new Dichagyris (Lepidoptera: Lasiocampidae, Endromidae, Saturniidae, Sphingidae, Notodontidae, Noctuidae, Pantheidae, Lymantriidae, Nolidae, Arctiidae) Kari Nupponen & Michael Fibiger [In co-operation with Vladimir Olschwang, Timo Nupponen, Jari Junnilainen, Matti Ahola and Jari- Pekka Kaitila] Abstract. The list, comprising 624 species in the families Lasiocampidae, Endromidae, Saturniidae, Sphingidae, Notodontidae, Noctuidae, Pantheidae, Lymantriidae, Nolidae and Arctiidae from the Southern Ural Mountains is presented. The material was collected during 1996–2001 in 10 different expeditions. Dichagyris lux Fibiger & K. Nupponen sp. n. is described. 17 species are reported for the first time from Europe: Clostera albosigma (Fitch, 1855), Xylomoia retinax Mikkola, 1998, Ecbolemia misella (Püngeler, 1907), Pseudohadena stenoptera Boursin, 1970, Hadula nupponenorum Hacker & Fibiger, 2002, Saragossa uralica Hacker & Fibiger, 2002, Conisania arida (Lederer, 1855), Polia malchani (Draudt, 1934), Polia vespertilio (Draudt, 1934), Polia altaica (Lederer, 1853), Mythimna opaca (Staudinger, 1899), Chersotis stridula (Hampson, 1903), Xestia wockei (Möschler, 1862), Euxoa dsheiron Brandt, 1938, Agrotis murinoides Poole, 1989, Agrotis sp.
    [Show full text]
  • Insekt-Nytt • 38 (3) 2013
    Insekt-Nytt • 38 (3) 2013 Insekt-Nytt presenterer populærvitenskape lige Insekt-Nytt • 38 (3) 2013 oversikts- og tema-artikler om insekters (inkl. edder koppdyr og andre landleddyr) økologi, Medlemsblad for Norsk entomologisk systematikk, fysiologi, atferd, dyregeografi etc. forening Likeledes trykkes artslister fra ulike områder og habitater, ekskursjons rap por ter, naturvern-, Redaktør: nytte- og skadedyrstoff, bibliografier, biografier, Anders Endrestøl his to rikk, «anek do ter», innsamlings- og prepa re- rings tek nikk, utstyrstips, bokanmeldelser m.m. Redaksjon: Vi trykker også alle typer stoff som er relatert Lars Ove Hansen til Norsk entomologisk forening og dets lokal- Jan Arne Stenløkk av de linger: årsrapporter, regnskap, møte- og Leif Aarvik ekskur sjons-rapporter,­­ debattstoff etc. Opprop og Halvard Hatlen kon taktannonser er gratis for foreningens med lem- Hallvard Elven mer. Språket er norsk (svensk eller dansk) gjerne med et kort engelsk abstract for større artik ler. Nett-redaktør: Våre artikler refereres i Zoological record. Hallvard Elven Insekt-Nytt vil prøve å finne sin nisje der vi Adresse: ikke overlapper med vår forenings fagtidsskrift Insekt-Nytt, v/ Anders Endrestøl, Norwegian­­ Journal of Entomology. Origi na le NINA Oslo, vitenskapelige undersøkelser, nye arter for ulike Gaustadalléen 21, faunaregioner og Norge går fortsatt til dette. 0349 Oslo Derimot tar vi gjerne artikler som omhandler Tlf.: 99 45 09 17 «interessante og sjeldne funn», notater om arters [Besøksadr.: Gaustadalléen 21, 0349 Oslo] habitatvalg og levevis etc., selv om det nødven- E-mail: [email protected] digvis ikke er «nytt». Sats, lay-out, paste-up: Redaksjonen Annonsepriser: 1/2 side kr. 1000,– Trykk: Gamlebyen Grafiske AS, Oslo 1/1 side kr.
    [Show full text]
  • Forestry Department Food and Agriculture Organization of the United Nations
    Forestry Department Food and Agriculture Organization of the United Nations Forest Health & Biosecurity Working Papers OVERVIEW OF FOREST PESTS KENYA January 2007 Forest Resources Development Service Working Paper FBS/20E Forest Management Division FAO, Rome, Italy Forestry Department DISCLAIMER The aim of this document is to give an overview of the forest pest1 situation in Kenya. It is not intended to be a comprehensive review. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. © FAO 2007 1 Pest: Any species, strain or biotype of plant, animal or pathogenic agent injurious to plants or plant products (FAO, 2004). Overview of forest pests - Kenya TABLE OF CONTENTS Introduction..................................................................................................................... 1 Forest pests...................................................................................................................... 1 Naturally regenerating forests..................................................................................... 1 Insects ..................................................................................................................... 1 Diseases..................................................................................................................
    [Show full text]
  • Natalis” in the Name of the Yellow Bullhead Ameiurus Natalis Christopher Scharpf
    Lost in Translation: The True Meaning of “Natalis” in the Name of the Yellow Bullhead Ameiurus natalis Christopher Scharpf 11 American Currents Vol. 45, No. 2 LOST IN TRANSLATION: THE TRUE MEANING OF “NATALIS” IN THE NAME OF THE YELLOW BULLHEAD AMEIURUS NATALIS Christopher Scharpf The ETYFish Project The Yellow Bullhead Ameiurus natalis (Figure 1) is a catfish (Si- French cognate of Pimelodus natalis in the form of “Pimelode luriformes: Ictaluridae) native to North American fresh waters Noël.” In naming this catfish natalis, Lesueur was in fact honor- from southern Canada and the Great Lakes to the Gulf of Mex- ing a French fisheries inspector whose name means Christmas: ico, west into the Great Plains and the Rio Grande, with nonin- Simon-Barthélemy-Joseph Noël de La Morinière (1765–1822). digenous populations throughout most of the contiguous Unit- ed States and in the lower Colorado River system of México. The LESUEUR’S ORIGINAL DESCRIPTION species was introduced to science under the name Pimelodus To accurately understand the etymology of any plant or animal natalis by French naturalist Charles-Alexandre Lesueur in 1819. binomen, it is essential to consult the publication in which the Since Lesueur did not explain the meaning of natalis, Ameri- name was proposed. Since Jordan’s explanation of the mean- can ichthyologist David Starr Jordan attempted to explain the ing of natalis involves anatomical characters (nates or buttocks) name in several publications, including the seminal four-vol- presumably possessed by the fish, it is instructive to see if those ume Fishes of North and Middle America (1896-1900).
    [Show full text]
  • The Effect of School Closure On
    The Role of Sound and Pheromone in the Sexual Communication of the Raspberry Crown Borer (Lepidoptera: Sesiidae): Implications for Monitoring and Management by Carolyn Jane Teasdale B.Sc. (Global Resource Systems), University of British Columbia, 2003 Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Pest Management in the Department of Biological Sciences Faculty of Science Carolyn Jane Teasdale 2012 SIMON FRASER UNIVERSITY Spring 2012 All rights reserved. However, in accordance with the Copyright Act of Canada, this work may be reproduced, without authorization, under the conditions for "Fair Dealing." Therefore, limited reproduction of this work for the purposes of private study, research, criticism, review and news reporting is likely to be in accordance with the law, particularly if cited appropriately. Approval Name: Carolyn Jane Teasdale Degree: Master of Pest Management Title of Thesis: The Role of Sound and Pheromone in the Sexual Communication of the Raspberry Crown Borer (Lepidoptera: Sesiidae): Implications for Monitoring and Management Examining Committee: Chair: Dr. Margo Moore, Professor Dr. Gerhard Gries Senior Supervisor Professor Dr. Jenny Cory Supervisor Professor Dr. Gary Judd Supervisor Research Scientist, Agriculture and Agri-food Canada Dr. Sheila Fitzpatrick External Examiner Research Scientist, Agriculture and Agri-food Canada April 24, 2012 Date Defended/Approved: ii Partial Copyright Licence iii Abstract The raspberry crown borer, Pennisetia marginata (Harris) (Lepidoptera: Sesiidae), is a pest of caneberries in the genus Rubus. Understanding its sexual communication may lead to the development of sound- and/or semiochemical-based monitoring and management tools. Newly-eclosed females wing fan. By testing playback of recorded sounds in pheromone-baited traps, I revealed that wing fanning is not involved in long- range sexual communication.
    [Show full text]