bioRxiv preprint doi: https://doi.org/10.1101/479147; this version posted November 27, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Nuclear arms races: experimental evolution for mating success in the mushroom-forming fungus Schizophyllum commune Bart P. S. Nieuwenhuis (*Corresponding author)
[email protected] Division of Evolutionary Biology, Faculty of Biology II, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany Laboratory of Genetics, Wageningen University, PO Box 309, 6700 AH, Wageningen, The Netherlands. Duur K. Aanen
[email protected] Laboratory of Genetics, Wageningen University, PO Box 309, 6700 AH, Wageningen, The Netherlands 1 bioRxiv preprint doi: https://doi.org/10.1101/479147; this version posted November 27, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Summary When many gametes compete to fertilize a limited number of compatible gametes, sexual selection will favour traits that increase competitive success during mating. In animals and plants, sperm and pollen competition have yielded many interesting adaptations for improved mating success. In fungi, similar processes have not been shown directly yet. We test the hypothesis that sexual selection can increase competitive fitness during mating, using experimental evolution in the mushroom-forming fungus Schizophyllum commune (Basidiomycota).