Annonaceae (PDF)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cherimoya and Guanabana in the Archaeological Record of Peru
Journal of Ethnobiology 17(2):235-248 Winter 1997 CHERIMOYA AND GUANABANA IN THE ARCHAEOLOGICAL RECORD OF PERU THOMAS POZORSKI AND SHELIA POZORSKI Department of Psychology and Anthropology University of Texas-Pan American Edinburg, TX 78539 ABSTRACT.-Most researchers commonly assume that both cherimoya (Annona cherimolia) and guanabana (Annona muricata) have long been a part of the prehistoric record of ancient Peru. However, archaeological and ethnohistoric research in the past 25years strongly indicates that cherimoya was not introduced into Peru until ca. A.D. 1630 and that guanabana is only present after ca. A.D. 1000and is mainly associated with sites of the Chimu culture. RESUMEN.-La mayorfa de los investigadores suponen que tanto la chirimoya (Annona cherimola)como la guanabana (Annona muricata) han sido parte del registro prehist6rico del antiguo Peru por largo tiempo . Sin embargo, las in vestigaciones arqueol6gicas y etnohist6ricas de los ultimos veinticinco afios indican fuertemente que la chirimoya no fue introducida al Peru sino hasta 1630 D.C., Y que la guanabana esta presente s610 despues de aproximadamente 1000 D.C., Y esta asociada principalmente con sitios de la cultura chirmi. RESUME.- La plupart des chercheurs supposent couramment qu'une espece de pomme cannelle (Annonacherimolia)et le corossol (Annona muricata) ont faitpartie, pendant une longue periode, de l'inventaire prehistorique du Perou. Toutefois, les recherches archeologiques et ethnohistoriques des vingt-cinq dern ieres annees indiquent fortement que la pomme cannelle A. cherimolia ne fut introduite au Perou qu'aux environs de 1630 apr. J.-c. et la presence du corossol n'est attestee qu'en 1000apr. -
The Potential Use of Annona (Annonaceae) by Products As a Source of Botanical Insecticides
The potential use of Annona (Annonaceae) by products as a source of botanical insecticides Leandro do Prado Ribeiroa*, Camila Moreira de Souzab, Keylla Utherdyany Bicalhoc, Edson Luiz Lopes Baldinb, Moacir Rossi Forimc, João Batista Fernandesc, José Djair Vendramimd a Research Center for Family Agriculture, Agricultural Research and Rural Extension Company of Santa Catarina (CEPAF/EPAGRI), Chapecó, Santa Catarina, Brazil. *E-mail: [email protected]; bDepartment of Crop Protection, College of Agricultural Sciences, São Paulo State University (FCA/UNESP) Botucatu, São Paulo, Brazil; d Department of Chemistry, Federal University of São Carlos (UFSCar), São Carlos, São Paulo, Brazil; c Department of Entomology and Acarology, “Luiz de Queiroz” College of Agriculture, University of São Paulo (ESALQ/USP), Piracicaba, São Paulo, Brazil. INTRODUCTION In addition, some species of Annona genera (e.g.: Annona muricata, Annona squamosa, Annona cherimolia, and Annona The structural and functional diversity of secondary metabolites cherimolia x Annona squamosa) have great economic (allelochemicals) is a key factor for the survival and evolutionary importance due to their edible fruits of ample commercial success of plant species inhabiting an environment with an interest. Consequently, a considerably cultivated area (~ 14,000 abundance of natural enemies. Therefore, the tropical flora, hectares) with these species is observed in Brazil. However, most with its unique biodiversity, is a promising natural reservoir of of Annona fruits production are destined for fruit-processing bioactive substances. In this context, Brazil has the highest plant industries and commercialized as frozen pulps for juice genetic diversity in the world offering enormous potential for preparations due to its small shelf life. -
Artabotrys Pachypetalus (Annonaceae), a New Species from China
PhytoKeys 178: 71–80 (2021) A peer-reviewed open-access journal doi: 10.3897/phytokeys.178.64485 RESEARCH ARTICLE https://phytokeys.pensoft.net Launched to accelerate biodiversity research Artabotrys pachypetalus (Annonaceae), a new species from China Bine Xue1, Gang-Tao Wang2, Xin-Xin Zhou3, Yi Huang4, Yi Tong5, Yongquan Li1, Junhao Chen6 1 College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, China 2 Hangzhou, Zhejiang, China 3 Key Laboratory of Plant Resourc- es Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China 4 Guangzhou Linfang Ecology Co., Ltd., Guangzhou, Guangdong 510520, China 5 School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, China 6 Singapore Botanic Gardens, National Parks Board, 1 Cluny Road, 259569, Singapore Corresponding author: Junhao Chen ([email protected]) Academic editor: T.L.P. Couvreur | Received 16 February 2021 | Accepted 3 May 2021 | Published 27 May 2021 Citation: Xue B, Wang G-T, Zhou X-X, Huang Y, Tong Y, Li Y, Chen J (2021) Artabotrys pachypetalus (Annonaceae), a new species from China. PhytoKeys 178: 71–80. https://doi.org/10.3897/phytokeys.178.64485 Abstract Artabotrys pachypetalus sp. nov. is described from Guangdong, Guangxi, Guizhou, Hunan and Jiangxi in China. A detailed description, distribution data, along with a color plate and a line drawing are provided. In China, specimens representing this species were formerly misidentified asA. multiflorus or A. hong- kongensis (= A. blumei). Artabotrys blumei typically has a single flower per inflorescence, whereas both Artabotrys pachypetalus and A. multiflorus have multiple flowers per inflorescence. -
Annonaceae in the Western Pacific: Geographic Patterns and Four New
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: European Journal of Taxonomy Jahr/Year: 2017 Band/Volume: 0339 Autor(en)/Author(s): Turner Ian M., Utteridge M. A. Artikel/Article: Annonaceae in the Western Pacific: geographic patterns and four new species 1-44 © European Journal of Taxonomy; download unter http://www.europeanjournaloftaxonomy.eu; www.zobodat.at European Journal of Taxonomy 339: 1–44 ISSN 2118-9773 https://doi.org/10.5852/ejt.2017.339 www.europeanjournaloftaxonomy.eu 2017 · Turner I.M. & Utteridge T.M.A. This work is licensed under a Creative Commons Attribution 3.0 License. Research article Annonaceae in the Western Pacifi c: geographic patterns and four new species Ian M. TURNER 1,* & Timothy M.A. UTTERIDGE 2 1,2 Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK. * Corresponding author: [email protected] 2 Email: [email protected] Abstract. The taxonomy and distribution of Pacifi c Annonaceae are reviewed in light of recent changes in generic delimitations. A new species of the genus Monoon from the Solomon Archipelago is described, Monoon salomonicum I.M.Turner & Utteridge sp. nov., together with an apparently related new species from New Guinea, Monoon pachypetalum I.M.Turner & Utteridge sp. nov. The confi rmed presence of the genus in the Solomon Islands extends the generic range eastward beyond New Guinea. Two new species of Huberantha are described, Huberantha asymmetrica I.M.Turner & Utteridge sp. nov. and Huberantha whistleri I.M.Turner & Utteridge sp. nov., from the Solomon Islands and Samoa respectively. New combinations are proposed: Drepananthus novoguineensis (Baker f.) I.M.Turner & Utteridge comb. -
Efficacy of Seed Extracts of Annona Squamosa and Annona Muricata (Annonaceae) for the Control of Aedes Albopictus and Culex Quinquefasciatus (Culicidae)
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Asian Pac J Trop Biomed 2014; 4(10): 798-806 798 Contents lists available at ScienceDirect Asian Pacific Journal of Tropical Biomedicine journal homepage: www.elsevier.com/locate/apjtb Document heading doi:10.12980/APJTB.4.2014C1264 2014 by the Asian Pacific Journal of Tropical Biomedicine. All rights reserved. 襃 Efficacy of seed extracts of Annona squamosa and Annona muricata (Annonaceae) for the control of Aedes albopictus and Culex quinquefasciatus (Culicidae) 1 1 2 Lala Harivelo Raveloson Ravaomanarivo *, Herisolo Andrianiaina Razafindraleva , Fara Nantenaina Raharimalala , Beby 1 3 2,4 Rasoahantaveloniaina , Pierre Hervé Ravelonandro , Patrick Mavingui 1Department of Entomology, Faculty of Sciences, University of Antananarivo, Po Box 906, Antananarivo (101), Madagascar 2International Associated Laboratory, Research and Valorization of Malagasy Biodiversity Antananarivo, Madagascar 3Research Unit on Process and Environmental Engineering, Faculty of Sciences, University of Antananarivo, Po Box 906, Antananarivo (101), Madagascar 4UMR CNRS 5557, USC INRA 1364, Vet Agro Sup, Microbial Ecology, FR41 BioEnvironment and Health, University of Lyon 1, Villeurbanne F-69622, France PEER REVIEW ABSTRACT Peer reviewer Objective: Annona squamosa Annona é è muricata To evaluate the potential efficacy of seed extracts of Aedes and albopictus Dr.é éDelatte H l ne, UMR Peuplements Culexused quinquefasciatus as natural insecticides to control adult and larvae of the vectors V g taux et Bio-agresseurs en M’ ilieu andMethods: under laboratory conditions. Tropical, CIRAD-3P7, Chemin de l IRAT, Aqueous and oil extracts of the two plants were prepared from dried seeds. -
(Bedd.) IM Turner (Annonaceae) and a New Variety from India
Taiwania 62(3): 305‒310, 2017 DOI: 10.6165/tai.2017.62.305 Notes on the Taxonomic status of Polyalthia malabarica (Bedd.) I. M. Turner (Annonaceae) and a new variety from India Mohan ALISTER*, Gopalaprabhu RAJKUMAR, Ahammed NAZARUDEEN and Alagramam Govindasamy PANDURANGAN Division of Plant Systematics and Evolutionary Science, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Palode, Thiruvananthapuram district, Kerala- 695 562, India. * Corresponding author's email: [email protected] (Manuscript received 15 April 2016; accepted 28 May 2017; online published 25 July 2017) ABSTRACT: The taxonomic status of Polyalthia malabarica (Bedd.) I. M. Turner is discussed and a variety from Western Ghats of India is newly proposed with taxonomic description and illustration. KEY WORDS: Annonaceae, India, Kerala, New variety, Polyalthia malabarica var. longipedicellata. INTRODUCTION et al., 2012). Approximately 65 species were removed from the genus Polyalthia but at the same time nine The genus Polyalthia (Annonaceae) was first additions were included by merging the genus described by C. L. Blume (1830) based on type Haplostichathus as mentioned. Presently the genus specimen Polyalthia subcordata, which was collected Polyalthia comprises approximately 85 species and its from Java (Xue et al., 2012). The genus was considered distribution ranged to Austral-Asian region as one of the largest genera in paleotropical regions in (Chaowasku et al., 2012). the family Annonaceae with distribution ranging from The genus is now characterised by reticulate East Africa to Madagascar, Indian subcontinent and venation of leaves, generally with more or less South East Asia to Australia with approximately about subcordate or cordate leaf base, axillary to extra 150 species (Verdcourt, 1969; Xue et al., 2011; axillary or terminal inflorescence, 2‒6 ovules per ovary, Saunders et al., 2011). -
A Guide to Foreign Language Programs, North Carolina
DOCUMENT RESUME ED 419 387 FL 025 196 TITLE Cover to Cover: A Guide to Foreign Language Programs, Instruction and Resources. INSTITUTION North Carolina State Dept. of Public Instruction, Raleigh. Instructional Services. PUB DATE 1997-00-00 NOTE 310p. PUB TYPE Guides Classroom Teacher (052) EDRS PRICE MF01/PC13 Plus Postage. DESCRIPTORS Classroom Techniques; Course Evaluation; *Curriculum Design; Curriculum Development; Disabilities; Distance Education; Educational Research; Elementary Secondary Education; English (Second Language); Graduation Requirements; Higher Education; Instructional Effectiveness; Instructional Materials; International Educational Exchange; Media Selection; Parent Participation; Professional Associations; School Business Relationship; School Community Relationship; Second Language Instruction; *Second Language Programs; *State Standards; *Student Evaluation; Student Motivation; Study Abroad; Teaching Methods; Teaching Skills; Travel IDENTIFIERS North Carolina ABSTRACT The guide is intended as a resource for North Carolina teachers and administrators concerning second language education. Part 1 offers a rationale for second language education, and provides specific reasons for studying French, German, Latin, Spanish, and uncommonly taught languages. Part 2 describes instructional program models for elementary and middle schools, outlines st; e high school graduation and academic degree requirements, describes advaled placement courses, outlines the international baccalaureate :ogram, and provides data on language -
Within-Tree Distribution of Seven Inseet Pests of Soursop (Annona Muricata) in Hondurasl
Within-tree distribution of seven inseet pests of soursop (Annona muricata) in Hondurasl Carlos A. Granadino and Ronald D. Cave2 Abstract. Thc wilh¡n·trce distributions of scvell insect pesls of s()ursop, AI/Ilona 111 11 rÚ'll la L., were dctcrIllincd during a l-ycar period at four localilics in Honduras. Five foliage and slem reeders, Corythucha gossypii (E), Clllloconophora caliginosa (Walker), Membracis mexicana (Guerin), Parasaissetia nigra (NiCtncr) and Saissetia o/eae Olivier, and two fruit/secd borers, Bephratelloides clIbensis (Ashmead) and Cerconota anonella ¡Sepp), were studied. [nfcstations by C. goss.l'pii, C. ca/iginosa, M. mexicana and the fruiliseed borers were grealesl in the middlc third of the tree canopy. Dcnsities of P. nigra and S. o/eae were highest in lhe middle and bottom seetions. Infeslations by P. nigm were greater on the southern hall' of trees, whereas inkstations by C. anonella were greater on the northern half. Key words: Spatial distribution. foliage pests, slem pests, fruit borers, seed borers, sampling. Resumen: Se determinó la distribución de siete plagas insccLilcs en la copa de árboles de guanábana, An/l(ma JIIurica'" L.. duran le un año en cuatro localidades en Honduras. Se estudiaron cinco especies, Coryt/1I/cha goss)pii (F.), C"I!oCot/op/lOra caliginoJo (Walker), Membracis mexicano (Guerin). Parasaissetia nigra (Nietner) y SaisselÍa o/eae Olivier, que atacan el follaje y los lallos. y dos especies, Bephratelloides cubemis (Ashmead) y Cerconota anollella (Sepp), que son barrenadores del fruto y semilla. Las infestaciones por C. go.\Sypii, C. ca/iginosa. M. mexicana y los barrenadores fueron mayores en el tcrcio medio de la copa del árbol. -
Vol: Ii (1938) of “Flora of Assam”
Plant Archives Vol. 14 No. 1, 2014 pp. 87-96 ISSN 0972-5210 AN UPDATED ACCOUNT OF THE NAME CHANGES OF THE DICOTYLEDONOUS PLANT SPECIES INCLUDED IN THE VOL: I (1934- 36) & VOL: II (1938) OF “FLORA OF ASSAM” Rajib Lochan Borah Department of Botany, D.H.S.K. College, Dibrugarh - 786 001 (Assam), India. E-mail: [email protected] Abstract Changes in botanical names of flowering plants are an issue which comes up from time to time. While there are valid scientific reasons for such changes, it also creates some difficulties to the floristic workers in the preparation of a new flora. Further, all the important monumental floras of the world have most of the plants included in their old names, which are now regarded as synonyms. In north east India, “Flora of Assam” is an important flora as it includes result of pioneering floristic work on Angiosperms & Gymnosperms in the region. But, in the study of this flora, the same problems of name changes appear before the new researchers. Therefore, an attempt is made here to prepare an updated account of the new names against their old counterpts of the plants included in the first two volumes of the flora, on the basis of recent standard taxonomic literatures. In this, the unresolved & controversial names are not touched & only the confirmed ones are taken into account. In the process new names of 470 (four hundred & seventy) dicotyledonous plant species included in the concerned flora are found out. Key words : Name changes, Flora of Assam, Dicotyledonus plants, floristic works. -
A Conspectus of the Families and Genera of the Vascular Plant Flora of Malaya
A conspectus of the families and genera of the vascular plant flora of Malaya The genera recorded as nalive or naturalized in Malaya arc listed in alphabetical order under the appropiate family. Family delimitation Sollows Brummitt (1992). Italicized names represent those genera represented solely by naturalized species. The number in parenthcscs after each generic name represents lhe numbers of species of that genus in the Malayan Slora. The number of senera, and the nunlher of species. ~.cspectively.in each family arc given in square brackets alter each family name. Fern Allics 1. EQUISETACEAE 11, 1) 1.I Eqniwtnn~L. ( I ) 2. LYCOPODIACEAE 13,191 2.1 Huperzia Rel-nh. (12) 2.7 L~copodiellaHoluh (7) 2 .: Lycopodiun~L. (5) 3. PSILOTACEAE [I, 2J 3.1 Psiloturn Sw. (2) 4. SELAGINELLACEAE 11,291 4.1 Selaginella P Beauv. (2')) Ferns 5. ADlANTACEAE [8,31J 5.1 Adiantnrn L. ( 12) 5.5 Henlionitis I-. (I ) 5.2 Cheilanthes S\%.(4) 5.6 1'1lyrogrrrnlr~1rrLmk ( 1 ) 5.3 Coniograrnrne F6e (I) 5.7 Spngrarnma J.Sm. (7) 5.4 Doryopteris 5.S1ii.(2) 5.8 Taenitis Willd. c2.v Schkuhr (3) 6. ASPLENIACEAE (1,291 6.1 Aspleniurn L. (29) 7. AZOLLACEAE [I, 11 7.1 Azolla Lam. ( I) 8. BLECHNACEAE 14.91 8. I Blechnun~I.. (6) 8.3 Stenochlaena 1.S1n.(I ) 8.2 Brainea J.Srn. (1 ) 8.4 Woodwardia Sm. ( 1 ) 9. CHEIROPLEURIACEAE [1,1] 9.1 Cheiropleuria C'. Prcsl (I) lo. CYATHEACEAE (1,201 10.1 Cyathea Sin. (20) 11. DAVALLIACEAE 12.141 l l I Davallia 5m (I 2) I1 2 Le~~costcgiaC P1e4 (2) 12. -
Nonaceae Using Targeted Enrichment of Nuclear Genes Supplementary
Phylogenomics of the major tropical plant family An- nonaceae using targeted enrichment of nuclear genes Thomas L.P. Couvreur1,*, Andrew J. Helmstetter1, Erik J.M. Koenen2, Kevin Bethune1, Rita D. Brand~ao3, Stefan Little4, Herv´eSauquet4,5, Roy H.J. Erkens3 1 IRD, UMR DIADE, Univ. Montpellier, Montpellier, France 2 Institute of Systematic Botany, University of Zurich, Z¨urich, Switzer- land 3 Maastricht University, Maastricht Science Programme, P.O. Box 616, 6200 MD Maastricht, The Netherlands 4 Ecologie Syst´ematiqueEvolution, Univ. Paris-Sud, CNRS, AgroParis- Tech, Universit´e-Paris Saclay, 91400, Orsay, France 5 National Herbarium of New South Wales (NSW), Royal Botanic Gardens and Domain Trust, Sydney, Australia * [email protected] Supplementary Information (see next page) 1 Supplementary Table 1. Specimen details of taxa sampled for both An- nonaceae and Piptostigmateae analyses Subfamily Tribe Species Collector number Country INDEX TAG total reads Mapped % enrichment 10x coverage mean depth Ambavioideae Cleistopholis staudii Couvreur, T.L.P. 570 Gabon I12 TAG79 1790158 402150 22 0,82 119,7 Ambavioideae Drepananthus ramuliflorus Sauquet, H. 167 Malaysia I10 TAG45 2676926 150278 6 0,66 45,1 Ambavioideae Meiocarpidium olivieranum Couvreur, T.L.P. 920 Gabon I10 TAG13 3950072 343879 9 0,80 104,3 Anaxagoreoideae Anaxagorea crassipetala Maas, P.J.M. 9408 Costa Rica I10 TAG25 2648398 256748 10 0,67 76,9 Annonoideae Annoneae Annona glabra Chatrou, L.W. 467 Peru I10 TAG36 4328486 622387 14 0,83 190,7 Annonoideae Annoneae Anonidium mannii Couvreur, T.L.P. 1053 Cameroon I04 TAG36 1613002 679049 42 0,89 206,9 Annonoideae Annoneae Boutiquea platypetala Couvreur, T.L.P. -
Floral Ontogeny of Annonaceae: Evidence for High Variability in floral Form
Annals of Botany 106: 591–605, 2010 doi:10.1093/aob/mcq158, available online at www.aob.oxfordjournals.org Floral ontogeny of Annonaceae: evidence for high variability in floral form Fengxia Xu1 and Louis Ronse De Craene2,* 1South China Botanical Garden, Chinese Academy of Sciences, 723 Xinke Road, Tianhe District, Guangzhou China 510650 and 2Royal Botanic Garden Edinburgh, 20 Inverleith Row, Edinburgh EH3 5LR, UK * For correspondence. E-mail [email protected] Received: 17 February 2010 Returned for revision: 29 March 2010 Accepted: 28 June 2010 Published electronically: 1 September 2010 † Background and Aims Annonaceae are one of the largest families of Magnoliales. This study investigates the comparative floral development of 15 species to understand the basis for evolutionary changes in the perianth, Downloaded from androecium and carpels and to provide additional characters for phylogenetic investigation. † Methods Floral ontogeny of 15 species from 12 genera is examined and described using scanning electron microscopy. † Key Results Initiation of the three perianth whorls is either helical or unidirectional. Merism is mostly trimer- ous, occasionally tetramerous and the members of the inner perianth whorl may be missing or are in double pos- ition. The androecium and the gynoecium were found to be variable in organ numbers (from highly polymerous http://aob.oxfordjournals.org/ to a fixed number, six in the androecium and one or two in the gynoecium). Initiation of the androecium starts invariably with three pairs of stamen primordia along the sides of the hexagonal floral apex. Although inner sta- minodes were not observed, they were reported in other genera and other families of Magnoliales, except Magnoliaceae and Myristicaceae.