Determining Intermediate Hosts for Opecoelidae and Microphallidae Species (Platyhelminthes: Trematoda) in the Southeastern Pacific Coast, Using Molecular Markers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hitch-Hiking Parasite: a Dark Horse May Be the Real Rider
International Journal for Parasitology 31 (2001) 1417–1420 www.parasitology-online.com Research note Hitch-hiking parasite: a dark horse may be the real rider Kim N. Mouritsen* Department of Marine Ecology, Institute of Biological Sciences, University of Aarhus, Finlandsgade 14, DK-8200 Aarhus N, Denmark Received 3 April 2001; received in revised form 22 May 2001; accepted 22 May 2001 Abstract Many parasites engaged in complex life cycles manipulate their hosts in a way that facilitates transmission between hosts. Recently, a new category of parasites (hitch-hikers) has been identified that seem to exploit the manipulating effort of other parasites with similar life cycle by preferentially infecting hosts already manipulated. Thomas et al. (Evolution 51 (1997) 1316) showed that the digenean trematodes Micro- phallus papillorobustus (the manipulator) and Maritrema subdolum (the hitch-hiker) were positively associated in field samples of gammarid amphipods (the intermediate host), and that the behaviour of Maritrema subdolum rendered it more likely to infect manipulated amphipods than those uninfected by M. papillorobustus. Here I provide experimental evidence demonstrating that M. subdolum is unlikely to be a hitch- hiker in the mentioned system, whereas the lucky candidate rather is the closely related but little known species, Microphallidae sp. no. 15 (Parassitologia 22 (1980) 1). As opposed to the latter species, Maritrema subdolum does not express the appropriate cercarial behaviour for hitch-hiking. q 2001 Australian Society for Parasitology Inc. Published by Elsevier Science Ltd. All rights reserved. Keywords: Microphallid trematodes; Transmission strategy; Cercarial behaviour; Maritrema subdolum; Microphallidae sp. no. 15 Parasites with complex life cycles (e.g. -
Digenea, Microphallidae) and Relative Merits of Two-Host Microphallid Life Cycles
Parasitology Research (2018) 117:1051–1068 https://doi.org/10.1007/s00436-018-5782-1 ORIGINAL PAPER Microphallus ochotensis sp. nov. (Digenea, Microphallidae) and relative merits of two-host microphallid life cycles Kirill V. Galaktionov1,2 & Isabel Blasco-Costa3 Received: 21 July 2017 /Accepted: 23 January 2018 /Published online: 3 February 2018 # Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract A new digenean species, Microphallus ochotensis sp. nov., was described from the intestine of Pacific eiders (Somateria mollissima v-nigrum) from the north of the Sea of Okhotsk. It differs from other microphallids in the structure of the metraterm, which consists of two distinct parts: a sac with spicule-like structures and a short muscular duct opening into the genital atrium. Mi. ochotensis forms a monophyletic clade together with other congeneric species in phylograms derived from the 28S and ITS2 rRNA gene. Its dixenous life cycle was elucidated with the use of the same molecular markers. Encysted metacercariae infective for birds develop inside sporocysts in the first intermediate host, an intertidal mollusc Falsicingula kurilensis. The morphology of metacercariae and adults was described with an emphasis on the structure of terminal genitalia. Considering that Falsicingula occurs at the Pacific coast of North America and that the Pacific eider is capable of trans-continental flights, the distribution of Mi. ochotensis might span the Pacific coast of Alaska and Canada. The range of its final hosts may presumably include other benthos- feeding marine ducks as well as shorebirds. We suggest that a broad occurrence of two-host life cycles in microphallids is associated with parasitism in birds migrating along sea coasts. -
Darwin and Ichthyology Xvii Darwin’ S Fishes: a Dry Run Xxiii
Darwin’s Fishes An Encyclopedia of Ichthyology, Ecology, and Evolution In Darwin’s Fishes, Daniel Pauly presents a unique encyclopedia of ichthyology, ecology, and evolution, based upon everything that Charles Darwin ever wrote about fish. Entries are arranged alphabetically and can be about, for example, a particular fish taxon, an anatomical part, a chemical substance, a scientist, a place, or an evolutionary or ecological concept. Readers can start wherever they like and are then led by a series of cross-references on a fascinating voyage of interconnected entries, each indirectly or directly connected with original writings from Darwin himself. Along the way, the reader is offered interpretation of the historical material put in the context of both Darwin’s time and that of contemporary biology and ecology. This book is intended for anyone interested in fishes, the work of Charles Darwin, evolutionary biology and ecology, and natural history in general. DANIEL PAULY is the Director of the Fisheries Centre, University of British Columbia, Vancouver, Canada. He has authored over 500 articles, books and papers. Darwin’s Fishes An Encyclopedia of Ichthyology, Ecology, and Evolution DANIEL PAULY Fisheries Centre, University of British Columbia cambridge university press Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge cb2 2ru, UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521827775 © Cambridge University Press 2004 This publication is in copyright. Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. -
<I>Microphallus Fonti</I> Sp. N. (Digenea: Microphallidae) from The
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Harold W. Manter Laboratory of Parasitology Parasitology, Harold W. Manter Laboratory of 1992 Microphallus fonti sp. n. (Digenea: Microphallidae) from the Red Swamp Crawfish in Southern United States Robin M. Overstreet Gulf Coast Research Laboratory, [email protected] Richard W. Heard University of Southern Mississippi, [email protected] Jeffrey M. Lotz Gulf Coast Research Laboratory, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/parasitologyfacpubs Part of the Parasitology Commons Overstreet, Robin M.; Heard, Richard W.; and Lotz, Jeffrey M., "Microphallus fonti sp. n. (Digenea: Microphallidae) from the Red Swamp Crawfish in Southern United States" (1992). Faculty Publications from the Harold W. Manter Laboratory of Parasitology. 451. https://digitalcommons.unl.edu/parasitologyfacpubs/451 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Harold W. Manter Laboratory of Parasitology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Mem./nsf. OswaldoCruz, Rio de Janeiro, Vol. 87, Suppl. 1,175-178,1992 MICROPHALLUS FONTI SP. N, (DIGENEA: MICROPHALLIDAE) FROM THE RED SWAMP CRAWFISH IN SOUTHERN UNITED STATES ROBIN M. OVERSTREET; RICHARD W. HEARD & JEFFREY M. LOTZ Gulf Coast Research Laboratory, P. O. Box 7000, Ocean Springs, Mississippi 39564, U. S. A. A new species ojdigenean, Microphallus fonti, is described from the red swamp crawfish in Louisiana, U. S. A. It has a small pharynx and a rudimentary gut like M. -
Parasites Shape Community Structure and Dynamics in Freshwater Crustaceans Cambridge.Org/Par
Parasitology Parasites shape community structure and dynamics in freshwater crustaceans cambridge.org/par Olwyn C. Friesen1 , Sarah Goellner2 , Robert Poulin1 and Clément Lagrue1,3 1 2 Research Article Department of Zoology, 340 Great King St, University of Otago, Dunedin 9016, New Zealand; Center for Integrative Infectious Diseases, Im Neuenheimer Feld 344, University of Heidelberg, Heidelberg 69120, Germany 3 Cite this article: Friesen OC, Goellner S, and Department of Biological Sciences, CW 405, Biological Sciences Building, University of Alberta, Edmonton, Poulin R, Lagrue C (2020). Parasites shape Alberta T6G 2E9, Canada community structure and dynamics in freshwater crustaceans. Parasitology 147, Abstract 182–193. https://doi.org/10.1017/ S0031182019001483 Parasites directly and indirectly influence the important interactions among hosts such as competition and predation through modifications of behaviour, reproduction and survival. Received: 24 June 2019 Such impacts can affect local biodiversity, relative abundance of host species and structuring Revised: 27 September 2019 Accepted: 27 September 2019 of communities and ecosystems. Despite having a firm theoretical basis for the potential First published online: 4 November 2019 effects of parasites on ecosystems, there is a scarcity of experimental data to validate these hypotheses, making our inferences about this topic more circumstantial. To quantitatively Key words: test parasites’ role in structuring host communities, we set up a controlled, multigenerational Host community; parasites; population dynamics; species composition mesocosm experiment involving four sympatric freshwater crustacean species that share up to four parasite species. Mesocosms were assigned to either of two different treatments, low or Author for correspondence: high parasite exposure. We found that the trematode Maritrema poulini differentially influ- Olwyn C. -
Parasitology Volume 60 60
Advances in Parasitology Volume 60 60 Cover illustration: Echinobothrium elegans from the blue-spotted ribbontail ray (Taeniura lymma) in Australia, a 'classical' hypothesis of tapeworm evolution proposed 2005 by Prof. Emeritus L. Euzet in 1959, and the molecular sequence data that now represent the basis of contemporary phylogenetic investigation. The emergence of molecular systematics at the end of the twentieth century provided a new class of data with which to revisit hypotheses based on interpretations of morphology and life ADVANCES IN history. The result has been a mixture of corroboration, upheaval and considerable insight into the correspondence between genetic divergence and taxonomic circumscription. PARASITOLOGY ADVANCES IN ADVANCES Complete list of Contents: Sulfur-Containing Amino Acid Metabolism in Parasitic Protozoa T. Nozaki, V. Ali and M. Tokoro The Use and Implications of Ribosomal DNA Sequencing for the Discrimination of Digenean Species M. J. Nolan and T. H. Cribb Advances and Trends in the Molecular Systematics of the Parasitic Platyhelminthes P P. D. Olson and V. V. Tkach ARASITOLOGY Wolbachia Bacterial Endosymbionts of Filarial Nematodes M. J. Taylor, C. Bandi and A. Hoerauf The Biology of Avian Eimeria with an Emphasis on Their Control by Vaccination M. W. Shirley, A. L. Smith and F. M. Tomley 60 Edited by elsevier.com J.R. BAKER R. MULLER D. ROLLINSON Advances and Trends in the Molecular Systematics of the Parasitic Platyhelminthes Peter D. Olson1 and Vasyl V. Tkach2 1Division of Parasitology, Department of Zoology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK 2Department of Biology, University of North Dakota, Grand Forks, North Dakota, 58202-9019, USA Abstract ...................................166 1. -
Guidelines for the Capture and Management of Digital Zoological Names Information Francisco W
Guidelines for the Capture and Management of Digital Zoological Names Information Francisco W. Welter-Schultes Version 1.1 March 2013 Suggested citation: Welter-Schultes, F.W. (2012). Guidelines for the capture and management of digital zoological names information. Version 1.1 released on March 2013. Copenhagen: Global Biodiversity Information Facility, 126 pp, ISBN: 87-92020-44-5, accessible online at http://www.gbif.org/orc/?doc_id=2784. ISBN: 87-92020-44-5 (10 digits), 978-87-92020-44-4 (13 digits). Persistent URI: http://www.gbif.org/orc/?doc_id=2784. Language: English. Copyright © F. W. Welter-Schultes & Global Biodiversity Information Facility, 2012. Disclaimer: The information, ideas, and opinions presented in this publication are those of the author and do not represent those of GBIF. License: This document is licensed under Creative Commons Attribution 3.0. Document Control: Version Description Date of release Author(s) 0.1 First complete draft. January 2012 F. W. Welter- Schultes 0.2 Document re-structured to improve February 2012 F. W. Welter- usability. Available for public Schultes & A. review. González-Talaván 1.0 First public version of the June 2012 F. W. Welter- document. Schultes 1.1 Minor editions March 2013 F. W. Welter- Schultes Cover Credit: GBIF Secretariat, 2012. Image by Levi Szekeres (Romania), obtained by stock.xchng (http://www.sxc.hu/photo/1389360). March 2013 ii Guidelines for the management of digital zoological names information Version 1.1 Table of Contents How to use this book ......................................................................... 1 SECTION I 1. Introduction ................................................................................ 2 1.1. Identifiers and the role of Linnean names ......................................... 2 1.1.1 Identifiers .................................................................................. -
Volume 30 • No. 1 • Summer 2016 NATIONAL MARINE EDUCATORS ASSOCIATION
Volume 30 • No. 1 • Summer 2016 NATIONAL MARINE EDUCATORS ASSOCIATION “... to make known the world of water, both fresh and salt.” THE NATIONAL MARINE EDUCATORS ASSOCIATION brings together those interested in Volume 30 • No. 1 • Summer 2016 the study and enjoyment of the world of water. Affiliated with the National Science Teachers Association, NMEA includes professionals with backgrounds in education, science, business, Lisa M. Tooker, Nora L. Deans, Editors government, museums, aquariums, and marine research, among others. Members receive Lonna Laiti, Eric Cline, Design Current: The Journal of Marine Education, NMEA News Online, and discounts at annual conferences. Membership information is available from: NMEA National Office/Attention: Editorial Board: Jeannette Connors, 4321 Hartwick Road, Suite 300, College Park, MD 20740, or visit our Vicki Clark website online at www.marine-ed.org/. Phone: 844-OUR-NMEA (844-687-6632); Email: VIMS/Virginia Sea Grant [email protected]. Elizabeth Day-Miller BridgeWater Education Consulting, LLC NMEA Officers: NMEA Chapter Representatives: John Dindo President Martin A. Keeley Dauphin Island Sea Lab Robert Rocha Caribbean and WesternAtlantic (CARIBWA) New Bedford Whaling Museum email: [email protected] Paula Keener New Bedford, MA Mellie Lewis Ocean Exploration and Research Program, NOAA Past President Florida Marine Science Educators Association (FMSEA) Meghan Marrero, Ph.D. E. Howard Rutherford email: [email protected] Mercy College University of South Florida College of Marine Science, St. Petersburg, FL Gale R. Lizana Maryellen Timmons Georgia Association of Marine Education (GAME) University of Georgia-MES President–Elect email: [email protected] Tami Lunsford Lisa Tossey Newark Charter Jr/Sr High School Lyndsey Manzo NMEA Social Media Community Newark, DE Great Lakes Educators of Aquatic and Marine Manager & Editor Science (GLEAMS) Treasurer email: [email protected] Lynn Tran Jacqueline U. -
Guide to Common Tidal Marsh Invertebrates of the Northeastern
- J Mississippi Alabama Sea Grant Consortium MASGP - 79 - 004 Guide to Common Tidal Marsh Invertebrates of the Northeastern Gulf of Mexico by Richard W. Heard University of South Alabama, Mobile, AL 36688 and Gulf Coast Research Laboratory, Ocean Springs, MS 39564* Illustrations by Linda B. Lutz This work is a result of research sponsored in part by the U.S. Department of Commerce, NOAA, Office of Sea Grant, under Grant Nos. 04-S-MOl-92, NA79AA-D-00049, and NASIAA-D-00050, by the Mississippi-Alabama Sea Gram Consortium, by the University of South Alabama, by the Gulf Coast Research Laboratory, and by the Marine Environmental Sciences Consortium. The U.S. Government is authorized to produce and distribute reprints for govern mental purposes notwithstanding any copyright notation that may appear hereon. • Present address. This Handbook is dedicated to WILL HOLMES friend and gentleman Copyright© 1982 by Mississippi-Alabama Sea Grant Consortium and R. W. Heard All rights reserved. No part of this book may be reproduced in any manner without permission from the author. CONTENTS PREFACE . ....... .... ......... .... Family Mysidae. .. .. .. .. .. 27 Order Tanaidacea (Tanaids) . ..... .. 28 INTRODUCTION ........................ Family Paratanaidae.. .. .. .. 29 SALTMARSH INVERTEBRATES. .. .. .. 3 Family Apseudidae . .. .. .. .. 30 Order Cumacea. .. .. .. .. 30 Phylum Cnidaria (=Coelenterata) .. .. .. .. 3 Family Nannasticidae. .. .. 31 Class Anthozoa. .. .. .. .. .. .. .. 3 Order Isopoda (Isopods) . .. .. .. 32 Family Edwardsiidae . .. .. .. .. 3 Family Anthuridae (Anthurids) . .. 32 Phylum Annelida (Annelids) . .. .. .. .. .. 3 Family Sphaeromidae (Sphaeromids) 32 Class Oligochaeta (Oligochaetes). .. .. .. 3 Family Munnidae . .. .. .. .. 34 Class Hirudinea (Leeches) . .. .. .. 4 Family Asellidae . .. .. .. .. 34 Class Polychaeta (polychaetes).. .. .. .. .. 4 Family Bopyridae . .. .. .. .. 35 Family Nereidae (Nereids). .. .. .. .. 4 Order Amphipoda (Amphipods) . ... 36 Family Pilargiidae (pilargiids). .. .. .. .. 6 Family Hyalidae . -
Cambios Morfológicos Y Alometría Ontogenética En Larvas De Chalaco, Auchenionchus Crinitus
UNIVERSIDAD DE VALPARAÍSO FACULTAD DE CIENCIAS DEL MAR Y DE RECURSOS NATURALES CARRERA DE BIOLOGÍA MARINA Cambios morfológicos y alometría ontogenética en larvas de chalaco, Auchenionchus crinitus (Jenyns, 1842) asociado a la variabilidad ambiental costera, utilizando morfometría geométrica. TESIS Pilar Valentina Núñez Acuña 2017 Pilar Valentina Núñez Acuña Trabajo de titulación presentado en conformidad a los requisitos para obtener el título profesional de Biólogo Marino Dr. Mauricio Fabián Landaeta Díaz Director Universidad de Valparaíso Dr. Ricardo Bravo Méndez Dr. Manuel Castillo Silva Miembro de la comisión Miembro de la comisión Universidad de Valparaíso Universidad de Valparaíso 2017 ii TABLA DE CONTENIDOS AGRADECIMIENTOS………………………………………………………………. v ÍNDICE DE TABLAS………………………………………………………………... Ix ÍNDICE DE FIGURAS………………………………………………………………. xiii Resumen……………………………………………………………………………… xviii 1. INTRODUCCIÓN…………………………………………………………………. 1 2. OBJETIVOS……………………………………………………………………….. 8 2.1 Objetivo General………………………………………………………………….. 8 2.2 Objetivos Específicos……………………………………………………….......... 8 3. HIPÓTESIS………………………………………………………………………... 9 4. MATERIALES Y MÉTODOS…………………………………………………….. 10 4.1 Área de estudio…………………………………………………………………… 10 4.2 Trabajo de terreno………………………………………………………………… 11 4.3 Registro de datos…………………………………………………………………. 12 4.4 Trabajo de laboratorio……………………………………………………………. 13 4.5 Análisis de datos………………………………………………………………….. 16 4.5.1 Análisis ambientales……………………………………………………………. 16 4.5.2 Abundancia larval………………………………………………………………. 17 -
Parasitic Flatworms
Parasitic Flatworms Molecular Biology, Biochemistry, Immunology and Physiology This page intentionally left blank Parasitic Flatworms Molecular Biology, Biochemistry, Immunology and Physiology Edited by Aaron G. Maule Parasitology Research Group School of Biology and Biochemistry Queen’s University of Belfast Belfast UK and Nikki J. Marks Parasitology Research Group School of Biology and Biochemistry Queen’s University of Belfast Belfast UK CABI is a trading name of CAB International CABI Head Office CABI North American Office Nosworthy Way 875 Massachusetts Avenue Wallingford 7th Floor Oxfordshire OX10 8DE Cambridge, MA 02139 UK USA Tel: +44 (0)1491 832111 Tel: +1 617 395 4056 Fax: +44 (0)1491 833508 Fax: +1 617 354 6875 E-mail: [email protected] E-mail: [email protected] Website: www.cabi.org ©CAB International 2006. All rights reserved. No part of this publication may be reproduced in any form or by any means, electronically, mechanically, by photocopying, recording or otherwise, without the prior permission of the copyright owners. A catalogue record for this book is available from the British Library, London, UK. Library of Congress Cataloging-in-Publication Data Parasitic flatworms : molecular biology, biochemistry, immunology and physiology / edited by Aaron G. Maule and Nikki J. Marks. p. ; cm. Includes bibliographical references and index. ISBN-13: 978-0-85199-027-9 (alk. paper) ISBN-10: 0-85199-027-4 (alk. paper) 1. Platyhelminthes. [DNLM: 1. Platyhelminths. 2. Cestode Infections. QX 350 P224 2005] I. Maule, Aaron G. II. Marks, Nikki J. III. Tittle. QL391.P7P368 2005 616.9'62--dc22 2005016094 ISBN-10: 0-85199-027-4 ISBN-13: 978-0-85199-027-9 Typeset by SPi, Pondicherry, India. -
Revision of Some Trematodes (Plagiorchiida: Microphallidae) from Different Birds in Iraq
Revision of some trematodes (Plagiorchiida: Microphallidae) from different birds in Iraq Suhad Y Jassim, Noor Hussein Yousif * and Zainab A Makawi Iraq Natural History Research Center and Museum, University of Baghdad, Baghdad Iraq. GSC Biological and Pharmaceutical Sciences, 2021, 15(02), 166–170 Publication history: Received on 20 April 2021; revised on 22 May 2021; accepted on 25 May 2021 Article DOI: https://doi.org/10.30574/gscbps.2021.15.2.0139 Abstract The adult worms of the Microphallidae family are mainly found as intestinal parasites of birds and mammals, while metacercariae is most commonly found in decapodal crustaceans. The Microphallidaeare family is spread throughout the world. It includes approximately 47 genera. Mature worms usually enter the digestive system of vertebrates, especially birds and mammals. Microphallidae contain eight subfamilies: Androcotylinae - Basantisiinae - Endocotylinae - Gynaecotylinae - Levinseniellinae - MaritrematinaeMicrophallinae - Sphairiotrematinae. Therefore, due to the lack of studies on the Microphallidae family in Iraq, we began to develop a database on this important family. Keywords: Trematoda; Microphalidae; Birds; Classification; Iraq 1. Introduction Microphallidae are found mainly in birds and mammals, the first intermediate host being gastropods and crustaceans as the second intermediate host [1]. Small worms are found in the intestine of most species of vertebrates, especially birds that infected as a result of eating some species of crustaceans, Also, adult worms are distinguished by these characteristics. Abdominal and gastrointestinal tract shortening, as well as its branches (less than 1 mm) and small in scale. It exceeds the level of the abdomin volume the ovary is found on the opposite side of genital aperture [2].