Annonaceae), from Kalakkad-Mundanthurai Tiger Reserve (KMTR), India

Total Page:16

File Type:pdf, Size:1020Kb

Annonaceae), from Kalakkad-Mundanthurai Tiger Reserve (KMTR), India Indian Journal of Experimental Biology Vol. 57, July 2019, pp. 516-525 Reproductive biology and pollinators of a steno-endemic and critically endangered tree, Monoon tirunelveliense (Annonaceae), from Kalakkad-Mundanthurai Tiger Reserve (KMTR), India MB Viswanathan*, C Rajasekar & P Sathish Kumar Centre for Research and Development of Siddha-Ayurveda Medicines (CRDSAM), Department of Botany, Bharathidasan University, Tiruchirappalli-620 024, Tamil Nadu, India Received 06 June 2014; revised 27 June 2015 Reproductive biological studies on the endemic and threatened plants are vital to understand pollinators and their role in seed setting and their dispersal, and thereby identify appropriate initiatives for conservation. In this study, we investigated Monoon tirunelveliense (M.B. Viswan. & Manik.) B. Xue & R.M.K. Saunders (Annonaceae), a steno-endemic and critically endangered tree species from the Kalakkad-Mundanthurai Tiger Reserve of India for its phenology, pollen morphology and viability, pollinators and conditions required to increase individuals and populations. We used Global Positioning System mapping to collect required data. Recording of mere 171 individuals in 7 populations justify its inclusion in IUCN Red List Category of critically endangered. Though flowering occurs throughout the year, it is at peak in July. Flowers are protogynous and cantharophilous and bear 215+10 anthers/flower, 750+60 pollen grains/anther, 1,65,000+100 pollen grains/flower, 25+12 ovules/flower and 6,600:1 pollen/ovule. Predominant pollinators are beetles belonging to Carpophilus plagiatipennis and Cerambycid species. Other pollinators include species of Aphis, Azteca, Endaeus, Pseudococcus and Psylla. Species of Halyzia and Scolopendra have also been noticed. Pollinators left behind black markings after feeding. Pollen germination was high (73.44% to MTT assay; 73.10% at 20% sucrose concentration). While humus-free soil significantly promotes seed germination, it requires human intervention for successful conservation. Keywords: Aphids, Beetles, Black ants, Conservation, Mealy bugs, Humus-free soil, Weevils Reproductive biological studies provide better in Annonaceae. Reproductive biology of Annonaceae understanding of not only the pollinators and their role has been reported in neotropical species, viz., Asimina in seed setting and their dispersal; identify initiatives obovata and Asimina pygmaea4, Asimina parviflora5, required for conservation through human intervention Anaxagorea crassipetala6 and in paleotropical species, but also to understand their influence in the process of viz., Polyalthia littoralis7, Uvaria elmeri8, Popowia evolution1,2. Some investigators claimed that frequent pisocarpa9, Annona cherimola10 and Polyalthia occurrence of inbreeding caused by low population coffeoides and Polyalthia korinti11,12. density in tropical rain forests accelerates species Annonaceae has more specialized pollination diversification. Population density, phenology, sexual systems than the primitive families in Magnoliaceae systems, and physiological self-incompatibility and Eupomatiaceae13 as the flowers of Annonaceae are mechanisms determine and influence the breeding visited by a diverse array of insects which is considered patterns of plants3. Floral morphology and biology, to be a prototype of the beetle pollination. Such critical such as size of the flowers and floral chamber, amount studies, fundamental to understand evolutionary of pollen, corrugated inner side of petals having rich in mechanisms in Angiosperms, still remain obscure in carbohydrates and minute quantity of vitamins and Annonaceae14,15. Major pollinators in Annonaceae are lipids, colour, thickness and odour of petals and beetles16,17. Other insect guilds of Annonaceae include stigmatic secretions, pollination patterns and thrips9,16-19, flies5,20-21, bees17,20-25 and cockroaches8. quantitative studies of genetic variations are important Mode of pollination has been reported in new and old for understanding and characterizing breeding systems world Annonaceae26,27. Interactions among pollinator behaviour, pollen carryover, flowering phenology or —————— their effects on pollen dispersal and plant mating *Correspondence: 28 Phone: +91 431 2407061; 2407045; (Mob.): +91 94432 29677 systems in palaeotropical species were elucidated . E-mail: [email protected] Pollination of Annonaceae has been reported from VISWANATHAN et al.: REPRODUCTIVE BIOLOGY OF MONOON TIRUNELVELIENSE (ANNONACEAE) IN INDIA 517 Brazil, Asian tropics, and Lambir hills in Sarawak29,30. average of 38ºC. But in the forests, annual average A new species called Polyalthia tirunelveliensis was temperature ranges from 13.5°C in the southern published from the Kalakkad-Mundanthurai Tiger Tropical wet evergreen forests to 23°C in the Reserve (KMTR) in the Southern Western Ghats of Tirunelveli semi-evergreen and dry, moist or mixed Peninsular India31. It is a steno-endemic and critically deciduous forests. Rainfall varies from a minimum of endangered species. The genus Monoon with 56 900 mm in the plains to a maximum of 5,000 mm per species was resurrected wherein 37 species were year depending upon the altitude and forest type (Fig. 1). transferred from Polyalthia, including Polyalthia Study species tirunelveliensis, 18 species from Enicosanthum and one Monoon tirunelveliense is a lofty tree growing up to species of Woodiellantha32. 25 m high. Leaves are elliptic-lanceolate, oblong- Considering the pivotal role played by the elliptic or oblong-oblanceolate, margin undulate, dark reproductive biological studies in the conservation of greenish brown above. Flowers (Fig. 2) are bisexual, endemic and threatened species, here, we investigated in aggregated clusters on trunk at scars of the branches Monoon tirunelveliense (M.B. Viswan. & Manik.) B. and at leaf axils, 8-25 per cluster. Sepals are 3, green. Xue & R.M.K. Saunders, a steno-endemic and critically Petals are 6, arranged in 2 rows, 3 in each row, green to endangered tree from the Kalakkad-Mundanthurai yellow through greenish yellow, rarely 4, arranged in Tiger Reserve, southern Western Ghats, to increase the 2 + 2 manner. Stamens are 215 + 10, green to yellow individuals and populations of the species. through greenish yellow, arranged spirally. Carpels are 25 + 12, green to yellow through greenish yellow, Materials and Methods arranged spirally. Ripe carpels/fruits are in clusters Study area (Fig. 3), 12-25 per cluster, pale to dark green when The Kalakkad-Mundanthurai Tiger Reserve mature, fallen ones turn to dark black from dark brown, (KMTR) is geographically located at 8°25′–8°53′N ellipsoid, 6.4-7.6 × 1.8-3.0 cm. Seeds are creamish white, ellipsoid, 2.8-3.5 × 1.2-2.4 cm. and 77°10′–77°35′E in the Southern Western Ghats of Peninsular India and covers an area of 895 km². The Distribution of populations foothills up to 350 m MSL record 44ºC during March All the individuals of 7 populations were recorded to May, 24ºC during December and January and an with their respective latitude, longitude and altitude using Garmin eTrex Vista® HCx Global Positioning System (GPS), transferred the data to the Garmin Map Source, and calculated area of occupancy (AOO), extent of occurrence (EOO) and total area of occupancy (TAOO). Light intensity Light readings were recorded before sunrise between 0500 and 0530 h at ground level at the intersection of each location. During this period, no direct light entered the forest and shadow had no influence. Light reading in an open area was recorded for control. Standard value was obtained by comparing the open area and forest reading by measuring incidence of light on the canopy cover and the forest floor. Phenology Growth and formation of leaves, origin and development of inflorescences, anthesis in flowers, pollinators, feeding mechanism of predators, quantity of pollen output, stigmatic secretions, change in coloring pattern of petals, formation of black spots from the cut edges by the predation of beetles, weevils and lice, fruit set and maturity were recorded Fig. 1 — Distribution of seven populations in the KMTR. and analyzed for 35 individuals, 5 per population 518 INDIAN J EXP BIOL, JULY 2019 from 7 populations, every month from January 2009 with 5% sucrose. The pollen grain was considered to May 2012. viable if it turned into deep pink or colourless but showed irregular black lines over its surface34. Observation and identification of floral visitors and pollen grains Fluoresceine diacetate (FDA) test Pollinators were studied right from the bud phase Pollen grains were added with a 0.5 mol sucrose to fertilization phase as the flowers are protogynous solution and FDA (2 mg dissolved with 1 mL and cantharophilous-pollinated ones. The peak of acetone) solution35 and incubated for 30 min at room flowering season has helped to record visit duration temperature (28°C). After incubation, water drops and visit frequency in a particular flower. Activities of were added with the sample to dilute the solution floral visitors both inside and outside of the floral mixture. This process was repeated until the solution chambers and their arrival patterns were recorded at has become clear and colorless. Thereafter, the 1-2 h intervals in a day. Pollen grains of Monoon solution was decanted and removed excess water with tirunelveliense were photographed under Motic the help of filter paper. Stained and unstained pollen Stereo-Zoom Microscope, Italy, and compared with grains were observed under the microscope. the photographs of the
Recommended publications
  • Annonaceae in the Western Pacific: Geographic Patterns and Four New
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: European Journal of Taxonomy Jahr/Year: 2017 Band/Volume: 0339 Autor(en)/Author(s): Turner Ian M., Utteridge M. A. Artikel/Article: Annonaceae in the Western Pacific: geographic patterns and four new species 1-44 © European Journal of Taxonomy; download unter http://www.europeanjournaloftaxonomy.eu; www.zobodat.at European Journal of Taxonomy 339: 1–44 ISSN 2118-9773 https://doi.org/10.5852/ejt.2017.339 www.europeanjournaloftaxonomy.eu 2017 · Turner I.M. & Utteridge T.M.A. This work is licensed under a Creative Commons Attribution 3.0 License. Research article Annonaceae in the Western Pacifi c: geographic patterns and four new species Ian M. TURNER 1,* & Timothy M.A. UTTERIDGE 2 1,2 Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK. * Corresponding author: [email protected] 2 Email: [email protected] Abstract. The taxonomy and distribution of Pacifi c Annonaceae are reviewed in light of recent changes in generic delimitations. A new species of the genus Monoon from the Solomon Archipelago is described, Monoon salomonicum I.M.Turner & Utteridge sp. nov., together with an apparently related new species from New Guinea, Monoon pachypetalum I.M.Turner & Utteridge sp. nov. The confi rmed presence of the genus in the Solomon Islands extends the generic range eastward beyond New Guinea. Two new species of Huberantha are described, Huberantha asymmetrica I.M.Turner & Utteridge sp. nov. and Huberantha whistleri I.M.Turner & Utteridge sp. nov., from the Solomon Islands and Samoa respectively. New combinations are proposed: Drepananthus novoguineensis (Baker f.) I.M.Turner & Utteridge comb.
    [Show full text]
  • Phylogenomics of the Major Tropical Plant Family Annonaceae Using Targeted Enrichment of Nuclear Genes
    ORIGINAL RESEARCH published: 09 January 2019 doi: 10.3389/fpls.2018.01941 Phylogenomics of the Major Tropical Plant Family Annonaceae Using Targeted Enrichment of Nuclear Genes Thomas L. P. Couvreur 1*†, Andrew J. Helmstetter 1†, Erik J. M. Koenen 2, Kevin Bethune 1, Rita D. Brandão 3, Stefan A. Little 4, Hervé Sauquet 4,5 and Roy H. J. Erkens 3 1 IRD, UMR DIADE, Univ. Montpellier, Montpellier, France, 2 Institute of Systematic Botany, University of Zurich, Zurich, Switzerland, 3 Maastricht Science Programme, Maastricht University, Maastricht, Netherlands, 4 Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université-Paris Saclay, Orsay, France, 5 National Herbarium of New South Wales (NSW), Royal Botanic Gardens and Domain Trust, Sydney, NSW, Australia Edited by: Jim Leebens-Mack, University of Georgia, United States Targeted enrichment and sequencing of hundreds of nuclear loci for phylogenetic Reviewed by: reconstruction is becoming an important tool for plant systematics and evolution. Eric Wade Linton, Central Michigan University, Annonaceae is a major pantropical plant family with 110 genera and ca. 2,450 species, United States occurring across all major and minor tropical forests of the world. Baits were designed Mario Fernández-Mazuecos, by sequencing the transcriptomes of five species from two of the largest Annonaceae Real Jardín Botánico (RJB), Spain Angelica Cibrian-Jaramillo, subfamilies. Orthologous loci were identified. The resulting baiting kit was used to Centro de Investigación y de Estudios reconstruct phylogenetic relationships at two different levels using concatenated and Avanzados (CINVESTAV), Mexico gene tree approaches: a family wide Annonaceae analysis sampling 65 genera and *Correspondence: Thomas L. P.
    [Show full text]
  • Annonaceae): Curculionid Beetle Pollination, Promoted by Floral Scents and Elevated Floral Temperatures
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by HKU Scholars Hub Pollination ecology and breeding system of Xylopia championii Title (Annonaceae): curculionid beetle pollination, promoted by floral scents and elevated floral temperatures Ratnayake, RMCS; Gunatilleke, IAUN; Wijesundara, DSA; Author(s) Saunders, RMK International Journal Of Plant Sciences, 2007, v. 168 n. 9, p. Citation 1255-1268 Issued Date 2007 URL http://hdl.handle.net/10722/57160 Rights Creative Commons: Attribution 3.0 Hong Kong License Int. J. Plant Sci. 168(9):1255–1268. 2007. Ó 2007 by The University of Chicago. All rights reserved. 1058-5893/2007/16809-0003$15.00 DOI: 10.1086/521689 POLLINATION ECOLOGY AND BREEDING SYSTEM OF XYLOPIA CHAMPIONII (ANNONACEAE): CURCULIONID BEETLE POLLINATION, PROMOTED BY FLORAL SCENTS AND ELEVATED FLORAL TEMPERATURES R. M. C. S. Ratnayake,* I. A. U. N. Gunatilleke,y D. S. A. Wijesundara,z and R. M. K. Saunders1,* *Division of Ecology and Biodiversity, School of Biological Sciences, University of Hong Kong, Pokfulam Road, Hong Kong, China; yDepartment of Botany, University of Peradeniya, Peradeniya, Sri Lanka; and zRoyal Botanic Gardens, Peradeniya, Sri Lanka Data on the reproductive biology of the Annonaceae are rather fragmentary,particularlyfor paleotropical species. The pollination ecology and breeding system of the Sri Lankan endemic Xylopia championii (Annonaceae) are described in detail. The pollination ecology was investigated using a diverse range of approaches, including (1) observations of flower-level and population-level phenology, (2) assessments of floral visitors and effective pollinators, (3) monitoring of floral temperature in situ using a digital data logger, and (4) analysis of scent chemistry using solid-phase microextraction sampling and gas chromatography–mass spectrometry identifica- tion of volatiles.
    [Show full text]
  • The Vascular Flora of the Lake Thoreau Environmental Center
    THE VASCULAR FLORA OF THE LAKE THOREAU ENVIRONMENTAL CENTER, FORREST AND LAMAR COUNTIES, MISSISSIPPI, WITH COMMENTS ON COMPOSITIONAL CHANGE AFTER A DECADE OF PRESCRIBED FIRE William J. McFarland, Danielle Cotton, Mac H. Alford, Micheal A. Davis 118 College Dr., Box 5018 School of Biological, Environmental, and Earth Sciences The University of Southern Mississippi Hattiesburg, Mississippi 39406, U.S.A. [email protected] ABSTRACT Longleaf pine (Pinus palustris Mill.) ecosystems exhibit high species diversity and are major contributors to the extraordinary levels of regional biodiversity and endemism found in the North American Coastal Plain Province. These forests require frequent fire return inter- vals (every 2–3 years) to maintain this rich diversity. In 2009, a floristic inventory was conducted at the Lake Thoreau Environmental Center owned by the University of Southern Mississippi in Hattiesburg, Mississippi. The Center is located on 106 ha with approximately half cov- ered by a 100+ year old longleaf pine forest. When the 2009 survey was conducted, fire had been excluded for over 20 years resulting in a dense understory dominated by woody species throughout most of the forest. The 2009 survey recorded 282 vascular plant species. Prescribed fire was reintroduced in 2009 and reapplied again in 2010, 2012, 2014, 2016, and 2018. A new survey was conducted in 2019 to assess the effects of prescribed fire on floristic diversity. The new survey found an additional 268 species bringing the total number of plants species to 550. This study highlights the changes in species diversity that occurs when fire is reintroduced into a previously fire-suppressed system and the need to monitor sensitive areas for changes in species composition.
    [Show full text]
  • Comparative Reproductive Biology of Two Florida Pawpaws Asimina Reticulata Chapman and Asimina Tetramera Small Anne Cheney Cox Florida International University
    Florida International University FIU Digital Commons FIU Electronic Theses and Dissertations University Graduate School 11-5-1998 Comparative reproductive biology of two Florida pawpaws asimina reticulata chapman and asimina tetramera small Anne Cheney Cox Florida International University DOI: 10.25148/etd.FI14061532 Follow this and additional works at: https://digitalcommons.fiu.edu/etd Part of the Biology Commons Recommended Citation Cox, Anne Cheney, "Comparative reproductive biology of two Florida pawpaws asimina reticulata chapman and asimina tetramera small" (1998). FIU Electronic Theses and Dissertations. 2656. https://digitalcommons.fiu.edu/etd/2656 This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact [email protected]. FLORIDA INTERNATIONAL UNIVERSITY Miami, Florida COMPARATIVE REPRODUCTIVE BIOLOGY OF TWO FLORIDA PAWPAWS ASIMINA RETICULATA CHAPMAN AND ASIMINA TETRAMERA SMALL A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in BIOLOGY by Anne Cheney Cox To: A rthur W. H arriott College of Arts and Sciences This dissertation, written by Anne Cheney Cox, and entitled Comparative Reproductive Biology of Two Florida Pawpaws, Asimina reticulata Chapman and Asimina tetramera Small, having been approved in respect to style and intellectual content, is referred to you for judgement. We have read this dissertation and recommend that it be approved. Jorsre E. Pena Steven F. Oberbauer Bradley C. Bennett Daniel F. Austin Suzanne Koptur, Major Professor Date of Defense: November 5, 1998 The dissertation of Anne Cheney Cox is approved.
    [Show full text]
  • (+)-Catechin and Quercetin from Pawpaw Pulp A
    Characterization of (+)-Catechin and Quercetin from Pawpaw Pulp A thesis presented to the faculty of the College of Health Sciences and Professions of Ohio University In partial fulfillment of the requirements for the degree Master of Science Jinsoo Ahn June 2011 © 2011 Jinsoo Ahn. All Rights Reserved. 2 This thesis titled Characterization of (+)-Catechin and Quercetin from Pawpaw Pulp by JINSOO AHN has been approved for the School of Applied Health Sciences and Wellness and the College of Health Sciences and Professions by Robert G. Brannan Assistant Professor of Applied Health Sciences and Wellness Randy Leite Interim Dean, College of Health Sciences and Professions 3 ABSTRACT AHN, JINSOO, M.S., June 2011, Human and Consumer Sciences, Food and Nutrition Characterization of (+)-Catechin and Quercetin from Pawpaw Pulp Director of Thesis: Robert G. Brannan This thesis investigates the concentration of total phenolics and total flavonoids in pulp extracts of pawpaw harvested in 2008, 2009, and 2010, and the concentration of (+)- catechin and quercetin flavonoids in 2010 pawpaw pulp extracts using high performance liquid chromatography (HPLC). Next, influence of frozen storage and air or vacuum packaging of pawpaw pulp on the concentration of (+)-catechin and quercetin flavonoids was examined. In addition, properties of pawpaw pulp such as moisture content, lipid content, percent sugar, color, and pH were measured. Total phenolics were determined using the Folin-Ciocalteu assay and reported as µmol gallic acid equivalent (GAE)/ g wet tissue. The concentration was observed in the order of 2009 sample (3.91 ± 1.61) < 2008 sample (11.19 ± 0.57) < 2010 sample (14.11 ± 1.90).
    [Show full text]
  • Traditional Medicine Research Doi: 10.12032/TMR20201218212
    Traditional Medicine Research doi: 10.12032/TMR20201218212 Traditional Indian Medicine Highlights This review reveals detailed information about herbal plant Polyalthia longifolia, including the propagation, synonyms, vernaculars, varieties of plant, medicinal significance, ecology and distribution, botanical and ethnobotanical description, phytochemical constituents, and pharmacological activity of the plant. Tradition The first recorded report of the use of Polyalthia longifolia performed by Troup RS and Chopra RN stated Polyalthia longifolia (P. longifolia) as a remedy for the treatment of gonorrhea and snake bites and scorpion stings. The aqueous extract of the bark of the plant reduces blood pressure and heart rate. In addition, the bark can be used as a febrifuge. In India it is well known as folk medicine in literatures. Such plants are used in the treatment of septic infections, hepatomegaly, hepatosplenomegaly, coughing, diarrhea, and cancer. It possesses good hyperglycemic, antimicrobial, antioxidant, analgesic, and antitumor activities. Sub mit a manuscript: https://www.tmrjournals.com/tmr 1 doi: 10.12032/TMR20201218212 REVIEW Abstract Herbal plants act as a significant source for discovering new compounds with potential therapeutic activities. Polyalthia longifolia, which is commonly known as an Indian mast tree, has various pharmacological properties, such as an anticancer, ulcer protective, hypoglycemic, hypotensive, a corrosion inhibitor, a bio-adsorbent, and few more. Moreover, it is known as false ashoka owing to its close resemblance with Saraca indica (ashoka tree). Various compounds have been reported from the extract of some parts of the plant, such as leaves, bark, root, and seeds. These extracts possess an ability to treat a number of human ailments, such as fever, ulcer, skin diseases, helminthiasis, and cardiac problems.
    [Show full text]
  • Annonaceae) in Peninsular Malaysia? Synopses of Huberantha, Maasia, Monoon and Polyalthia S.S
    European Journal of Taxonomy 183: 1–26 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2016.183 www.europeanjournaloftaxonomy.eu 2016 · Turner I.M. & Utteridge T.M.A. This work is licensed under a Creative Commons Attribution 3.0 License. Research article Whither Polyalthia (Annonaceae) in Peninsular Malaysia? Synopses of Huberantha, Maasia, Monoon and Polyalthia s.s. Ian M. TURNER * & Timothy M.A. UTTERIDGE Royal Botanic Gardens Kew, Richmond, Surrey, TW9 3AE, United Kingdom * Corresponding author: [email protected] Abstract. An updated classifi cation of Polyalthia in Peninsular Malaysia is presented. A synopsis (listing of species with synonymy and typifi cation, and keys to species) is presented for the genera Huberantha, Maasia, Monoon and Polyalthia sensu stricto. One new species (Polyalthia pakdin I.M.Turner & Utteridge sp. nov.) is described and a conservation assessment presented for it. Monoon xanthopetalum Merr. represents a new record for Peninsular Malaysia. Six new lectotypes are designated. Keywords. Enicosanthum, Huberantha, Maasia, Monoon, Polyalthia. Turner I.M. & Utteridge T.M.A. 2016. Whither Polyalthia (Annonaceae) in Peninsular Malaysia? Synopses of Huberantha, Maasia, Monoon and Polyalthia s.s. European Journal of Taxonomy 183: 1–26. http://dx.doi. org/10.5852/ejt.2016.183 Introduction When Sinclair (1955) revised the Annonaceae of the Malay Peninsula he recognised 32 species of Polyalthia Blume (including Polyalthia evecta Finet & Gagnep. from Peninsular Thailand still unrecorded from Peninsular Malaysia, and the cultivated Polyalthia longifolia (Sonn.) Thwaites). The 30 native species made Polyalthia the largest genus in the family as represented in the Malayan fl ora. The genus was characterised by Sinclair largely in terms of fl oral morphology including subequal corolla whorls of spreading, relatively fl at, petals, numerous fl at-topped stamens and many carpels with 1–5 ovules each.
    [Show full text]
  • Character Evolution in Anaxagorea (Annonaceae)
    QUT Digital Repository: http://eprints.qut.edu.au/ Scharaschkin, Tanya and Doyle, James A. (2006) Character evolution in Anaxagorea (Annonaceae). American Journal of Botany 93(1):pp. 36-54. © Copyright 2006 Botanical Society of America American Journal of Botany 93(1): 36±54. 2006. CHARACTER EVOLUTION IN ANAXAGOREA (ANNONACEAE)1 TANYA SCHARASCHKIN2,3 AND JAMES A. DOYLE2 2Section of Evolution and Ecology, University of California, Davis, California 95616 USA Anaxagorea is a critical genus for understanding morphological evolution in Annonaceae because it shares a variety of features with other Magnoliales that have been interpreted as primitive relative to other Annonaceae. We present a detailed discussion of morphological characters used in a combined morphological and molecular phylogenetic analysis of Anaxagorea, along with impli- cations of the analysis for character evolution in the genus. In spite of a high level of homoplasy in stamen and leaf venation characters, their removal results in loss of resolution in the trees obtained. The distributions of characters on trees con®rm assumptions that several distinctive similarities between Anaxagorea and other Magnoliales are primitive retentions (e.g., the presence of an adaxial plate of xylem in the midrib, nonpeltate stamen connectives, inner staminodes, and several leaf architectural characters). However, lateral extensions of the ``laminar'' stamens, though possibly ancestral in Anaxagorea, are convergent with those in other Magnoliales. A number of morphological synapomorphies have been identi®ed for a clade containing most Central American species and another comprising all Asian species (e.g., conical bud shape and reduced inner petals for the Central American clade, and adaxial cuticular striations and capitate stigma shape for the Asian clade).
    [Show full text]
  • Natural Resource Condition Assessment Horseshoe Bend National Military Park
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science Natural Resource Condition Assessment Horseshoe Bend National Military Park Natural Resource Report NPS/SECN/NRR—2015/981 ON THE COVER Photo of the Tallapoosa River, viewed from Horseshoe Bend National Military Park Photo Courtesy of Elle Allen Natural Resource Condition Assessment Horseshoe Bend National Military Park Natural Resource Report NPS/SECN/NRR—2015/981 JoAnn M. Burkholder, Elle H. Allen, Stacie Flood, and Carol A. Kinder Center for Applied Aquatic Ecology North Carolina State University 620 Hutton Street, Suite 104 Raleigh, NC 27606 June 2015 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service. The series supports the advancement of science, informed decision-making, and the achievement of the National Park Service mission. The series also provides a forum for presenting more lengthy results that may not be accepted by publications with page limitations. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner.
    [Show full text]
  • Sniffing out Evolution
    WAGENINGEN NIFFING OUT VOLUTION UR S E Congruence of Fragrances and Phylogenetic Relationships in Annonaceae Jeike L. van de Poel BSc. – MBI 890421659010 Under supervision of Dr. Lars Chatrou and Dr. Kate Goodrich Biosystematics group, October 2012 Course code: BIS-80439 Abstract The flowering plants are a relatively young group that has reached high levels of diversity and harbors an enormous assortment of chemical components. Annonaceae encompass an astounding amount of different flower fragrances. Floral odor is important in the attraction of pollinators, especially if the pollinators in question are beetles, which is the case for most Annonaceae. A floral fragrance consists of approximately 100 Volatile Organic Compounds. From two genera within the Annonaceae (Asimina Adans. and Deeringothamnus Small) the complete chemical composition of the floral scent has been studied. These chemical data were provided in order to perform optimizations over a simplified version of an existing phylogenetic tree based on chloroplast markers (ITS, accD-psal, matK-trnK, psbA-trnH, psbM-ycf6, rpL16 intron, rpl32-trnl, rpoB-trnC, trnC-ycf6, trnL-trnL-trnF, trnS-psbC, trnS-trnfM, ycf1). Due to a lack of previous studies in which phylogenetic analysis and extensive collection of fragrance data are combined, there is no real agreement as to what is the best method to use fragrance data in phylogenetic analyses. The aim of this study is to find out which method (within Maximum Parsimony and Maximum Likelihood optimization) is best to use for optimization of components from floral fragrances, and whether it is possible to use chemical data as a means to resolve polytomies.
    [Show full text]
  • Globaltreesearch Database Sources
    GlobalTreeSearch database sources Abbott, J. R. (2009). Phylogeny of the Poligalaceae and a Revision of Badiera. Doctoral dissertation, University of Florida, FL. Acevedo-Rodríguez, P. (2011). Allophylastrum: a new genus of Sapindaceae from northern South America. PhytoKeys, 5, 39-43. Acevedo-Rodríguez, P. & Strong, M. T. (2007). Catalogue of the seed plants of the West Indies. Retreived September 01, 2014, from http://botany.si.edu/Antilles/WestIndies/. Acevedo-Rodríguez, P. & Strong, M. T. (2012). Catalogue of Seed Plants of the West Indies. Smithsonian Contributions to Botany, 98, 1-92. Acevedo-Rodríguez, P. & Brewer, S. W. (2016). Spathelia belizensis, a new species and first record for the genus in Central America (tribe Spathelieae, Rutaceae). PhytoKeys, 75, 145- 151. Adema, F. & van der Ham, R. W. J. M. (1993). Cnesmocarpon (Gen. Nov.), Jagera and Trigonachras (Sapindaceae-Cupanieae): Phylogeny and Systematics. Blumea, 38, 73-215. Agostini, G. & Fariñas, M. (1963). Holotype of Maytenus agostinii Steyerm. (Celastraceae). Caracas: Fundación Instituto Botánico de Venezuela. Akopian, S. S. (2007). On the Pyrus L. (Rosaceae) species in Armenia. Flora, Vegetation and Plant Resources of Armenia, 16, 15-26. Alejandro, G. J. D. & Meve, U. (2016). Rubovietnamia coronula sp. nov. (Rubiaceae: Gardenieae) from the Philippines. Nordic Journal of Botany. 34 (2), 385–389. Alemayehu, G., Asfaw, Z. & Kelbessa, E. (2016) Cordia africana (Boraginaceae) in Ethiopia: A review on its taxonomy, distribution, ethnobotany and conservation status. International Journal of Botany Studies. 1 (2), 38-46. Alfarhan, A. H., Al-Turki, T. A. & Basahy, A. Y. (2005). Flora of Jizan Region. Final Report Supported by King Abdulaziz City for Science and Technology.
    [Show full text]