Phylogenetic Reconstruction, Morphological Diversification and Generic Delimitation of Disepalum (Annonaceae)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Annonaceae in the Western Pacific: Geographic Patterns and Four New
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: European Journal of Taxonomy Jahr/Year: 2017 Band/Volume: 0339 Autor(en)/Author(s): Turner Ian M., Utteridge M. A. Artikel/Article: Annonaceae in the Western Pacific: geographic patterns and four new species 1-44 © European Journal of Taxonomy; download unter http://www.europeanjournaloftaxonomy.eu; www.zobodat.at European Journal of Taxonomy 339: 1–44 ISSN 2118-9773 https://doi.org/10.5852/ejt.2017.339 www.europeanjournaloftaxonomy.eu 2017 · Turner I.M. & Utteridge T.M.A. This work is licensed under a Creative Commons Attribution 3.0 License. Research article Annonaceae in the Western Pacifi c: geographic patterns and four new species Ian M. TURNER 1,* & Timothy M.A. UTTERIDGE 2 1,2 Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK. * Corresponding author: [email protected] 2 Email: [email protected] Abstract. The taxonomy and distribution of Pacifi c Annonaceae are reviewed in light of recent changes in generic delimitations. A new species of the genus Monoon from the Solomon Archipelago is described, Monoon salomonicum I.M.Turner & Utteridge sp. nov., together with an apparently related new species from New Guinea, Monoon pachypetalum I.M.Turner & Utteridge sp. nov. The confi rmed presence of the genus in the Solomon Islands extends the generic range eastward beyond New Guinea. Two new species of Huberantha are described, Huberantha asymmetrica I.M.Turner & Utteridge sp. nov. and Huberantha whistleri I.M.Turner & Utteridge sp. nov., from the Solomon Islands and Samoa respectively. New combinations are proposed: Drepananthus novoguineensis (Baker f.) I.M.Turner & Utteridge comb. -
Annonaceae), from Kalakkad-Mundanthurai Tiger Reserve (KMTR), India
Indian Journal of Experimental Biology Vol. 57, July 2019, pp. 516-525 Reproductive biology and pollinators of a steno-endemic and critically endangered tree, Monoon tirunelveliense (Annonaceae), from Kalakkad-Mundanthurai Tiger Reserve (KMTR), India MB Viswanathan*, C Rajasekar & P Sathish Kumar Centre for Research and Development of Siddha-Ayurveda Medicines (CRDSAM), Department of Botany, Bharathidasan University, Tiruchirappalli-620 024, Tamil Nadu, India Received 06 June 2014; revised 27 June 2015 Reproductive biological studies on the endemic and threatened plants are vital to understand pollinators and their role in seed setting and their dispersal, and thereby identify appropriate initiatives for conservation. In this study, we investigated Monoon tirunelveliense (M.B. Viswan. & Manik.) B. Xue & R.M.K. Saunders (Annonaceae), a steno-endemic and critically endangered tree species from the Kalakkad-Mundanthurai Tiger Reserve of India for its phenology, pollen morphology and viability, pollinators and conditions required to increase individuals and populations. We used Global Positioning System mapping to collect required data. Recording of mere 171 individuals in 7 populations justify its inclusion in IUCN Red List Category of critically endangered. Though flowering occurs throughout the year, it is at peak in July. Flowers are protogynous and cantharophilous and bear 215+10 anthers/flower, 750+60 pollen grains/anther, 1,65,000+100 pollen grains/flower, 25+12 ovules/flower and 6,600:1 pollen/ovule. Predominant pollinators are beetles belonging to Carpophilus plagiatipennis and Cerambycid species. Other pollinators include species of Aphis, Azteca, Endaeus, Pseudococcus and Psylla. Species of Halyzia and Scolopendra have also been noticed. Pollinators left behind black markings after feeding. -
WIAD CONSERVATION a Handbook of Traditional Knowledge and Biodiversity
WIAD CONSERVATION A Handbook of Traditional Knowledge and Biodiversity WIAD CONSERVATION A Handbook of Traditional Knowledge and Biodiversity Table of Contents Acknowledgements ...................................................................................................................... 2 Ohu Map ...................................................................................................................................... 3 History of WIAD Conservation ...................................................................................................... 4 WIAD Legends .............................................................................................................................. 7 The Story of Julug and Tabalib ............................................................................................................... 7 Mou the Snake of A’at ........................................................................................................................... 8 The Place of Thunder ........................................................................................................................... 10 The Stone Mirror ................................................................................................................................. 11 The Weather Bird ................................................................................................................................ 12 The Story of Jelamanu Waterfall ......................................................................................................... -
(Bedd.) IM Turner (Annonaceae) and a New Variety from India
Taiwania 62(3): 305‒310, 2017 DOI: 10.6165/tai.2017.62.305 Notes on the Taxonomic status of Polyalthia malabarica (Bedd.) I. M. Turner (Annonaceae) and a new variety from India Mohan ALISTER*, Gopalaprabhu RAJKUMAR, Ahammed NAZARUDEEN and Alagramam Govindasamy PANDURANGAN Division of Plant Systematics and Evolutionary Science, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Palode, Thiruvananthapuram district, Kerala- 695 562, India. * Corresponding author's email: [email protected] (Manuscript received 15 April 2016; accepted 28 May 2017; online published 25 July 2017) ABSTRACT: The taxonomic status of Polyalthia malabarica (Bedd.) I. M. Turner is discussed and a variety from Western Ghats of India is newly proposed with taxonomic description and illustration. KEY WORDS: Annonaceae, India, Kerala, New variety, Polyalthia malabarica var. longipedicellata. INTRODUCTION et al., 2012). Approximately 65 species were removed from the genus Polyalthia but at the same time nine The genus Polyalthia (Annonaceae) was first additions were included by merging the genus described by C. L. Blume (1830) based on type Haplostichathus as mentioned. Presently the genus specimen Polyalthia subcordata, which was collected Polyalthia comprises approximately 85 species and its from Java (Xue et al., 2012). The genus was considered distribution ranged to Austral-Asian region as one of the largest genera in paleotropical regions in (Chaowasku et al., 2012). the family Annonaceae with distribution ranging from The genus is now characterised by reticulate East Africa to Madagascar, Indian subcontinent and venation of leaves, generally with more or less South East Asia to Australia with approximately about subcordate or cordate leaf base, axillary to extra 150 species (Verdcourt, 1969; Xue et al., 2011; axillary or terminal inflorescence, 2‒6 ovules per ovary, Saunders et al., 2011). -
A Conspectus of the Families and Genera of the Vascular Plant Flora of Malaya
A conspectus of the families and genera of the vascular plant flora of Malaya The genera recorded as nalive or naturalized in Malaya arc listed in alphabetical order under the appropiate family. Family delimitation Sollows Brummitt (1992). Italicized names represent those genera represented solely by naturalized species. The number in parenthcscs after each generic name represents lhe numbers of species of that genus in the Malayan Slora. The number of senera, and the nunlher of species. ~.cspectively.in each family arc given in square brackets alter each family name. Fern Allics 1. EQUISETACEAE 11, 1) 1.I Eqniwtnn~L. ( I ) 2. LYCOPODIACEAE 13,191 2.1 Huperzia Rel-nh. (12) 2.7 L~copodiellaHoluh (7) 2 .: Lycopodiun~L. (5) 3. PSILOTACEAE [I, 2J 3.1 Psiloturn Sw. (2) 4. SELAGINELLACEAE 11,291 4.1 Selaginella P Beauv. (2')) Ferns 5. ADlANTACEAE [8,31J 5.1 Adiantnrn L. ( 12) 5.5 Henlionitis I-. (I ) 5.2 Cheilanthes S\%.(4) 5.6 1'1lyrogrrrnlr~1rrLmk ( 1 ) 5.3 Coniograrnrne F6e (I) 5.7 Spngrarnma J.Sm. (7) 5.4 Doryopteris 5.S1ii.(2) 5.8 Taenitis Willd. c2.v Schkuhr (3) 6. ASPLENIACEAE (1,291 6.1 Aspleniurn L. (29) 7. AZOLLACEAE [I, 11 7.1 Azolla Lam. ( I) 8. BLECHNACEAE 14.91 8. I Blechnun~I.. (6) 8.3 Stenochlaena 1.S1n.(I ) 8.2 Brainea J.Srn. (1 ) 8.4 Woodwardia Sm. ( 1 ) 9. CHEIROPLEURIACEAE [1,1] 9.1 Cheiropleuria C'. Prcsl (I) lo. CYATHEACEAE (1,201 10.1 Cyathea Sin. (20) 11. DAVALLIACEAE 12.141 l l I Davallia 5m (I 2) I1 2 Le~~costcgiaC P1e4 (2) 12. -
Anatomical Structure of Barks in Neotropical Genera of Annonaceae
Ann. Bot. Fennici 44: 79–132 ISSN 0003-3847 Helsinki 28 March 2007 © Finnish Zoological and Botanical Publishing Board 2007 Anatomical structure of barks in Neotropical genera of Annonaceae Leo Junikka1 & Jifke Koek-Noorman2 1) Finnish Museum of Natural History, Botanical Museum, P.O. Box 7, FI-00014 University of Helsinki, Finland (present address: Botanic Garden, P.O. Box 44, FI-00014 University of Helsinki, Finland) (e-mail: [email protected]) 2) National Herbarium of the Netherlands, P.O. Box 80102, 3508 TC Utrecht, The Netherlands (e-mail: [email protected]) Received 1 Oct. 2004, revised version received 23 Aug. 2006, accepted 21 Jan. 2005 Junikka, L. & Koek-Noorman, J. 2007: Anatomical structure of barks in Neotropical genera of Annonaceae. — Ann. Bot. Fennici 44 (Supplement A): 79–132. The bark anatomy of 32 Neotropical genera of Annonaceae was studied. A family description based on Neotropical genera and a discussion of individual bark compo- nents are presented. Selected character states at the family and genus levels are sur- veyed for identification purposes. This is followed by a discussion on the taxonomical and phylogenetic relevance of bark characters according to a phylogram in preparation based on molecular characters. Although the value of many bark anatomical characters turned out to be insignificant in systematic studies of the family, some features lend support to recent phylogenetic results based on morphological and molecular data sets. The taxonomically most informative features of the bark anatomy are sclerification of phellem cells, shape of fibre groups and occurrence of crystals in bark components. Key words: anatomy, Annonaceae, bark, periderm, phloem, phylogeny, rhytidome, taxonomy Introduction collections and the development of some novel methods a multidisciplinary programme on Anno- Woody members of the Annonaceae are one of naceae was embarked on in 1983 at the Univer- the most species-rich components in the tropi- sity of Utrecht. -
Polyalthia Longifolia Description Pdf
Polyalthia longifolia description pdf Continue (Sonn.) Thwaites Annonaceae Guatteria longifolia (Sonn.) Walls. Una Longifolia (Sonn.) by Donal Uvaria Longifolia Sonne. Common name: High, narrow form var pendula Photograph: Mokkie General InformationPolyalthia longifolia - evergreen tree, growing up to 20 meters high. Bol straight. The tree is cultivated for its wood in southeast Asia, it is also often grown as ornamental. The tree is highly valued by Hindus, who often plant near temples. Famous HazardsNone is known botanical links, RangeE. Asia - India, Sri Lanka. HabitatDri country in the forests of Sri Lanka. Properties Other uses the HabitEvergreen Tree Height Rating15.00 m Cultivation StatusOrnamental, Wild Cultivation DetailsUn known Edible UsesNone famous MedicinalNone other UsesThe inner bark is said to give a good bast fiber. yellowish-white wood is quite soft, tough, quite close and venous, . It bends easily and has been used in the creation of barrels. Seed - If you have useful information about this plant, please leave a comment. Comments must be approved before they are shown here. Photos: Dr. Maulik Gadani (Description) Leaf - Leaves of polyaltia longifolia grow alternately on the stem (spirally located). The sheet is simple, glossy, bright green in higher and paler beneath it. The leaves are clumsy and heady on both sides. The leaves are 7-8 mm long petiol. The leaves of polyaltia longifolia are 15-25 cm long and 3-4 cm wide. The form of the lanceolate blade with wavy edges, the top is sharp, the base is cuneate and the fields are intact. Venation sheet reticulate with prominent midrib. Polyaltia longifolia leaves Polyaltia longifolia leaf (upper and lower sides) Polyaltia longifolia new leaves Polyaltia longifolia new leaves Polyaltia longifolia foliage Monoon longifolium Scientific classification Kingdom: Plantae Clade: Trachee Clade: Trache Clade: Angiosperms Clade: Magnoliids Order: Magnoliales Family: Annonaceae Sub-Family: Malmeoideae Genus: Monoon Species: M. -
Traditional Medicine Research Doi: 10.12032/TMR20201218212
Traditional Medicine Research doi: 10.12032/TMR20201218212 Traditional Indian Medicine Highlights This review reveals detailed information about herbal plant Polyalthia longifolia, including the propagation, synonyms, vernaculars, varieties of plant, medicinal significance, ecology and distribution, botanical and ethnobotanical description, phytochemical constituents, and pharmacological activity of the plant. Tradition The first recorded report of the use of Polyalthia longifolia performed by Troup RS and Chopra RN stated Polyalthia longifolia (P. longifolia) as a remedy for the treatment of gonorrhea and snake bites and scorpion stings. The aqueous extract of the bark of the plant reduces blood pressure and heart rate. In addition, the bark can be used as a febrifuge. In India it is well known as folk medicine in literatures. Such plants are used in the treatment of septic infections, hepatomegaly, hepatosplenomegaly, coughing, diarrhea, and cancer. It possesses good hyperglycemic, antimicrobial, antioxidant, analgesic, and antitumor activities. Sub mit a manuscript: https://www.tmrjournals.com/tmr 1 doi: 10.12032/TMR20201218212 REVIEW Abstract Herbal plants act as a significant source for discovering new compounds with potential therapeutic activities. Polyalthia longifolia, which is commonly known as an Indian mast tree, has various pharmacological properties, such as an anticancer, ulcer protective, hypoglycemic, hypotensive, a corrosion inhibitor, a bio-adsorbent, and few more. Moreover, it is known as false ashoka owing to its close resemblance with Saraca indica (ashoka tree). Various compounds have been reported from the extract of some parts of the plant, such as leaves, bark, root, and seeds. These extracts possess an ability to treat a number of human ailments, such as fever, ulcer, skin diseases, helminthiasis, and cardiac problems. -
Annonaceae) in Peninsular Malaysia? Synopses of Huberantha, Maasia, Monoon and Polyalthia S.S
European Journal of Taxonomy 183: 1–26 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2016.183 www.europeanjournaloftaxonomy.eu 2016 · Turner I.M. & Utteridge T.M.A. This work is licensed under a Creative Commons Attribution 3.0 License. Research article Whither Polyalthia (Annonaceae) in Peninsular Malaysia? Synopses of Huberantha, Maasia, Monoon and Polyalthia s.s. Ian M. TURNER * & Timothy M.A. UTTERIDGE Royal Botanic Gardens Kew, Richmond, Surrey, TW9 3AE, United Kingdom * Corresponding author: [email protected] Abstract. An updated classifi cation of Polyalthia in Peninsular Malaysia is presented. A synopsis (listing of species with synonymy and typifi cation, and keys to species) is presented for the genera Huberantha, Maasia, Monoon and Polyalthia sensu stricto. One new species (Polyalthia pakdin I.M.Turner & Utteridge sp. nov.) is described and a conservation assessment presented for it. Monoon xanthopetalum Merr. represents a new record for Peninsular Malaysia. Six new lectotypes are designated. Keywords. Enicosanthum, Huberantha, Maasia, Monoon, Polyalthia. Turner I.M. & Utteridge T.M.A. 2016. Whither Polyalthia (Annonaceae) in Peninsular Malaysia? Synopses of Huberantha, Maasia, Monoon and Polyalthia s.s. European Journal of Taxonomy 183: 1–26. http://dx.doi. org/10.5852/ejt.2016.183 Introduction When Sinclair (1955) revised the Annonaceae of the Malay Peninsula he recognised 32 species of Polyalthia Blume (including Polyalthia evecta Finet & Gagnep. from Peninsular Thailand still unrecorded from Peninsular Malaysia, and the cultivated Polyalthia longifolia (Sonn.) Thwaites). The 30 native species made Polyalthia the largest genus in the family as represented in the Malayan fl ora. The genus was characterised by Sinclair largely in terms of fl oral morphology including subequal corolla whorls of spreading, relatively fl at, petals, numerous fl at-topped stamens and many carpels with 1–5 ovules each. -
Phylogeny, Molecular Dating, and Floral Evolution of Magnoliidae (Angiospermae)
UNIVERSITÉ PARIS-SUD ÉCOLE DOCTORALE : SCIENCES DU VÉGÉTAL Laboratoire Ecologie, Systématique et Evolution DISCIPLINE : BIOLOGIE THÈSE DE DOCTORAT Soutenue le 11/04/2014 par Julien MASSONI Phylogeny, molecular dating, and floral evolution of Magnoliidae (Angiospermae) Composition du jury : Directeur de thèse : Hervé SAUQUET Maître de Conférences (Université Paris-Sud) Rapporteurs : Susanna MAGALLÓN Professeur (Universidad Nacional Autónoma de México) Thomas HAEVERMANS Maître de Conférences (Muséum national d’Histoire Naturelle) Examinateurs : Catherine DAMERVAL Directeur de Recherche (CNRS, INRA) Michel LAURIN Directeur de Recherche (CNRS, Muséum national d’Histoire Naturelle) Florian JABBOUR Maître de Conférences (Muséum national d’Histoire Naturelle) Michael PIRIE Maître de Conférences (Johannes Gutenberg Universität Mainz) Membres invités : Hervé SAUQUET Maître de Conférences (Université Paris-Sud) Remerciements Je tiens tout particulièrement à remercier mon directeur de thèse et ami Hervé Sauquet pour son encadrement, sa gentillesse, sa franchise et la confiance qu’il m’a accordée. Cette relation a immanquablement contribuée à ma progression humaine et scientifique. La pratique d’une science sans frontière est la plus belle chose qu’il m’ait apportée. Ce fut enthousiasmant, très fructueux, et au-delà de mes espérances. Ce mode de travail sera le mien pour la suite de ma carrière. Je tiens également à remercier ma copine Anne-Louise dont le soutien immense a contribué à la réalisation de ce travail. Elle a vécu avec patience et attention les moments d’enthousiasmes et de doutes. Par la même occasion, je remercie ma fille qui a eu l’heureuse idée de ne pas naître avant la fin de la rédaction de ce manuscrit. -
Sniffing out Evolution
WAGENINGEN NIFFING OUT VOLUTION UR S E Congruence of Fragrances and Phylogenetic Relationships in Annonaceae Jeike L. van de Poel BSc. – MBI 890421659010 Under supervision of Dr. Lars Chatrou and Dr. Kate Goodrich Biosystematics group, October 2012 Course code: BIS-80439 Abstract The flowering plants are a relatively young group that has reached high levels of diversity and harbors an enormous assortment of chemical components. Annonaceae encompass an astounding amount of different flower fragrances. Floral odor is important in the attraction of pollinators, especially if the pollinators in question are beetles, which is the case for most Annonaceae. A floral fragrance consists of approximately 100 Volatile Organic Compounds. From two genera within the Annonaceae (Asimina Adans. and Deeringothamnus Small) the complete chemical composition of the floral scent has been studied. These chemical data were provided in order to perform optimizations over a simplified version of an existing phylogenetic tree based on chloroplast markers (ITS, accD-psal, matK-trnK, psbA-trnH, psbM-ycf6, rpL16 intron, rpl32-trnl, rpoB-trnC, trnC-ycf6, trnL-trnL-trnF, trnS-psbC, trnS-trnfM, ycf1). Due to a lack of previous studies in which phylogenetic analysis and extensive collection of fragrance data are combined, there is no real agreement as to what is the best method to use fragrance data in phylogenetic analyses. The aim of this study is to find out which method (within Maximum Parsimony and Maximum Likelihood optimization) is best to use for optimization of components from floral fragrances, and whether it is possible to use chemical data as a means to resolve polytomies. -
Globaltreesearch Database Sources
GlobalTreeSearch database sources Abbott, J. R. (2009). Phylogeny of the Poligalaceae and a Revision of Badiera. Doctoral dissertation, University of Florida, FL. Acevedo-Rodríguez, P. (2011). Allophylastrum: a new genus of Sapindaceae from northern South America. PhytoKeys, 5, 39-43. Acevedo-Rodríguez, P. & Strong, M. T. (2007). Catalogue of the seed plants of the West Indies. Retreived September 01, 2014, from http://botany.si.edu/Antilles/WestIndies/. Acevedo-Rodríguez, P. & Strong, M. T. (2012). Catalogue of Seed Plants of the West Indies. Smithsonian Contributions to Botany, 98, 1-92. Acevedo-Rodríguez, P. & Brewer, S. W. (2016). Spathelia belizensis, a new species and first record for the genus in Central America (tribe Spathelieae, Rutaceae). PhytoKeys, 75, 145- 151. Adema, F. & van der Ham, R. W. J. M. (1993). Cnesmocarpon (Gen. Nov.), Jagera and Trigonachras (Sapindaceae-Cupanieae): Phylogeny and Systematics. Blumea, 38, 73-215. Agostini, G. & Fariñas, M. (1963). Holotype of Maytenus agostinii Steyerm. (Celastraceae). Caracas: Fundación Instituto Botánico de Venezuela. Akopian, S. S. (2007). On the Pyrus L. (Rosaceae) species in Armenia. Flora, Vegetation and Plant Resources of Armenia, 16, 15-26. Alejandro, G. J. D. & Meve, U. (2016). Rubovietnamia coronula sp. nov. (Rubiaceae: Gardenieae) from the Philippines. Nordic Journal of Botany. 34 (2), 385–389. Alemayehu, G., Asfaw, Z. & Kelbessa, E. (2016) Cordia africana (Boraginaceae) in Ethiopia: A review on its taxonomy, distribution, ethnobotany and conservation status. International Journal of Botany Studies. 1 (2), 38-46. Alfarhan, A. H., Al-Turki, T. A. & Basahy, A. Y. (2005). Flora of Jizan Region. Final Report Supported by King Abdulaziz City for Science and Technology.