Ictalurus Punctatus (Rafinesque, 1818)

Total Page:16

File Type:pdf, Size:1020Kb

Ictalurus Punctatus (Rafinesque, 1818) Food and Agriculture Organization of the United Nations Fisheries and for a world without hunger Aquaculture Department Cultured Aquatic Species Information Programme Ictalurus punctatus (Rafinesque, 1818) I. Identity V. Status And Trends a. Biological Features VI. Main Issues b. Images Gallery a. Responsible Aquaculture Practices II. Profile VII. References a. Historical Background a. Related Links b. Main Producer Countries c. Habitat And Biology III. Production a. Production Cycle b. Production Systems c. Diseases And Control Measures IV. Statistics a. Production Statistics b. Market And Trade Identity Ictalurus punctatus Rafinesque, 1818 [Ictaluridae] FAO Names: En - Channel catfish, Fr - Barbue de rivière, Es - Bagre de canal Biological features Cylindrical body with skin lacking in scales; spots on the sides. Soft fin rays with exception of dorsal and pectoral fins which have spines. Adipose fin present. Barbels located below and at the corners of the mouth, with two barbels on the dorsal surface of the head anterior of the eyes and posterior of the snout. Deeply forked caudal fin and curved anal fin with 24-29 rays. Images gallery FAO Fisheries and Aquaculture Department Catfish pond Catfish fry Catfish raceway Wood spawning container 13-inch catfish (courtesy www.combat-fishing.com) Hatching Catfish Profile Historical background Interest in channel catfish began when the United States Fish and Fisheries Commission began stocking fish collected from the wild in the 1870s. Channel catfish were native primarily to the Mississippi River Valley but were widely introduced throughout the nation by the Commission. Spawning was first achieved in 1890 in aquaria, at which time it was learned that the male guards the eggs during incubation. Pond spawning was first observed in 1914 at a government hatchery. Spawning nests (nail kegs) were first used in 1916 and the numbers of fingerlings produced per stocked female increased. Indoor hatching of channel catfish eggs in troughs equipped with paddlewheels to move the water in a manner that simulates the fanning of the eggs by the male fish was first accomplished in 1929. Commercial aquaculture was first considered to be economically practical in the late 1950s. Catfish farming developed rapidly during the 1960s and 1970s as improvements in pond management, disease identification and control, and prepared feeds were developed and adopted by farmers. The commercial industry developed FAO Fisheries and Aquaculture Department in the southern United States within the original range of the species. At least 90 percent of the farmed fish are produced in the Mississippi River Valley region. Main producer countries Channel catfish have been introduced into Europe, Russian Federation, Cuba and portions of Latin America. The primary interest in many countries appears to be recreational fishing. Main producer countries of Ictalurus punctatus (FAO Fishery Statistics, 2006) Habitat and biology Channel catfish are native to flowing waters in temperate environments within North America, including southern Canada and northern Mexico. Adults first spawn at two or three years of age. Spawning in nature occurs in the spring, beginning in about March in the southern part of the range and later as latitude increases. Eggs are often deposited under fallen logs or in some type of natural depression. The eggs are laid in an adhesive mass. Females of 0.5-1.8 kg produce an average of 8 800 eggs/kg of body weight, with larger females producing an average of 6 600 eggs/kg. Once egg laying and fertilization are complete, the male will chase the female from the nesting area and tend to the eggs by fanning the mass with his fins to keep oxygenated water moving over them. Depending on temperature, the eggs will hatch within 5-10 days and the male will continue to guard the sac fry for several days until the yolk sacs are absorbed and the fry are able to swim about in search of food. Channel catfish are known as opportunistic omnivores in that they will feed upon a wide variety of plant and animal matter; that is, virtually anything that is available. Production Production cycle FAO Fisheries and Aquaculture Department Production cycle of Ictalurus punctatus Production systems Channel catfish are reared in ponds, cages, and circular tanks or linear raceways in both the United States and China. Monoculture dominates in the U.S., while both monoculture and polyculture with traditional species such as carp occurs in China. Formulated feeds are employed in both nations. The details presented below refer to channel catfish culture in the United States of America. Seed supply The majority of channel catfish are grown in ponds. Spawning occurs in the spring and may be conducted in open ponds where adults are stocked at a density ranging from 60-325/ha in ratios ranging from 1:1 to 1:4 (male:female) and allowed to select their own mates. Alternatively, adults may be paired in pens within a spawning pond. In both instances nests comprised of metal cans, drain tiles, wooden boxes or other types of enclosures of appropriate size are utilized. Eggs may be allowed to hatch within the spawning pond. In that case, after the spawning season the adults are typically removed to another pond. More commonly, the nests are inspected at three or four day intervals and any egg masses found are collected and taken to a hatchery, where the eggs are incubated in troughs or raceways and the fry are maintained until they swim to the water surface in search of food. Fry are often fed finely ground prepared feed for several days prior to being stocked in fingerling ponds where they are reared for several months (often throughout the first year of life). Some farmers specialize in selling fry or fingerlings to producers of market-sized fish, while others purchase fingerlings for grow-out; however, many farmers operate their own hatcheries and grow-out operations. Ongrowing techniques Ponds Once the fingerlings are several centimetres long, they can be stocked into grow-out ponds. The traditional approach was to stock a given number of fish per hectare, grow them until the autumn of the second year of FAO Fisheries and Aquaculture Department life, drain the pond, and harvest the fish for marketing. Since nearly all the fish produced under that system reached the market over a limited period of time, the flow of product to the market was not conducive to having fresh product available year round. Also, glutting of the market during the fall led to depressed prices to producers. Today, an intermittent harvesting approach is employed. Ponds are partially harvested every several weeks to a few months and marketable fish are removed. The appropriate number of fingerlings is then stocked to replace the fish removed. Thus, various fish sizes are in the pond at the same time. The process can be maintained for several years, during which time the ponds are not drained. Fingerling ponds are often fertilized, usually with inorganic fertilizer, in advance of stocking to induce the development of plankton blooms. Prepared feed fines, and later crumbles, then standard feed pellets (about 6 mm diameter) are provided. The feeding rate may be as high as 50 percent of estimated fish body weight daily at first feeding but is gradually reduced as the fish grow. Once the fish are a few centimetres long they are fed at 3-4 percent of body weight daily during the growing season. The feeding level is reduced and feed may even be withheld completely during winter months. Water quality management is critical to pond catfish production. High stocking densities, particularly during summer, can lead to stress, disease, and mortality due to deterioration in water quality, particularly low dissolved oxygen. During critical periods ponds are monitored and emergency aeration is provided when necessary to maintain dissolved oxygen levels within an acceptable range (typically >3.0 mg/litre). Tanks and Raceways Channel catfish are sometimes reared in flow-through tanks or raceways, indoors or outdoors. Recirculating system culture has been attempted over the years but few, if any, economically successful farms have been developed. Flow-through raceway and tank culture depends upon a suitable supply of water of the proper temperature (ideally 26-30 °C) for grow-out. Such water temperatures can be obtained from surface waters in the southern United States, from geothermal waters in various parts of the nation, and from co-generation or electric power generating plants. Production of catfish in such systems represents a small fraction of the annual total. The other aspects of tank and raceway culture are similar to those associated with pond culture with the exception that much less land is required, though water quantities (and thus costs) incurred may be far in excess of those associated with pond culture. Cages Historically, there has been some interest in rearing channel catfish in cages placed in streams, lakes or reservoirs. While some facilities of that type could still be in operation, their contribution to total catfish production is insignificant. Other than the type of culture chambers used, cage culture practices would be similar to those used by pond and tank culturists. Feed supply The prepared feeds referred to above consist of various combinations of such plant proteins such as soybean meal, cottonseed meal, corn meal, peanut (groundnut) meal, and wheat, supplemented with vegetable oil, vitamins, and minerals. Very little, if any animal protein (e.g. fish meal) is currently employed in grow-out feeds for channel catfish. National and international feed companies provide feeds formulated specifically for catfish, as do many local feed mills in regions where catfish culture is concentrated. The feeds used in tanks and raceways may be supplemented with excess levels of vitamins, since natural foods that can supply those nutrients may not be available, particularly with regard to indoor systems (other than greenhouses).
Recommended publications
  • WDFW Washington State Status Report for the Bald Eagle
    STATE OF WASHINGTON October 2001 WashingtonWashington StateState StatusStatus ReportReport forfor thethe BaldBald EagleEagle by Derek W. Stinson, James W. Watson and Kelly R. McAllister Washington Department of FISH AND WILDLIFE Wildlife Program WDFW 759 The Washington Department of Fish and Wildlife maintains a list of endangered, threatened and sensitive species (Washington Administrative Codes 232-12-014 and 232-12-011, Appendix I). In 1990, the Washington Fish and Wildlife Commission adopted listing procedures developed by a group of citizens, interest groups, and state and federal agencies (Washington Administrative Code 232-12-297, Appendix I). The procedures include how species listing will be initiated, criteria for listing and delisting, public review and recovery and management of listed species. The first step in the process is to develop a preliminary species status report. The report includes a review of information relevant to the species’ status in Washington and addresses factors affecting its status including, but not limited to: historic, current, and future species population trends, natural history including ecological relationships, historic and current habitat trends, population demographics and their relationship to long term sustainability, and historic and current species management activities. The procedures then provide for a 90-day public review opportunity for interested parties to submit new scientific data relevant to the draft status report and classification recommendation. During the 90-day review period, the Department held three public meetings to take comments and answer questions. The Department has now completed the final status report, listing recommendation and State Environmental Policy Act findings for presentation to the Washington Fish and Wildlife Commission.
    [Show full text]
  • Fishery Basics – Seafood Markets Types of Fishery Products
    Fishery Basics – Seafood Markets Types of Fishery Products Fish products are highly traded and valuable commodities around the world. Seafood products are high in unsaturated fats and contain many proteins and other compounds that enhance good health. Fisheries products can be sold as live, fresh, frozen, preserved, or processed. There are a variety of methods to preserve fishery products, such as fermenting (e.g., fish pastes), drying, smoking (e.g., smoked Salmon), salting, or pickling (e.g., pickled Herring) to name a few. Fish for human consumption can be sold in its entirety or in parts, like filets found in grocery stores. The vast majority of fishery products produced in the world are intended for human consumption. During 2008, 115 million t (253 billion lbs) of the world fish production was marketed and sold for human consumption. The remaining 27 million t (59 billion lbs) of fishery production from 2008 was utilized for non-food purposes. For example, 20.8 million t (45 billion lbs) was used for reduction purposes, creating fishmeal and fish oil to feed livestock or to be used as feed in aquaculture operations. The remainder was used for ornamental and cultural purposes as well as live bait and pharmaceutical uses. Similar to the advancement of fishing gear and navigation technology (See Fishing Gear), there have been many advances in the seafood-processing sector over the years. Prior to these developments, most seafood was only available in areas close to coastal towns. The modern canning process originated in France in the early 1800s. Cold storage and freezing plants, to store excess harvests of seafood, were created as early as 1892.
    [Show full text]
  • Fishery Oceanographic Study on the Baleen Whaling Grounds
    FISHERY OCEANOGRAPHIC STUDY ON THE BALEEN WHALING GROUNDS KEIJI NASU INTRODUCTION A Fishery oceanographic study of the whaling grounds seeks to find the factors control­ ling the abundance of whales in the waters and in general has been a subject of interest to whalers. In the previous paper (Nasu 1963), the author discussed the oceanography and baleen whaling grounds in the subarctic Pacific Ocean. In this paper, the oceanographic environment of the baleen whaling grounds in the coastal region ofJapan, subarctic Pacific Ocean, and Antarctic Ocean are discussed. J apa­ nese oceanographic observations in the whaling grounds mainly have been carried on by the whaling factory ships and whale making research boats using bathyther­ mographs and reversing thermomenters. Most observations were made at surface. From the results of the biological studies on the whaling grounds by Marr ( 1956, 1962) and Nemoto (1959) the author presumed that the feeding depth is less than about 50 m. Therefore, this study was made mainly on the oceanographic environ­ ment of the surface layer of the whaling grounds. In the coastal region of Japan Uda (1953, 1954) plotted the maps of annual whaling grounds for each 10 days and analyzed the relation between the whaling grounds and the hydrographic condition based on data of the daily whaling reports during 1910-1951. A study of the subarctic Pacific Ocean whaling grounds in relation to meteorological and oceanographic conditions was made by U da and Nasu (1956) and Nasu (1957, 1960, 1963). Nemoto (1957, 1959) also had reported in detail on the subject from the point of the food of baleen whales and the ecology of plankton.
    [Show full text]
  • International Whaling Commission (IWC)
    Food and Agriculture Organization of the United Nations Fisheries and for a world without hunger Aquaculture Department Regional Fishery Bodies Summary Descriptions International Whaling Commission (IWC) Objectives Area of competence Species and stocks coverage Members Further information Objectives The main objective of the International Whaling Commission (IWC) is to establish a system of international regulations to ensure proper and effective conservation and management of whale stocks. These regulations must be "such as are necessary to carry out the objectives and purposes of the Convention and to provide for the conservation, development, and optimum utilization of whale resources; must be based on scientific findings; and must take into consideration the interests of the consumers of whale products and the whaling industry." Area of competence The area of competence of the IWC is global. The International Convention for the Regulation of Whaling also applies to factory ships, land stations, and whale catchers under the jurisdiction of the Contracting Governments and to all waters in which whaling is prosecuted by such factory ships, land stations, and whale catchers. FAO Fisheries and Aquaculture Department IWC area of competence Launch the RFBs map viewer Species and stocks coverage Blue whale (Balaenoptera musculus); bowhead whale (Balaena mysticetus); Bryde’s whale (Balaenoptera edeni, B. brydei); fin whale (Balaenoptera physalus); gray whale (Eschrichtius robustus); humpback whale (Megaptera novaeangliae); minke whale (Balaenoptera
    [Show full text]
  • 2019 AIM Program
    A Message from ASABE President Maury Salz Welcome to the 2019 Annual International Meeting (AIM) of the American Society of Agricultural and Biological Engineers in Boston, Massachusetts. I extend a special welcome to first time participants, international attendees and pre-professionals. I am confident you will find the meeting a welcoming and stimulating investment of your time. AIM offers a wide array of opportunities for you to gain knowledge in technical sessions, make new or catch-up with old friends at social events, contribute to the ongoing growth efforts in technical communities, and to celebrate the accomplishments of peers in the awards ceremonies. I highly encourage you to engage in the opening keynote session by GreenBiz’s Joel Makower and the following panel discussion on sustainability and the need for a national strategy, which could alter how we live. We as individuals, and collectively as ASABE, will be challenged to think about how this broader vision of sustainability could fundamentally change our lives and the profession. I want to thank our friends at Cornell University for serving as local hosts and the volunteer coordinators. Students work as volunteers to enhance the experience for all meeting participants and you can locate them by their blue shirts. Please thank them when you have the chance. Boston is rich in history and be sure to take some time to experience what this unique area has to offer. I also encourage you to participate actively in AIM and reflect on how you can advance the Society goals to benefit yourself personally and the people of the world.
    [Show full text]
  • Commercial Fishing Guide |
    Texas Commercial Fishing regulations summary 2021 2022 SEPTEMBER 1, 2021 – AUGUST 31, 2022 Subject to updates by Texas Legislature or Texas Parks and Wildlife Commission TEXAS COMMERCIAL FISHING REGULATIONS SUMMARY This publication is a summary of current regulations that govern commercial fishing, meaning any activity involving taking or handling fresh or saltwater aquatic products for pay or for barter, sale or exchange. Recreational fishing regulations can be found at OutdoorAnnual.com or on the mobile app (download available at OutdoorAnnual.com). LIMITED-ENTRY AND BUYBACK PROGRAMS .......................................................................... 3 COMMERCIAL FISHERMAN LICENSE TYPES ........................................................................... 3 COMMERCIAL FISHING BOAT LICENSE TYPES ........................................................................ 6 BAIT DEALER LICENSE TYPES LICENCIAS PARA VENDER CARNADA .................................................................................... 7 WHOLESALE, RETAIL AND OTHER BUSINESS LICENSES AND PERMITS LICENCIAS Y PERMISOS COMERCIALES PARA NEGOCIOS MAYORISTAS Y MINORISTAS .......... 8 NONGAME FRESHWATER FISH (PERMIT) PERMISO PARA PESCADOS NO DEPORTIVOS EN AGUA DULCE ................................................ 12 BUYING AND SELLING AQUATIC PRODUCTS TAKEN FROM PUBLIC WATERS ............................. 13 FRESHWATER FISH ................................................................................................... 13 SALTWATER FISH .....................................................................................................
    [Show full text]
  • Fishery Improvement Projects
    Guidelines for Supporting Fishery Improvement Projects Working together, conservation groups and the seafood industry can be a powerful force for improving the sustainability of seafood and the health of ocean ecosystems. solutionsforseafood.org GUIDELINES FOR SUPPORTING FISHERY IMPROVEMENT PROJECTS The goal of this document is to define the kind of fishery improvement projects members of the Conservation Alliance will support (e.g., recognize on the Alliance fip tracking website and/or recommend business partners participate in or source from). Table of Contents GUIDELINESGUIDELINES FORFOR SUPPORTINGSUPPORTING FISHERYFISHERY IMPROVEMENTIMPROVEMENT PROJECTSPROJECTS / / TABLE OF CONTENTS PAGEPAGE 22 Guidelines for Supporting Fishery Improvement Projects Members of the Conservation There are many different ways to address management Alliance for Seafood and environmental problems in fisheries, including Solutions support the efforts policy change, targeted strategies such as bycatch fisheries are making to reduction, and multistakeholder efforts called fishery improve the sustainability of improvement projects (FIPs). While the latter are the their seafood products. focus of these guidelines, we believe all of these methods are valuable and play an important role in helping fisheries become more sustainable over time. GUIDELINES FOR SUPPORTING FISHERY IMPROVEMENT PROJECTS / Introduction PAGE 3 In 2012, the Conservation Alliance released its first set of guidelines for fishery improvement projects with the expectation that these guidelines would need to evolve over time. Since then, the number of fishery improvement projects around the world has increased substantially. Based on feedback from the Alliance community and industry and fishery stakeholders, the Alliance has updated the guidelines to be as clear as possible and recognize advances in the fishery improvement project landscape during the past two years.
    [Show full text]
  • Seafood Watch® Standard for Fisheries
    1 Seafood Watch® Standard for Fisheries Table of Contents Table of Contents ............................................................................................................................... 1 Introduction ...................................................................................................................................... 2 Seafood Watch Guiding Principles ...................................................................................................... 3 Seafood Watch Criteria and Scoring Methodology for Fisheries ........................................................... 5 Criterion 1 – Impacts on the Species Under Assessment ...................................................................... 8 Factor 1.1 Abundance .................................................................................................................... 9 Factor 1.2 Fishing Mortality ......................................................................................................... 19 Criterion 2 – Impacts on Other Capture Species ................................................................................ 22 Factor 2.1 Abundance .................................................................................................................. 26 Factor 2.2 Fishing Mortality ......................................................................................................... 27 Factor 2.3 Modifying Factor: Discards and Bait Use .................................................................... 29 Criterion
    [Show full text]
  • Fishing for Food Security the Importance of Wild Fisheries for Food Security and Nutrition APRIL 2016
    Fishing for Food Security The Importance of Wild Fisheries for Food Security and Nutrition APRIL 2016 This publication was produced for review by theUSAID United – FISHING States FOR Agency FOOD for International0 Development. It was preparedSECURITY by Measuring Impact. Table of Contents I. PREFACE 03 II. OVERVIEW 04 III. FISHERIES AND GLOBAL DEVELOPMENT 07 IV. KEY OPPORTUNITIES FOR ACTION 24 V. CASE STUDIES 28 VI.THE IMPORTANCE OF FISHERIES IN NINE FEED THE FUTURE PRIORITY COUNTRIES 32 VII.SOURCES 52 Figures 1. Global Fishing in 2010 06 2. Fish contributions to animal protein supply 09 3. Voluntary submissions of marine fisheries catch data by FAO member countries and estimations including all fisheries known to exist 10 4. Reconstructed global catch by fisheries sectors 11 5. Evidence base, poverty reduction benefits, and importance to biodiversity for specific conservation mechanisms 18 6. The biological effects of fully protected, no-take marine reserves 21 7. Summary of potential biomass and financial gains that can be produced through sustainable fisheries management 22 8. Rebuilding of Kenyan small-scale fisheries through gear restrictions and closed area management 23 9. Nutrition and food security statistics for Bangladesh 33 10. Nutrition and food security statistics for Cambodia 35 11. Nutrition and food security statistics for Ghana 37 12. Nutrition and food security statistics for Kenya 39 13. Nutrition and food security statistics for Liberia 41 14. Nutrition and food security statistics for Malawi 43 15. Nutrition and food security statistics for Mozambique 45 16. Nutrition and food security statistics for Senegal 47 17. Nutrition and food security statistics for Tanzania 49 18.
    [Show full text]
  • ICELAND, WHALING and ECOSYSTEM - BASED FISHERY MANAGEMENT
    ICELAND, WHALING and ECOSYSTEM - BASED FISHERY MANAGEMENT PETER CORKERON Iceland, whaling and ecosystem-based fishery management. Peter Corkeron Ph.D. http://aleakage.blogspot.com/ 1 Introduction Icelanders look to the sea, and always have. Fishing has always been important to them, and they have a good record of attempting to ensure that their fisheries are sustainable. As the Icelandic Ministry of Fisheries stated in a declaration on 17th October 2006, “The Icelandic economy is overwhelmingly dependent on the utilisation of living marine resources in the ocean around the country. The sustainability of the utilisation is therefore of central importance for the long-term well being of the Icelandic people. For this reason, Iceland places great emphasis on effective management of fisheries and on scientific research on all the components of the marine ecosystem. At a time when many fish stocks around the world are declining, or even depleted, Iceland's marine resources are generally in a healthy state, because of this emphasis. The annual catch quotas for fishing and whaling are based on recommendations by scientists, who regularly monitor the status of stocks, thus ensuring that the activity is sustainable.”. Fisheries account for approximately 40% of the value of Iceland’s exported goods and exported services, and roughly two-thirds of Iceland's exported goods, minus services. Fisheries and fish processing account for little under 10% of Iceland’s Gross Domestic Product (GDP), down from more than 15% in 1980. With a population of just over 300,000 in 2007, Iceland is the world’s 178th largest nation, but in 2002 it was still ranked as the world’s 13th largest fisheries exporter.
    [Show full text]
  • Fishing Vessels Fishing Vessel Types
    Fishery Basics – Fishing Vessels Fishing Vessel Types Fishing vessels are typically designed with a specific purpose. That purpose is to locate, catch, and preserve fish while out at sea. The planned operations of a vessel determine the overall size of the vessel, the arrangement of the deck, carrying capacity, as well as the machinery and types of equipment that will be supported by the vessel. Due to the inherent differences in fishing communities around the world, there is a wide range of types and styles of fishing vessels. Vessel sizes can range from the 2 m (6 ft) dug out canoes used in subsistence and artisanal fisheries, to factory ships that exceed 130 m (427 ft) in length. Commercial fishing vessels can also be characterized by a variety of criteria: types of fish (See Biology & Ecology) they catch, fishing gear and methods used (See Fishing Gear), capacity and processing capabilities, and the geographical origin of the vessel. In 2002, the United Nations Food and Agriculture Organization (FAO) estimated the world fishing fleet had approximately four million vessels, with an average vessel size ranging from 10-15 m (33-49 ft). Based on a quarterly catch statistics report, published by the Pacific Fisheries Information Network (PacFIN), approximately 1,950 vessels landed their catches in California ports. Due to the technological innovations that began in the 1950s, many fishing vessels are now classified as multi-purpose vessels, because of the ability to switch out gear types depending on the targeted species. However, single use vessels still exist in the world fishing fleet today.
    [Show full text]
  • Proceedings of the Indiana Academy of Science 1 1 8(2): 143—1 86
    2009. Proceedings of the Indiana Academy of Science 1 1 8(2): 143—1 86 THE "LOST" JORDAN AND HAY FISH COLLECTION AT BUTLER UNIVERSITY Carter R. Gilbert: Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611 USA ABSTRACT. A large fish collection, preserved in ethanol and assembled by Drs. David S. Jordan and Oliver P. Hay between 1875 and 1892, had been stored for over a century in the biology building at Butler University. The collection was of historical importance since it contained some of the earliest fish material ever recorded from the states of South Carolina, Georgia, Mississippi and Kansas, and also included types of many new species collected during the course of this work. In addition to material collected by Jordan and Hay, the collection also included specimens received by Butler University during the early 1880s from the Smithsonian Institution, in exchange for material (including many types) sent to that institution. Many ichthyologists had assumed that Jordan, upon his departure from Butler in 1879. had taken the collection. essentially intact, to Indiana University, where soon thereafter (in July 1883) it was destroyed by fire. The present study confirms that most of the collection was probably transferred to Indiana, but that significant parts of it remained at Butler. The most important results of this study are: a) analysis of the size and content of the existing Butler fish collection; b) discovery of four specimens of Micropterus coosae in the Saluda River collection, since the species had long been thought to have been introduced into that river; and c) the conclusion that none of Jordan's 1878 southeastern collections apparently remain and were probably taken intact to Indiana University, where they were lost in the 1883 fire.
    [Show full text]