Considerations for Restoration of Native Freshwater Fish Populations in the Parangarahu Lakes

Total Page:16

File Type:pdf, Size:1020Kb

Considerations for Restoration of Native Freshwater Fish Populations in the Parangarahu Lakes Considerations for restoration of native freshwater fish populations in the Parangarahu Lakes Longfin eel (Anguilla dieffenbachii). Prepared for Roopu Tiaki By Amber McEwan (BSc, MSc) Riverscapes Freshwater Ecology 1 October 2013 1. Executive Summary........................................................................................................................4 2. Background.....................................................................................................................................4 3. Aim and scope of this report.....................................................................................................7 4. Interviews with key stakeholders..................................................................................................8 4.1 Interview questions.........................................................................................................................8 4.2. Hutt City Council..........................................................................................................................10 4.3. Fisheries Trust...............................................................................................................................11 4.4. Department of Conservation......................................................................................................13 4.5. Greater Wellington Regional Council........................................................................................15 4.6. Port Nicholson Block Settlement Trust....................................................................................17 5. Review of existing information regarding the health of fish populations in the lakes and recommendations for design of future survey and monitoring regimes.............19 5.1. Review of previous freshwater fish surveys..............................................................................19 5.1.1. Records from the New Zealand Freshwater Fish Database (NZFFD)...............................19 5.1.2. Joy and Hewitt (2002)..................................................................................................................20 5.1.3. Te Atiawa / Taranaki whanui eel survey 2002.........................................................................21 5.1.4. Nicholson 2004-2006...................................................................................................................21 5.1.5. de Winton et al 2011.....................................................................................................................22 5.1.6. Perrie et al 2013.............................................................................................................................22 5.2. Recommendations for future survey and monitoring design................................................24 5.2.1. Basic regime...................................................................................................................................24 5.2.2. Comprehensive regime................................................................................................................25 5.3. Equipment decontamination......................................................................................................27 6. Consideration of the benefits and risks to fish populations in Lake Kohangapiripiri associated with three fish passage options and recommendations for culvert design.......27 6.1. Issues with culverts.......................................................................................................................28 6.2. Issues with trout............................................................................................................................29 2 6.3. Options for culvert modification at Lake Kohangapiripiri....................................................30 6.3.1. Option one: do nothing...............................................................................................................30 6.3.2. Option two: replace existing perched culvert with new culvert............................................32 6.3.3. Option three: realign existing road and install new culvert....................................................32 6.4. Concept designs for structure.....................................................................................................34 6.5. Summary of options.....................................................................................................................41 7. Recommendations for future management of native fish populations in the lakes...........................................................................................................................................45 7.1. Monitoring of structure................................................................................................................45 7.2. Strategic intervention on the lower beach.................................................................................45 7.3. Lakes biosecurity...........................................................................................................................46 7.4. Kākahi population security..........................................................................................................46 7.5. Active transfer of desired species...............................................................................................47 7.6. Eel harvest in the future..............................................................................................................47 8. Acknowledgements......................................................................................................................48 9. References......................................................................................................................................48 3 1. Executive Summary The coastal catchments at Parangarahu (particularly Kohangapiripiri) contain only low numbers and diversity of native fish, primarily due to issues at the outflows which are compromising the migratory pathways of these species. Key stakeholders and managers in this situation hold a variety of perspectives, values and desires regarding the lakes although all agree that they are special and worthy of protection and restoration. The past few decades have seen freshwater fish surveying undertaken by a variety of organisations, revealing that the Kohangatera Catchment contains some native fishes, including low abundance of migratory species. Although little surveying has been conducted in the Kohangapiripiri Catchment, indications are that it contains low diversity of native fish with virtually no migratory species being present. Introduced trout are present in Kohangatera but not in Kohangapiripiri. Both lakes have very low abundance of eels compared to historical times. and other comparable areas. Remediation of the Kohangapiripiri culvert in order to reinstate native fish passage, while also excluding the potential of invasion by sea-run salmonids is possible. In addition to culvert remediation, intervention on the beach in the form of channel-cutting will likely be necessary during key fish migration periods (late summer/autumn for adult eel emigration and spring for galaxiid and glass eel immigration) to facilitate fish passage. A number of future management initiatives are likely to promote protection and restoration of the native fish biodiversity of the Parangarahu Lakes, including culvert monitoring, species monitoring and biosecurity measures. 2. Background The Parangarahu Lakes comprise two coastal lakes – Lake Kohangapiripiri and Lake Kohangatera – located on the south coast of the North Island, around ten kilometres from Wellington. Lake Kohangapiripiri is the smaller of the two, with 13 ha of open water and a catchment of 280 ha, compared with the 17 ha open water and 1700 ha catchment size of Kohangatera. Over the past 100 years, the lakes have become progressively more cut off from the sea (Figure 1). The land barrier between the coastal road (which crosses the outflow paths 4 of both lakes) and the sea can be predominantly attributed to natural processes such as uplift and deposition, while the build-up of material upstream of the coast road (which is also contributing to the separation of lake and sea) is likely due to the presence of the road preventing periodic scouring during high flows. 5 Partly as a result of this separation of sea and freshwater, low diversity of native freshwater fish are present in the lakes – particularly Kohangapiripiri. This is because many native species, such as eels and galaxiids, are diadromous1 and require access between freshwater and the sea in order to complete their life cycles. Low numbers of eels (both longfin and shortfin) are likely a result of inhibited access combined with historical overfishing. ‘Breaching’ events (when heavy rainfall/storms cause the outlet of a lake and the sea to meet) are thought to have occurred sporadically in the recent past – more so at Kohangatera. Freshwater fish surveying conducted during recent years (see section 5) has shown that Kohangatera contains some migratory fish species, with a small range of size classes present. This indicates that there is at least sufficient interaction between the lake and the sea occurring to facilitate the persistence of potentially viable populations of migratory native fish. This is particularly so at present, due to a large storm event in June 2013 which opened up the mouth and beach. Kohangapiripiri
Recommended publications
  • Critical Habitat for Canterbury Freshwater Fish, Kōura/Kēkēwai and Kākahi
    CRITICAL HABITAT FOR CANTERBURY FRESHWATER FISH, KŌURA/KĒKĒWAI AND KĀKAHI REPORT PREPARED FOR CANTERBURY REGIONAL COUNCIL BY RICHARD ALLIBONE WATERWAYS CONSULTING REPORT NUMBER: 55-2018 AND DUNCAN GRAY CANTERBURY REGIONAL COUNCIL DATE: DECEMBER 2018 EXECUTIVE SUMMARY Aquatic habitat in Canterbury supports a range of native freshwater fish and the mega macroinvertebrates kōura/kēkēwai (crayfish) and kākahi (mussel). Loss of habitat, barriers to fish passage, water quality and water quantity issues present management challenges when we seek to protect this freshwater fauna while providing for human use. Water plans in Canterbury are intended to set rules for the use of water, the quality of water in aquatic systems and activities that occur within and adjacent to aquatic areas. To inform the planning and resource consent processes, information on the distribution of species and their critical habitat requirements can be used to provide for their protection. This report assesses the conservation status and distributions of indigenous freshwater fish, kēkēwai and kākahi in the Canterbury region. The report identifies the geographic distribution of these species and provides information on the critical habitat requirements of these species and/or populations. Water Ways Consulting Ltd Critical habitats for Canterbury aquatic fauna Table of Contents 1 Introduction ......................................................................................................................................... 1 2 Methods ..............................................................................................................................................
    [Show full text]
  • Rediscovering the Species in Community-Wide Predictive Modeling
    Ecological Applications, 16(4), 2006, pp. 1449–1460 Ó 2006 by the the Ecological Society of America REDISCOVERING THE SPECIES IN COMMUNITY-WIDE PREDICTIVE MODELING 1,3 2 2 JULIAN D. OLDEN, MICHAEL K. JOY, AND RUSSELL G. DEATH 1Center for Limnology, University of Wisconsin–Madison, 680 N. Park Street, Madison, Wisconsin 53706 USA 2Institute of Natural Resources–Ecology, Massey University, Private Bag 11 222, Palmerston North, New Zealand Abstract. Broadening the scope of conservation efforts to protect entire communities provides several advantages over the current species-specific focus, yet ecologists have been hampered by the fact that predictive modeling of multiple species is not directly amenable to traditional statistical approaches. Perhaps the greatest hurdle in community-wide modeling is that communities are composed of both co-occurring groups of species and species arranged independently along environmental gradients. Therefore, commonly used ‘‘short-cut’’ methods such as the modeling of so-called ‘‘assemblage types’’ are problematic. Our study demonstrates the utility of a multiresponse artificial neural network (MANN) to model entire community membership in an integrative yet species-specific manner. We compare MANN to two traditional approaches used to predict community composition: (1) a species-by-species approach using logistic regression analysis (LOG) and (2) a ‘‘classification-then-modeling’’ approach in which sites are classified into assemblage ‘‘types’’ (here we used two-way indicator species analysis and multiple discriminant analysis [MDA]). For freshwater fish assemblages of the North Island, New Zealand, we found that the MANN outperformed all other methods for predicting community composition based on multiscaled descriptors of the environment.
    [Show full text]
  • Lethal Turbidity Levels for Common Fish and Invertebrates in Auckland
    Lethal Turbidity Levels for Common Fish and Invertebrates in Auckland Streams June 2002 TP337 Auckland Regional Council Technical Publication No. 337, 2002 ISSN 1175-205X" ISBN -13 : 978-1-877416-78-1 ISBN -10 : 1877416-78-9 Printed on recycled paper Lethal turbidity levels for common freshwater fish and invertebrates in Auckland streams D. K. Rowe A. M. Suren M. Martin J. P. Smith B. Smith E. Williams Prepared for Auckland Regional Council Information contained within this report should not be used without the prior consent of the client NIWA Client Report: ARC02283 June 2002 National Institute of Water & Atmospheric Research Ltd Gate 10, Silverdale Road, Hamilton P O Box 11115, Hamilton, New Zealand Phone +64-7-856 7026, Fax +64-7-856 0151 www.niwa.co.nz Acknowledgements We would like to thank John Maxted (and his staff) for supplying the clay used for testing, as well as for his guidance on invertebrate selection and important aspects of the study’s design. Recommended Citation: Rowe, D.K., et. al. (2002). Lethal turbidity levels for common freshwater fish and invertebrates in Auckland streams. Auckland Regional Council Technical Publication Number 337. 37 p. CONTENTS 1.1.1. Executive Summary 111 2.2.2. Introduction 222 3.3.3. Sediment Characterisation 444 4.4.4. Effects Of Turbidity On Fish 666 4.1 Fish selection, collection and acclimation 6 4.2 Experimental methods 6 4.3 Data analysis 9 4.4 Results 10 4.5 Discussion 19 5.5.5. Effects of Turbidity on InvInvertebratesertebrates 222222 5.1 Choice of invertebrate species 22 5.2 Experimental methods 23 5.3 Results 26 5.4 Discussion 28 666 Conclusions 313131 777 Recommendations 323232 888 References 333333 Reviewed by: Approved for release by: Mike Scarsbrook Jody Richardson TP 337 - Lethal Turbidity Levels For Common Freshwater Fish and Invertebrates in Auckland Streams 2 1.
    [Show full text]
  • The Parasite Release Hypothesis and the Success of Invasive Fish in New Zealand
    http://researchcommons.waikato.ac.nz/ Research Commons at the University of Waikato Copyright Statement: The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). The thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person. Authors control the copyright of their thesis. You will recognise the author’s right to be identified as the author of the thesis, and due acknowledgement will be made to the author where appropriate. You will obtain the author’s permission before publishing any material from the thesis. The parasite release hypothesis and the success of invasive fish in New Zealand A thesis submitted in partial fulfilment of the requirements for the degree of Master of Science in Biological Science at The University of Waikato by Keshi Zhang The University of Waikato 2012 Abstract Non-indigenous species are commonly released from their native enemies, including parasites, when they are introduced into new geographical areas. This has been referred to as the enemy release hypothesis and more strictly as the parasite release hypothesis. The loss of parasites is commonly inferred to explain the invasiveness of non-indigenous species. I examined parasite release in New Zealand non-indigenous freshwater fishes. A literature review was undertaken in order to collate lists of the known parasite fauna of 20 New Zealand non-indigenous freshwater fish species.
    [Show full text]
  • Fish Remains, Mostly Otoliths, from the Non−Marine Early Miocene of Otago, New Zealand
    Fish remains, mostly otoliths, from the non−marine early Miocene of Otago, New Zealand WERNER SCHWARZHANS, R. PAUL SCOFIELD, ALAN J.D. TENNYSON, JENNIFER P. WORTHY, and TREVOR H. WORTHY Schwarzhans, W., Scofield, R.P., Tennyson, A.J.D., Worthy, J.P., and Worthy, T.H. 2012. Fish remains, mostly otoliths, from the non−marine early Miocene of Otago, New Zealand. Acta Palaeontologica Polonica 57 (2): 319–350. Fish remains described from the early Miocene lacustrine Bannockburn Formation of Central Otago, New Zealand, con− sist of several thousand otoliths and one skeleton plus another disintegrated skull. One species, Mataichthys bictenatus Schwarzhans, Scofield, Tennyson, and T. Worthy gen. et sp. nov., an eleotrid, is established on a skeleton with otoliths in situ. The soft embedding rock and delicate, three−dimensionally preserved fish bones were studied by CT−scanning tech− nology rather than physical preparation, except where needed to extract the otolith. Fourteen species of fishes are de− scribed, 12 new to science and two in open nomenclature, representing the families Galaxiidae (Galaxias angustiventris, G. bobmcdowalli, G. brevicauda, G. papilionis, G. parvirostris, G. tabidus), Retropinnidae (Prototroctes modestus, P. vertex), and Eleotridae (Mataichthys bictenatus, M. procerus, M. rhinoceros, M. taurinus). These findings prove that most of the current endemic New Zealand/southern Australia freshwater fish fauna was firmly established in New Zea− land as early as 19–16 Ma ago. Most fish species indicate the presence of large fishes, in some cases larger than Recent species of related taxa, for instance in the eleotrid genus Mataichthys when compared to the extant Gobiomorphus. The finding of a few otoliths from marine fishes corroborates the age determination of the Bannockburn Formation as the Altonian stage of the New Zealand marine Tertiary stratigraphy.
    [Show full text]
  • NSW Pest Fish List As Part of a Consistent Approach to the Management of Ornamental Fish Throughout Australia
    Ornamental Fish Update – Important Information Regarding Pest Fish July 2017 On 16 December 2016, NSW government introduced further changes to the NSW Pest Fish List as part of a consistent approach to the management of ornamental fish throughout Australia. The NSW Pest Fish List now includes an additional 65 listings that have been nationally agreed as having a high-risk potential. ____________________________________________________________________________________ part 2, schedule 1 of the Biosecurity Regulation Why are there changes to the pest 2017, are subject to notification and must not be fish list? dealt with. Compliance with the NSW Pest Fish List is mandatory by law. In 2006, all Australian governments, in consultation with representatives of the ornamental fish industry, developed a National Strategy called the What should I do with any pest ‘A Strategic Approach to the Management of fish that I have? Ornamental Fish in Australia’. The National A number of ornamental fish species that were Strategy contains seven recommendations for the previously traded by the aquarium industry, management of ornamental fish in Australia, aquarium enthusiasts or hobbyists are now including the development of an agreed National prohibited from being sold and/or being in your Pest Fish List. possession. Pest fish possess characteristics that have the However, NSW DPI is providing a six month potential to trigger, or contribute to, aquatic pest or advisory period, which commenced on 1 March disease outbreaks, impacting upon natural 2017 to provide time for advisory materials to be biodiversity and fisheries resources. Weatherloach distributed and ornamental fish owners to comply and Tilapia are two examples of pest species with the new additions to the NSW pest fish list which, when released, are known to have impacts on our natural aquatic systems.
    [Show full text]
  • Restoring Streams for Freshwater Fish
    Restoring streams for freshwater fish Jody Richardson Ian Jowett NIWA Science & Technology Series No. 53 2005 Published by NIWA Wellington 2005 Edited and produced by Science Communication, NIWA Private Bag 14901, Wellington, New Zealand ISSN 1173-0382 ISBN 0-478-23272-1 © NIWA 2005 Citation: Richardson, J.; Jowett, I.G. (2005). Restoring streams for freshwater fish. NIWA Science and Technology Series No. 53. 55 p. Cover photograph: Restored section of Okeover Stream, Christchurch, by Bob Spigel. The National Institute of Water and Atmospheric Research is New Zealand’s leading provider of atmospheric, marine, and freshwater science Visit NIWA’s website at http://www.niwa.co.nz Contents Abstract.....................................................................................................................5 Introduction...............................................................................................................5 Types of fish communities........................................................................................7 Data selection and analysis ...................................................................................7 Results...................................................................................................................9 River morphology ...................................................................................................12 River classification..............................................................................................12 Gravel-bed.......................................................................................................12
    [Show full text]
  • Fisheries Resources in Otago Harbour and on the Adjacent Coast
    Fisheries resources in Otago Harbour and on the adjacent coast Prepared for Port Otago Limited December 2008 R O Boyd Boyd Fisheries Consultants Ltd 1 Baker Grove Wanaka 9305 NEW ZEALAND Table of Contents Table of Contents i List of Tables and Figures ii Executive Summary iii Fisheries resources in Otago Harbour and on the adjacent coast 1 (Ver 1 – Preliminary) 1 1. Introduction 1 2. Methods 2 2.1. The Fisheries Literature 2 2.2. Fisheries catch and effort data 2 2.3. Consultation with the Fisheries Sector (this section to be revised following further consultation) 2 3. The Fisheries Environments of Otago Harbour and Coastal Otago 3 3.1. Otago Harbour 3 3.2. Coastal Otago 3 4. Fish and Shellfish Fauna of Otago Harbour and Coastal Otago 5 4.1. Otago Harbour 5 4.2. Coastal Otago 6 4.3. Regional and National Significance 7 5. Areas of Importance for Spawning, Egg Laying or Juveniles 8 6. Fisheries Uses of Otago Harbour and Coastal Otago 9 6.1. Recreational Fisheries 9 6.1.1. Otago Harbour 9 6.1.2. Coastal Otago 10 6.2. Commercial Fisheries 10 6.2.1. History and Background to the Commercial Fishery 10 6.2.2. Commercial Fisheries Catch and Effort Data 11 6.2.3. Overview of the Present Otago Commercial Fishery 12 6.2.4. Otago’s Inshore Fisheries 13 Trawl fishery 13 Set net fishery 14 Cod potting 14 Line fishing 14 Paua and kina diving 14 Queen scallops 15 Rock lobster 15 Cockles 15 6.3. Customary Fisheries (this section to be revised following further consultation) 16 7.
    [Show full text]
  • Freshwater Fish Community Structure in Taranaki: Dams, Diadromy Or Habitat Quality?
    Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. FRESHWATER FISH COMMUNITY STRUCTURE IN TARANAKI: DAMS, DIADROMY OR HABITAT QUALITY? A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Ecology At Massey University, Palmerston North By MICHAEL KEVIN JOY 1999 ii ABSTRACT The relationships between freshwater fish community structure and habitat characteristics including dams were examined at 85 sites on 38 waterways draining Mount Taranaki during the summer of 1997 /98. Thirteen native and two exotic fish species were captured. Four groupings were identified based on species composition. The first two were high elevation site groups: one dominated by the diadromous Galaxiids: shortjawed kokopu, banded kokopu and koaro, the other dominated by longfin eels. The third group of sites was a mid-elevation group dominated by redfin bullies and longfin eels while the fourth group was made up of low elevation sites dominated by redfin bullies and shortfin eels. Discriminant analysis revealed that distance from the sea, site elevation and the presence of dams were the environmental variables most strongly associated with fish distribution patterns. Data from the New Zealand freshwater fish database (NZFFD) were used to examine the influence of dams and other environmental variables on the fish communities. The sites listed in the NZFFD as having free migratory access were used as reference sites for the construction of a predictive model of fish community assemblage.
    [Show full text]
  • A Strategic Approach to the Management of Ornamental Fish in Australia Communication Strategy and Grey List Review - a REPORT to OFMIG
    A strAtegic ApproAch to the management of ornamental fish in australia communicAtion strAtegy And grey list review - A report TO oFmig A strategic approach to the management of ornamental fish in Australia Communication strategy and grey list review – a report to OFMIG Andy Moore, Nicholas Marton and Alex McNee March 2010 © Commonwealth of Australia 2010 This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from the Commonwealth. Requests and inquiries concerning reproduction and rights should be addressed to the Commonwealth Copyright Administration, Attorney General’s Department, Robert Garran Offices, National Circuit, Barton ACT 2600 or posted at http://www.ag.gov.au/cca. The Australian Government acting through the Bureau of Rural Sciences has exercised due care and skill in the preparation and compilation of the information and data set out in this publication. Notwithstanding, the Bureau of Rural Sciences, its employees and advisers disclaim all liability, including liability for negligence, for any loss, damage, injury, expense or cost incurred by any person as a result of accessing, using or relying upon any of the information or data set out in this publication to the maximum extent permitted by law. Postal address: Bureau of Rural Sciences GPO Box 858 Canberra, ACT 2601 Copies available from: www.brs.gov.au ISBN: 1-921192-37-2 ii Acknowledgements This report was made possible through financial support from the Ornamental Fish Management Implementation Group (OFMIG) which is funded by state, teritory and federal government agencies.
    [Show full text]
  • The Morphology and Impact on Feeding of the Lateral Line System
    The Morphology and Impact on Feeding of the Lateral Line System of the Gobiomorphus genus Jonathan Davyd Wright Thesis submitted in fulfilment of the requirement for the degree of Master of Science at the Department of Zoology, University of Otago, Dunedin, New Zealand November 2016 Abstract The lateral line system of fish has been implicated in contributing to many behaviours, including orientation, activity and feeding. The system is comprised of a series of interconnected organs (neuromasts) that may be either embedded in fluid filled canals in the dermal surface of the fish (canal neuromasts), or embedded on the skin of the fish (superficial neuromasts). The ratio of canal to superficial neuromasts has been demonstrated to vary with hydrological environment. The Gobiomorphus genus occupies a wide variety of hydrological environments and one species, Common Bully, has been demonstrated to exhibit habitat related variation in the lateral line system. This study examined the lateral line system of four Gobiomorphus species (Common, Bluegill, Redfin and Upland Bullies) through vital staining and histological methods. This demonstrated that the lateral line system varies with the hydrodynamic environment of each species, with high flow specialists having low neuromast counts and low flow generalists having high and variable neuromast counts. A consistent difference in superficial neuromast size was found across all species. Redfin Bullies were found to lack neuromasts within their canals. A feeding experiment in controlled aquaria conditions suggests that the capacity of these species to capture prey in the absence of light is related to the form of the lateral line system. Species with canal neuromasts caught more prey than those with solely superficial neuromasts, and those with a higher proportion of large superficial neuromasts were more successful at capturing prey compared to species with only superficial neuromasts.
    [Show full text]
  • Native Ecosystems
    Native Ecosystems It is important for students to have a sound understanding of how native ecosystems operate before investigating how human activities impact on them. This fi rst section of Take Action for Water introduces students to the water cycle and the catchment concept, before investigating the native animals that live there. Māori perspectives of water are also discussed through the sharing of stories and concepts such as ‘mauri’ and ‘kaitiaki’. Native ecosystems 15 1 The water cycle - Teacher notes Linking to curriculum What is the water cycle? Science - L 3 / 4 Planet Earth and Water can change states between a liquid (water), a gas (water vapour) Beyond: Interacting systems and a solid (ice, snow, hail). The water cycle is a true cycle in that there is no beginning or end. The water cycle is driven by the sun. As the sun Investigate the water cycle and its heats water, it is evaporated into the air as water vapour, where it rises effect on climate, landforms and life. with air currents. The water vapour condenses in the atmosphere’s cooler temperatures and creates clouds. As the clouds get heavy, water particles fall out of the sky, due to gravity, as precipitation (water, hail, snow). __ Who are Ranginui and Papatuanuku? Explanation for water In a Māori world view, life began with the separation of Ranginui (sky father) cycle experiment and Papatūānuku (earth mother). From them emerged the various atua (gods). The sun will heat the water in the bowl which will cause it to evaporate into water The water cycle and atua vapour.
    [Show full text]