Iran J Parasitol: Vol
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
[46I ] the SENSORY PHYSIOLOGY of the HARVEST MITE
[46i ] THE SENSORY PHYSIOLOGY OF THE HARVEST MITE TROMBICULA AUTUMNALIS SHAW BY B. M. JONES Department of Zoology, University of Edinburgh (Received 18 May 1950) (With Twenty-four Text-figures) INTRODUCTION The ectoparasitic habit of the hexapod larva of Trombicula autumnalis is the cause of much discomfort to residents of infected localities in the British Isles, between late June and the beginning of October. The mite is a member of the Trombiculid group which includes species known to transmit disease in some parts of the world. The unfed larvae are found either upon the soil or climbing upon low-lying vegetation. Under suitable conditions they aggregate into clusters and are then more easily detected as orange patches. Development to the nymphal stage cannot take place unless the larvae obtain a meal from the superficial tissue of a vertebrate host to which they must securely attach themselves. The nymphs and adults are non-parasitic and lead a hypogeal existence at a depth of about 12 in. below the surface of the soil (Cockings, 1948). The hairs of a mammal, or the feathers of a bird, as they brush against infected soil or low-lying vegetation, are admirably suited for picking up the mites, but the question arises, to what extent are sensory perceptions of environmental stimuli of the mites directed towards the acquisition of a host. The chief aim of the present work has therefore been to investigate (a) the responses of the mite to stimuli most likely to have value with respect to the problem of acquiring a host, and (b) the nature of the sensory organs. -
Arthropod Parasites in Domestic Animals
ARTHROPOD PARASITES IN DOMESTIC ANIMALS Abbreviations KINGDOM PHYLUM CLASS ORDER CODE Metazoa Arthropoda Insecta Siphonaptera INS:Sip Mallophaga INS:Mal Anoplura INS:Ano Diptera INS:Dip Arachnida Ixodida ARA:Ixo Mesostigmata ARA:Mes Prostigmata ARA:Pro Astigmata ARA:Ast Crustacea Pentastomata CRU:Pen References Ashford, R.W. & Crewe, W. 2003. The parasites of Homo sapiens: an annotated checklist of the protozoa, helminths and arthropods for which we are home. Taylor & Francis. Taylor, M.A., Coop, R.L. & Wall, R.L. 2007. Veterinary Parasitology. 3rd edition, Blackwell Pub. HOST-PARASITE CHECKLIST Class: MAMMALIA [mammals] Subclass: EUTHERIA [placental mammals] Order: PRIMATES [prosimians and simians] Suborder: SIMIAE [monkeys, apes, man] Family: HOMINIDAE [man] Homo sapiens Linnaeus, 1758 [man] ARA:Ast Sarcoptes bovis, ectoparasite (‘milker’s itch’)(mange mite) ARA:Ast Sarcoptes equi, ectoparasite (‘cavalryman’s itch’)(mange mite) ARA:Ast Sarcoptes scabiei, skin (mange mite) ARA:Ixo Ixodes cornuatus, ectoparasite (scrub tick) ARA:Ixo Ixodes holocyclus, ectoparasite (scrub tick, paralysis tick) ARA:Ixo Ornithodoros gurneyi, ectoparasite (kangaroo tick) ARA:Pro Cheyletiella blakei, ectoparasite (mite) ARA:Pro Cheyletiella parasitivorax, ectoparasite (rabbit fur mite) ARA:Pro Demodex brevis, sebacceous glands (mange mite) ARA:Pro Demodex folliculorum, hair follicles (mange mite) ARA:Pro Trombicula sarcina, ectoparasite (black soil itch mite) INS:Ano Pediculus capitis, ectoparasite (head louse) INS:Ano Pediculus humanus, ectoparasite (body -
Leptotrombidium Deliense
ISSN (Print) 0023-4001 ISSN (Online) 1738-0006 Korean J Parasitol Vol. 56, No. 4: 313-324, August 2018 ▣ MINI REVIEW https://doi.org/10.3347/kjp.2018.56.4.313 Research Progress on Leptotrombidium deliense 1,2 1,2 1 Yan Lv , Xian-Guo Guo *, Dao-Chao Jin 1Institute of Entomology, Guizhou University, and the Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Guiyang 550025, P. R. China; 2Vector Laboratory, Institute of Pathogens and Vectors, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Dali University, Dali, Yunnan Province 671000, P. R. China Abstract: This article reviews Leptotrombidium deliense, including its discovery and nomenclature, morphological features and identification, life cycle, ecology, relationship with diseases, chromosomes and artificial cultivation. The first record of L. deliense was early in 1922 by Walch. Under the genus Leptotrombidium, there are many sibling species similar to L. de- liense, which makes it difficult to differentiate L. deliense from another sibling chigger mites, for example, L. rubellum. The life cycle of the mite (L. deliense) includes 7 stages: egg, deutovum (or prelarva), larva, nymphochrysalis, nymph, ima- gochrysalis and adult. The mite has a wide geographical distribution with low host specificity, and it often appears in differ- ent regions and habitats and on many species of hosts. As a vector species of chigger mite, L. deliense is of great impor- tance in transmitting scrub typhus (tsutsugamushi disease) in many parts of the world, especially in tropical regions of Southeast Asia. The seasonal fluctuation of the mite population varies in different geographical regions. The mite has been successfully cultured in the laboratory, facilitating research on its chromosomes, biochemistry and molecular biology. -
ESCCAP Guidelines Final
ESCCAP Malvern Hills Science Park, Geraldine Road, Malvern, Worcestershire, WR14 3SZ First Published by ESCCAP 2012 © ESCCAP 2012 All rights reserved This publication is made available subject to the condition that any redistribution or reproduction of part or all of the contents in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise is with the prior written permission of ESCCAP. This publication may only be distributed in the covers in which it is first published unless with the prior written permission of ESCCAP. A catalogue record for this publication is available from the British Library. ISBN: 978-1-907259-40-1 ESCCAP Guideline 3 Control of Ectoparasites in Dogs and Cats Published: December 2015 TABLE OF CONTENTS INTRODUCTION...............................................................................................................................................4 SCOPE..............................................................................................................................................................5 PRESENT SITUATION AND EMERGING THREATS ......................................................................................5 BIOLOGY, DIAGNOSIS AND CONTROL OF ECTOPARASITES ...................................................................6 1. Fleas.............................................................................................................................................................6 2. Ticks ...........................................................................................................................................................10 -
Class: Arachnida
Class: Arachnida Mk- vthr dqekj ijthoh foKku foHkkx fcgkj Ik’kqfpfdRlk egkfo|ky; fcgkj Ik’kq foKku fo’ofo|ky; iVuk&800014 ¼fcgkj½ Image source: Google image Phylum: Arthropoda CLASSIFICATION: Phylum: Arthropoda Classes Insecta Arachnida Pentastomida Order: Acarina Family: Linguatulidae Flies, Lice, ( Ticks , mites, ( Tongue worms) fleas, bugs etc. spider & scorpions) Phylum: Arthropoda CLASSIFICATION: Phylum: Arthropoda Classes Insecta Arachnida Pentastomida Subclasses: Apterygota (Generallyo C wingless insects) and Pterygota Subclasse: Pterygota Divisions Exoterygota Endopterygota Order: (1) Mallophaga (biting lice) Order: (1) Diptera ( true flies) (2) Siphunculata/Anoplura (sucking lice) (2) Siphonaptera ( fleas) (3) Hemiptera (bugs) (3) Coleoptera (beetles) (4) Odonata( dragon flies) (5) Orthoptera ( cockroaches, (4) Hymenoptera (bees, wasps, grasshoppers) ants) Class: Arachnida Phylum: Arthropoda Class Insecta Arachnida Pentastomida Sub-class: Acari Family: Linguatulidae (Acarina) ( Tongue worm) ORDER Parasitiformes Acariformes Sub-order Sub-order Ixodida Gamasida Actinedida Acaridida Oribatida ( metastigmata) ( Mesostignmata) (Prostigmagta) ( Astigmata) ( Cryptostigmata) TICKS Family: Trombiculidae Family: Demodicidae Genus: Trombicula Genus: Demodex Family: Dermanyssidae Genus: Demanyssus Family: Psoroptidae Family: Sarcoptidae Family: Genus: Psoroptes, Genus: Sarcoptes, Knemidocoptidae Chorioptes, Notoedres Genus: Knemidocoptes Otodectes Mites Phylum: Arthropoda Class Arachnida Sub-class: Acari (Acarina) ORDER Parasitiformes Acariformes -
Actinedida No
18 (3) · 2018 Russell, D. & K. Franke Actinedida No. 17 ................................................................................................................................................................................... 1 – 28 Acarological literature .................................................................................................................................................... 2 Publications 2018 ........................................................................................................................................................................................... 2 Publications 2017 ........................................................................................................................................................................................... 9 Publications, additions 2016 ........................................................................................................................................................................ 17 Publications, additions 2015 ....................................................................................................................................................................... 18 Publications, additions 2014 ....................................................................................................................................................................... 18 Publications, additions 2013 ...................................................................................................................................................................... -
Acariformes: Trombiculidae) with Notes on Their Moulting Processes Andrew B
Acta Zoologica (Stockholm) 80: 85±95 (January 1999) External morphology of the quiescent instars of trombiculid mites (Acariformes: Trombiculidae) with notes on their moulting processes Andrew B. Shatrov Abstract Zoological Institute Shatrov, A. B. 1999. External morphology of the quiescent instars of Russian Academy of Sciences trombiculid mites (Acariformes: Trombiculidae) with notes on their moulting 199034 St Petersburg processes. Ð Acta Zoologica (Stockholm) 80: 85-95 Russia The morphology and cuticular ultrastructure of the quiescent instars Keywords: prelarva, proto-and tritonymph of the trombiculid mites, Hirsutiella trombiculidae, quiescent instars, zachvatkini, Leptotrombidium orientale and Leptotrombidium schlugerae (Trom- morphology, moulting, ultrastructure biculidae) were investigated with transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Their post-embryonic life cycle Accepted for publication: 15 September 1998 is considered in terms of their moulting processes. The existence of the quiescent instars in mite ontogenesis is determined by the presence of the cuticle being closely appressed to the hypodermis irrespective of whether the old cuticle occurs or not, and is limited to a relatively short time, approxi- mately at the middle of the entire inactive period. The quiescent instars possess non-articulated reduced legs and mouth parts as well as slightly tuberculate and folded cuticle without setae. Andrew B. Shatrov, Zoological Institute, Russian Academy of Sciences, 199034 St Petersburg, Russia. -
Mites of Public Health Importance And
MITES OF PUBLIC HEALTH IMPORTANCE AND THEIR CONTROL TRAINING GUIDE - INSECT CONTROL SERIES Harry D. Pratt U. S. D E P A R T M E N T OF H E A L T H , EDU CA TIO N , A N D W E L F A R E PUBLIC HEALTH SERVICE Communicable Disease Center Atlanta, Georgia Names of commercial mataiifacturers and trade names are provided as example only, and their inclusion does not imply endorsement by the Public Health Service or the U. S. Department of Health, Education, and Welfare; nor does the ex clusion of other commercial manufacturers and trade names imply nonendorsement by the Service or Department. The following titles in the Insect Control Series, Public Health Service Publication No.772, have been published. A ll are on sale at the Superintendent of Documents, Washington 25, D .C., at the prices shown: Part I: Introduction to Arthropods of Public Health Importance, 30 cents Part II: Insecticides for the Control of Insects of Public Health Importance, 30 cents Part III: Insecticidal Equipment for the Control of Insects of Public Health Importance, 25 cents Part IV: Sanitation in the Control of Insects and Rodents of Public Health Importance, 35 cents Part V: Flies of Public Health Importance and Their Control, 30 cents Part VII: Fleas of Public Health Importance and Their Control, 30 cents Part VIII: Lice of Public Health Importance and Their Control, 20 cents Part X: Ticks of Public Health Importance and Their Control, 30 cents These additional parts will appear at intervals: Part VI: Mosquitoes of Public Health Importance and Their Control Part XI: Scorpions, Spiders and Other Arthropods of Minor Public Health Importance and Their Control Part XII: Household and Stored-Food Insects of Public Health Importance and Their Control Public Health Service Publication No.772 Insect Control Series: Part IX May 1963 UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1963 For sale by the Superintendent of Documents, U.S. -
First Report of Neotrombicula Inopinata Infestation in Domestic Cats from Portugal T ⁎ David W
Veterinary Parasitology 267 (2019) 1–3 Contents lists available at ScienceDirect Veterinary Parasitology journal homepage: www.elsevier.com/locate/vetpar Short communication First report of Neotrombicula inopinata infestation in domestic cats from Portugal T ⁎ David W. Ramiloa,1, Carla Monteirob,1, Marrion Carreirab, Isabel Pereira da Fonsecaa, , Luís Cardosoc a CIISA – Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal b Veterinary Teaching Hospital, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal c Department of Veterinary Sciences, and Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal ARTICLE INFO ABSTRACT Keywords: Trombiculids parasitize a wide variety of terrestrial vertebrates, including domestic animals, throughout the Cat world. They are parasites only during their larval stages, causing several dermatological lesions on their hosts, Chigger mites such as acute dermatitis, erythema, excoriation, erosion, papules, crusts and alopecia on the ear margins, face, Neotrombicula inopinata interdigital spaces and abdomen. Neotrombicula is one of the several genera in Trombiculidae family, which Portugal cause trombiculosis. The most common species implicated in clinical cases is Neotrombicula autumnalis. However, Trombiculidae several reports have shown that Neotrombicula inopinata (Oudemans, 1909) can also play a role in trombiculosis. Here, we describe the first case of N. inopinata infestation in domestic cats from mainland Portugal. Since nucleic acids of Anaplasma phagocytophilum and Borrelia burgdorferi have been found in Neotrombicula autumnalis and Rickettsia spp. in Neotrombicula inopinata, a correct taxonomical identification is essential to understand the role of these mite species as possible vectors of pathogens. -
Insect Repellents • Men Reside Or Travel to Endemic Area: Abstinence, Consistently Use Condoms Notes on Insect Repellants
What’s eating you? A guide to skin infestations Tracey C. Vlahovic DPM FFPM RCPS (Glasg) Clinical Professor, Dept of Podiatric Medicine Temple University School of Podiatric Medicine, Philadelphia, PA Conflicts of Interest None for this presentation Warning! This lecture may cause pruritus What we will cover today… Bees Fire Ants Beetlejuice! Mosquitoes Moths Chiggers Ticks Scabies Bed Bugs Cutaneous Larva Migrans Delusions of Parasitosis Arthropods http://www.open.edu/ope nlearncreate/mod/ouconte nt/view.php?id=192&extra =thumbnail_idp3729040 Arthropod Skin Reactions Stage 1—bite is non-reactive Stage 2—delayed red papule 24 hrs later Stage 3—an immediate wheal, delayed papule 24 hrs later Stage 4—Immediate wheal, no papule Stage 5—immunologic tolerance, no reaction after prolonged exposure Bite vs Stings??? Venomous insects sting, injecting venom through their stingers. Non-venomous insects bite and inject anti-coagulant saliva Hymenoptera Order Bees, Wasps, Ants -1% children, 3% adults, 40 die each year without history of sting -Yellowjackets, honey bees, fire ants, wasps -Honey bee (Apis mellifera)- leave a barbed ovipositor and paired venom sacs impaled in its victim; dies after stinging since it eviscerates itself after depositing its venom sac -Bumblebee, wasp- do not have barbed stingers and may sting repeatedly Cause of Morbidity Age– children and elderly Presence of other skin disease Yellowjacket bumblebee Immune status Honey bee Local and Systemic Effects Immediate burning, pain followed by intense local erythematous wheal “Normal” reaction subsides in several hours More severe local reactions can last up to 7 days (due to venom-specific IgE antibodies, cell mediated immune response) Massive stings-> multiorgan failure b/c venom is rich in phospholipases Occur in 0.4-3% of patients Generalized urticaria, angioedema, bronchospasm Treatment: subcutaneous epinepherine, oral/parenteral diphenhydramine, systemic steroids for persistent symptoms. -
Leptotrombidium Suzukii (Acari, Trombiculidae): a New Species Of
Bull. Natl. Mus. Nat. Sci., Ser. A, 40(4), pp. 191–199, November 21, 2014 Leptotrombidium suzukii (Acari, Trombiculidae): A New Species of Chigger Mite Found on Apodemus speciosus (Rodentia, Muridae) on Nakanoshima Island in the Tokara Islands, Kagoshima Prefecture, Japan Mamoru Takahashi1, Hitoko Misumi1 and Shinichi Noda2 1 Department of Anesthesiology, Saitama Medical University, Moroyama-machi, Iruma-gun, Saitama 350–0495, Japan E-mail: [email protected] 2 Research Center for the Pacific Islands, Kagoshima University, Korimoto, Kagoshima 890–8580, Japan (Received 19 August 2014; accepted 24 September 2014) Abstract We describe a new species, Leptotrombidium suzukii (Acari, Trombiculidae), of Chig- ger mites. The type material is laboratory-reared unfed larval trombiculid mites (F6 generation) that developed from the fully engorged larvae collected from Apodemus speciosus (Temminck, 1844) from Nakanoshima Island in the Tokara Islands, Kagoshima Prefecture, Japan. The new spe- cies is closely related to Leptotrombidium bunaense (Womersley, 1952), n. comb., n. stat. [=Lep- totrombidium (Leptotrombidium) bunaense Vercammen-Grandjean and Langston, 1976, a new junior synonym and homonym of Trombicula deliensis form bunaensis Womersley, 1952], but it is distinguished by the arrangement of the dorsal setae and long scutal setae. Key words : Leptotrombidium suzukii, Leptotrombidium deliense, Trombicula (Leptotrombidium) deliensis form bunaensis, Leptotrombidium (Leptotrombidium) bunaense, Nakanoshima Island. Introduction slight morphological and ecological differences had been noticed between this species from Leptotrombidium deliense (Walch, 1922) is one Nakanoshima and the Southeast Asian L. deliense of the most common vector species of scrub (Suzuki, personal communication). typhus, or tsutsugamushi disease, in Southeast To elucidate whether the species (Naka-L. -
New Reports of Acari Ectoparasites on Lizards of the Genus Plica (Squamata: Tropiduridae) and a List of Parasites Known from This Genus
SALAMANDRA 51(2) 195–198 30 June 2015 ISSNCorrespondence 0036–3375 Correspondence New reports of Acari ectoparasites on lizards of the genus Plica (Squamata: Tropiduridae) and a list of parasites known from this genus Samuel Campos Gomides1, Ralph Maturano2, Erik Daemon3, Paulo Christiano de Anchietta Garcia1 & Miguel Trefaut Rodrigues4 1) Laboratório de Herpetologia, Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais. Av. Antônio Carlos, 6627, CEP: 31270-901, Belo Horizonte, Minas Gerais, Brazil 2) Departamento de Parasitologia Animal, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, CEP: 23850-000, Seropédica, Rio de Janeiro, Brazil 3) Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, CEP: 36036-900, Juiz de Fora, Minas Gerais, Brazil 4) Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, Caixa Postal 11.461. CEP 05508-090. São Paulo, São Paulo, Brazil Corresponding author: Samuel Campos Gomides, e-mail: [email protected] Manuscript received: 19 August 2013 Accepted: 16 April 2014 by Andreas Schmitz Tropidurid lizards of the genus Plica Gray, 1831 comprise for the American reptile tick, Amblyomma rotundatum four recognized species, restricted in their distribution to Koch, 1844 (Acari, Ixodidae), and the trombiculid chig- forest areas in the Amazonian basin and the sandstone ta- ger, Eutrombi cula alfreddugesi (Oudemans, 1910) (Acari, ble mountains (tepuis) of Venezuela, South America (Eth- Trombiculidae). eridge 1970, Donnely & Myers 1991, Ávila-Pires 1995, During a taxonomic study on this lizard genus, we Myers & Donnely 2001). They are diurnal and insectivo- found specimens that were parasitised by some ectopara- rous sit-and-wait predators (Etheridge 1970, Donnelly sites.