Skeletal System Day 1 Review

Total Page:16

File Type:pdf, Size:1020Kb

Skeletal System Day 1 Review Skeletal System Day 1 Review Directions: Answer the review question based on what was covered in the notes. The 4 review worksheets will be !your “study guide(s)” for your unit test. 1. Ligaments attach ___________ to ____________ where tendons attach ____________ to ____________. 2. What are the 2 divisions of the skeletal system? ______________________ & _______________________ 3. List 5 functions of the skeletal system. - - - - - 4. How many bones are in the adult skeleton? ________________ !5. What is the difference between compact bone and spongy bone? ! ! ! 6. What are the 4 shapes of bones? ______________________ ______________________ ______________________ _______________________ 7. What type of bone are “long bones” made of? _______________________ 8. What type of bone are “short bones” made of? _______________________ 9. What type(s) of bone are “flat bones” made of? ___________________________________________________ !10. What is the diaphysis and epiphysis made up of (type of bone)? 11. Define and Label the structures of a Long Bone: ! d. ! ! ! 1. ! ! ! !a. e. ! ! ! ! f. ! ! g. ! 2. ! ! ! ! h. ! 3. ! ! !!! !b. ! 4. ! ! 5.! 6. x !c. 12. What is the main function of articular cartilage? Where is the location of this form of cartilage? What is it !made of? ! !13. What does yellow bone marrow contain? Red bone marrow? ! !14. What is a “process” or “projection” of a bone? “depression” or “cavity”? ! 15. In an embryo (in womb) what is the skeleton made up of? __________________________________ 16. What is the technical term for “growth plate” _____________________________________________ 17. What is the process of transforming cartilage into bone? (as a baby grows) ! 18. Define the following terms: -Osteocytes: -Osteoblasts: -Osteoclasts: 19. Describe the process of bone formation from a baby to an adult (video)- ! 20. True/False Directions: If the statement is False, cross out the incorrect word and replace it with the correct term to make the statement true. Example: axial !FALSE The appendicular skeleton is made up of the bones of the skull, vertebral column, and rib cage. 1. _________ An example of a long bone is the femur in the leg. 2. _________ Short bones are generally made up of compact bones. 3. _________ The sternum is an example of a flat bone, which is made up of a thin layer of compact bone, around a layer of spongy bone. 4. _________ The diaphysis is on the ends of each bone. 5. _________ The periosteum covers the sharpey’s fibers. 6. _________ The sharpey’s fibers main function is to secure the periosteum to the underlying bone. 7. _________ Articular cartilage covers the external diaphysis and decreases friction of the joint. 8. _________ The medullary cavity is in the shaft of a bone and contains mostly red marrow in adults and yellow marrow in infants. 9. _________ Bone projections and processes grow out from the bone surface. 10._________ Bone depressions or cavities are indentations on a bone. 11. _________ In embryos, the skeleton is made up of mostly hyaline cartilage. 12._________ During development the bone is replaced by cartilage. 13._________ The epiphyseal plate is responsible for bone growth. .
Recommended publications
  • Applications of Chondrocyte-Based Cartilage Engineering: an Overview
    Hindawi Publishing Corporation BioMed Research International Volume 2016, Article ID 1879837, 17 pages http://dx.doi.org/10.1155/2016/1879837 Review Article Applications of Chondrocyte-Based Cartilage Engineering: An Overview Abdul-Rehman Phull,1 Seong-Hui Eo,1 Qamar Abbas,1 Madiha Ahmed,2 and Song Ja Kim1 1 Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongjudaehakro 56, Gongju 32588, Republic of Korea 2Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan Correspondence should be addressed to Song Ja Kim; [email protected] Received 14 May 2016; Revised 24 June 2016; Accepted 26 June 2016 Academic Editor: Magali Cucchiarini Copyright © 2016 Abdul-Rehman Phull et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Chondrocytes are the exclusive cells residing in cartilage and maintain the functionality of cartilage tissue. Series of biocomponents such as different growth factors, cytokines, and transcriptional factors regulate the mesenchymal stem cells (MSCs) differentiation to chondrocytes. The number of chondrocytes and dedifferentiation are the key limitations in subsequent clinical application of the chondrocytes. Different culture methods are being developed to overcome such issues. Using tissue engineering and cell based approaches, chondrocytes offer prominent therapeutic option specifically in orthopedics for cartilage repair and to treat ailments such as tracheal defects, facial reconstruction, and urinary incontinence. Matrix-assisted autologous chondrocyte transplantation/implantation is an improved version of traditional autologous chondrocyte transplantation (ACT) method. An increasing number of studies show the clinical significance of this technique for the chondral lesions treatment.
    [Show full text]
  • Module 2 : Anatomy – the Skeleton
    Module 2 : Anatomy – The Skeleton In this module you will learn: The functions of the skeletal system The types of bones in the human body The effects of exercise on your bones What happens to the bones as we get older When studying to become a fitness instructor or personal trainer, you will learn all about the anatomy of the human body. Studying the skeleton is one of the foundations of your trade, you will need to know how the body is structured, the names of each bone, types of bones, importance of bone and joint health, detail of the spine and different terms of movement. Without stating the obvious, each of your clients has their own skeleton and you must be fully aware of how this works. This is for many reasons; you are a teacher and must be fully aware of how to prevent injuries, avoid unnecessary stress on the bones and, if qualified, help the client prevent or heal bone and joint related conditions or medical problems. 2.1 Understanding the Skeletal System The skeleton is comprised of 206 different bones that provide 5 main functions: Support mechanism for muscle and tissue Protection for organs Movement with bones, muscles, and joints Storing minerals and blood cells Growth Skeletal System 2.2 Bones are Formed by Ossification Some bones (such as the flat bones of your skull) in the body are formed in a similar stage to connective tissue. The process is known as direct or intramembranous ossification. Other bones are made up of cartilaginous matter, this is developed from future bone in the embryo which then dissolves and is replaced with other bone cells.
    [Show full text]
  • Studies on Brain and Spinal Cord Tumors
    Studies on Brain and Spinal Cord Tumors Chapter 1 Osteochondroma of the Spine Iraj Lotfinia Professor of Neurosurgery, Tabriz Universsity of medical science, Tabriz, Iran. Fax: 00984113340830; Email: [email protected] Abstract Osteochondroma (OC) is the most common benign tumor of the bones, and it remains the most common precursor for secondary chondrosarcoma, which often occurs in the long bones’ metaphyseal areas. Rarely, it is also found in the spine. This tumor comprises a cartilage capped bone projection and is observed in both solitary and multiple forms. In many cases, the lesion can be definitively diagnosed according to radiological characteristics, but the rarity of these lesions in the spine, gradual onset of symptoms, and the frequent lack of observation of lesions in plain radiography may delay the diagnosis or cause misdiagnosis. These lesions are be- nign and do not risk the patient’s life; however, they rarely may be found to be a malignant degeneration that transformed into chondrosarcoma. When the lesion has led to clinical symptoms or has faced the patient with cosmetic challenges, or when definitive diagnosis is unknown, treatment is required. The primary treatment is the surgical removal of the lesion. Timely diagnosis and complete resection of the le- sion using surgery lead to complete recovery and prevent recurrence. 1. Introduction According to the World Health Organization’s (WHO’s) definition in 2002, osteocar- tilaginous exostosis are benign bone neoplasms covered by a cartilaginous cap created at the outer surface of the bone by endochondral ossification [1]. Osteochondroma (OC) is the most common benign primary tumor of the bone.
    [Show full text]
  • Bone Markings / Features on Bones
    08/05/2016 Bone Markings : Skeletal System Search Custom Search Like Tweet Home Health News Human Body Biology Chemistry Glossary Textbooks Bone Disorders Ads by Google ► Bone Tissue ► Bone Marrow ► Human Skull Bone ► Bone on Bone Knee Sun 8 May 2016 Bone Markings / Features on Bones Human Body Study Section Bone markings and the features of bones (including the correct words used to describe them) are often required by first­level courses in human anatomy and associated health science subjects. It is important to be familiar with the terminology used to Human Body Index refer to bone markings in order to communicate effectively with professionals involved in healthcare, research, forensics, and Health Glossary related disciplines. More about Bones and the Skeletal System: The following terms used to describe bone markings or features on bones are in alphabetical order with short definitions: Human Skeleton Axial and Appendicular Word / Term Meaning / Description Type of Example(s) Skeleton (Bone Marking or bone The Structure and Feature) marking Functions of Bones Types of Bones 1. Angle A corner Feature of Inferior angle (lower) and superior angle (upper) are Bone Markings & Features shape of bone the rounded angles or "corners" of the scapula. on Bones Disorders of the Skeletal 2. Body The main portion of a bone The diaphysis of long bones such as the humerus. System Curvature of the Spine 3. Condyle Rounded bump or large rounded Process ­ The medial condyle of the femur (bone), upper­leg. prominence. Such rounded surfaces forms joints Types of Joints usually fit into a fossa on another bone to Specific bones: form a joint.
    [Show full text]
  • The Epiphyseal Plate: Physiology, Anatomy, and Trauma*
    3 CE CREDITS CE Article The Epiphyseal Plate: Physiology, Anatomy, and Trauma* ❯❯ Dirsko J. F. von Pfeil, Abstract: This article reviews the development of long bones, the microanatomy and physiology Dr.med.vet, DVM, DACVS, of the growth plate, the closure times and contribution of different growth plates to overall growth, DECVS and the effect of, and prognosis for, traumatic injuries to the growth plate. Details on surgical Veterinary Specialists of Alaska Anchorage, Alaska treatment of growth plate fractures are beyond the scope of this article. ❯❯ Charles E. DeCamp, DVM, MS, DACVS athologic conditions affecting epi­ foramen. Growth factors and multipotent Michigan State University physeal (growth) plates in imma­ stem cells support the formation of neo­ ture animals may result in severe natal bone consisting of a central marrow P 2 orthopedic problems such as limb short­ cavity surrounded by a thin periosteum. ening, angular limb deformity, or joint The epiphysis is a secondary ossifica­ incongruity. Understanding growth plate tion center in the hyaline cartilage forming anatomy and physiology enables practic­ the joint surfaces at the proximal and distal At a Glance ing veterinarians to provide a prognosis ends of the bones. Secondary ossification Bone Formation and assess indications for surgery. Injured centers can appear in the fetus as early Page E1 animals should be closely observed dur­ as 28 days after conception1 (TABLE 1). Anatomy of the Growth ing the period of rapid growth. Growth of the epiphysis arises from two Plate areas: (1) the vascular reserve zone car­ Page E2 Bone Formation tilage, which is responsible for growth of Physiology of the Growth Bone is formed by transformation of con­ the epiphysis toward the joint, and (2) the Plate nective tissue (intramembranous ossifica­ epiphyseal plate, which is responsible for Page E4 tion) and replacement of a cartilaginous growth in bone length.3 The epiphyseal 1 Growth Plate Closure model (endochondral ossification).
    [Show full text]
  • Osteochondroma: Ignore Or Investigate?
    r e v b r a s o r t o p . 2 0 1 4;4 9(6):555–564 www.rbo.org.br Updating Article ଝ Osteochondroma: ignore or investigate? a b,c,∗ Antônio Marcelo Gonc¸alves de Souza , Rosalvo Zósimo Bispo Júnior a School of Medicine, Federal University of Pernambuco (UFPE), Recife, PE, Brazil b School of Medicine, Federal University of Paraíba (UFPB), João Pessoa, PB, Brazil c University Center of João Pessoa (UNIPÊ), João Pessoa, PB, Brazil a r a t i b s c t l e i n f o r a c t Article history: Osteochondromas are bone protuberances surrounded by a cartilage layer. They generally Received 23 August 2013 affect the extremities of the long bones in an immature skeleton and deform them. They usu- Accepted 31 October 2013 ally occur singly, but a multiple form of presentation may be found. They have a very charac- Available online 27 October 2014 teristic appearance and are easily diagnosed. However, an atypical site (in the axial skeleton) and/or malignant transformation of the lesion may sometimes make it difficult to iden- Keywords: tify osteochondromas immediately by means of radiographic examination. In these cases, Osteochondroma/etiology imaging examinations that are more refined are necessary. Although osteochondromas Osteochondroma/physiopathology do not directly affect these patients’ life expectancy, certain complications may occur, with Osteochondroma/diagnosis varying degrees of severity. Bone neoplasms © 2014 Sociedade Brasileira de Ortopedia e Traumatologia. Published by Elsevier Editora Ltda. All rights reserved. Osteocondroma: ignorar ou investigar? r e s u m o Palavras-chave: Osteocondromas são protuberâncias ósseas envolvidas por uma camada de cartilagem.
    [Show full text]
  • Inability of Low Oxygen Tension to Induce Chondrogenesis in Human Infrapatellar Fat Pad Mesenchymal Stem Cells
    fcell-09-703038 July 20, 2021 Time: 15:26 # 1 ORIGINAL RESEARCH published: 26 July 2021 doi: 10.3389/fcell.2021.703038 Inability of Low Oxygen Tension to Induce Chondrogenesis in Human Infrapatellar Fat Pad Mesenchymal Stem Cells Samia Rahman1, Alexander R. A. Szojka1, Yan Liang1, Melanie Kunze1, Victoria Goncalves1, Aillette Mulet-Sierra1, Nadr M. Jomha1 and Adetola B. Adesida1,2* 1 Laboratory of Stem Cell Biology and Orthopedic Tissue Engineering, Division of Orthopedic Surgery and Surgical Research, Department of Surgery, University of Alberta, Edmonton, AB, Canada, 2 Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Alberta Hospital, Edmonton, AB, Canada Objective: Articular cartilage of the knee joint is avascular, exists under a low oxygen tension microenvironment, and does not self-heal when injured. Human infrapatellar fat pad-sourced mesenchymal stem cells (IFP-MSC) are an arthroscopically accessible source of mesenchymal stem cells (MSC) for the repair of articular cartilage defects. Human IFP-MSC exists physiologically under a low oxygen tension (i.e., 1–5%) Edited by: microenvironment. Human bone marrow mesenchymal stem cells (BM-MSC) exist Yi Zhang, physiologically within a similar range of oxygen tension. A low oxygen tension of Central South University, China 2% spontaneously induced chondrogenesis in micromass pellets of human BM-MSC. Reviewed by: Dimitrios Kouroupis, However, this is yet to be demonstrated in human IFP-MSC or other adipose tissue- University of Miami, United States sourced MSC. In this study, we explored the potential of low oxygen tension at 2% to Dhirendra Katti, Indian Institute of Technology Kanpur, drive the in vitro chondrogenesis of IFP-MSC.
    [Show full text]
  • Bone Cartilage Dense Fibrous CT (Tendons & Nonelastic Ligaments) Dense Elastic CT (Elastic Ligaments)
    Chapter 6 Content Review Questions 1-8 1. The skeletal system consists of what connective tissues? Bone Cartilage Dense fibrous CT (tendons & nonelastic ligaments) Dense elastic CT (elastic ligaments) List the functions of these tissues. Bone: supports the body, protects internal organs, provides levers on which muscles act, store minerals, and produce blood cells. Cartilage provides a model for bone formation and growth, provides a smooth cushion between adjacent bones, and provides firm, flexible support. Tendons attach muscles to bones and ligaments attach bone to bone. 2. Name the major types of fibers and molecules found in the extracellular matrix of the skeletal system. Collagen Proteoglycans Hydroxyapatite Water Minerals How do they contribute to the functions of tendons, ligaments, cartilage and bones? The collagen fibers of tendons and ligaments make these structures very tough, like ropes or cables. Collagen makes cartilage tough, whereas the water-filled proteoglycans make it smooth and resistant. As a result, cartilage is relatively rigid, but springs back to its original shape if it is bent or slightly compressed, and it is an excellent shock absorber. The extracellular matrix of bone contains collagen and minerals, including calcium and phosphate. Collagen is a tough, ropelike protein, which lends flexible strength to the bone. The mineral component gives the bone compression (weight-bearing) strength. Most of the mineral in the bone is in the form of hydroxyapatite. 3. Define the terms diaphysis, epiphysis, epiphyseal plate, medullary cavity, articular cartilage, periosteum, and endosteum. Diaphysis – the central shaft of a long bone. Epiphysis – the ends of a long bone. Epiphyseal plate – the site of growth in bone length, found between each epiphysis and diaphysis of a long bone and composed of cartilage.
    [Show full text]
  • The Histology of Epiphyseal Union in Mammals
    J. Anat. (1975), 120, 1, pp. 1-25 With 49 figures Printed in Great Britain The histology of epiphyseal union in mammals R. WHEELER HAINES* Visiting Professor, Department of Anatomy, Royal Free Hospital School of Medicine, London (Accepted 11 November 1974) INTRODUCTION Epiphyseal union may be defined as beginning with the completion of the first mineralized bridge between epiphyseal and diaphyseal bone and ending with the complete disappearance of the cartilaginous epiphyseal plate and its replacement by bone and marrow. The phases have been described by Sidhom & Derry (1931) and many others from radiographs, but histological material showing union in progress is rare, probably because of the rapidity with which union, once begun, comes to completion (Stephenson, 1924; Dawson, 1929). Dawson (1925, 1929) described the histology of 'lapsed union' in rats, where the larger epiphyses at the 'growing ends' of the long bones remain un-united through- out life. He and Becks et al. (1948) also discussed the early and complete type of union found at the distal end of the humerus in the rat. Here a single narrow per- foration pierced the cartilaginous plate near the olecranon fossa and later spread to destroy the whole plate. Lassila (1928) described a different type of union in the metatarsus of the calf, with multiple perforations of the plate. Apart from a few notes on human material (Haines & Mohiuddin, 1960, 1968), nothing else seems to have been published on the histology of union in mammals. In this paper more abundant material from dog and man is presented and will serve as a basis for discussion of the main features of the different types of union.
    [Show full text]
  • Skeletal System
    Skeletal system Anatomy Department Beni-Suef University Intended learning objectives (ILOs) By the end of this lecture the student will be able to: 1.Describe the functions of the skeletal system. 2.Classify the bones according to shape and location. 3.Describe the blood and nerve supply of bone. 4.Describe bone growth and remodeling. Functions of the bones: 1. Support. 2. Protection. 3. Assistance in movement. 4. Storage of minerals: e.g. calcium and phosphorus. 5. Blood cell production. 6. Triglyceride storage: Yellow bone marrow Classification of the bones: A. According to position in the body. B. According to shape. C. According to histological structure. D. According to the type of ossification. A. Classification according to the position in the body: I. Axial skeleton: skull, Mandible, Vertebral column and Bones of the thorax (ribs and sternum). II. Appendicular skeleton: bones of the upper and lower limbs and each limb is composed of limb girdle and free limb B. Classification according to the shape of the bones: I.Long bones II.Short long bones III.Short bones IV.Flat bones V.Irregular bones VI.Pneumatic bones VII. Sesamoid bones VIII. Sutural bones C. Classification according to the histological structure: I.Dense, compact bone II.Spongy, cancellous bone D. Classification of bones according to the type of ossification: I.Intramembranous ossification II.Endochondral ossification Structure of long bone •The hyaline articular cartilage •Epiphysis •The epiphyseal line •Diaphysis Growth of long bones: 1.Growth in length 2.2. Growth in width Functions of the periosteum: 1. a2achments of muscles and li aments.
    [Show full text]
  • BONE LANDMARKS Vocabulary to Learn: Bone Structures Attachments
    BONE LANDMARKS ✔ Vocabulary to learn: Attachments for Articulation Depressions Bone structures tendons or projections and openings ligaments Articular cartilage Crest Condyle Fissure Compact bone Epicondyle Facet Foramen Diaphysis Line Head Fossa Endosteum Process Ramus Groove Epiphyseal line Spine Meatus Epiphysis Trochanter Nutrient foramen Medullary cavity Tubercle Sinus Neck Tuberosity Sulcus Periosteum Spongy bone Trabeculae ✔ Complete the following statements with the most appropriate term: On the external surface and most of the diaphysis, the superficial structure of the bone is dense or ________________________ bone, whereas internally and deep in the epiphyses, the bone is open or ________________________ bone and consists of ________________________, which are a fine meshwork of "flying buttresses" to give the bone strength. The tubular shaft of the bone is called the ________________________ which in some cases contains a medullary cavity. The extremity of the bone is called the ________________________ and it is distally covered by a thin layer of ________________________. Bone is covered by a dense connective tissue called ________________________. A narrowed portion of a bone at the base of the head of the bone is the ________________________. A moderately raised ridge along a bone for attaching muscles is a ________________________ or line. A sharp, slender pointed projection (like the point of a pencil) is a ________________________ and is the site of attachment for muscles or ligaments. Any bony projection or bump can be generically called a _______________________. A shallow depression in a bone is called a ________________________. Openings in a bone, for passage of a nerve or vessel, that are round or oval are referred to as ________________________ , ________________________ if they are narrow or slit-like, and a ________________________ if they are canal-like.
    [Show full text]
  • Design and Characterization of Photopolymerizable Semi
    DESIGN AND CHARACTERIZATION OF PHOTOPOLYMERIZABLE SEMI- INTERPENETRATING NETWORKS FOR IN VITRO CHONDROGENESIS OF HUMAN MESENCHYMAL STEM CELLS by AMANDA NICOLE BUXTON Submitted in partial fulfillment of the requirements For the degree of Doctor of Philosophy Dissertation Adviser: Dr. Brian Johnstone Department of Biomedical Engineering CASE WESTERN RESERVE UNIVERSITY August, 2007 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of _____________Amanda N. Buxton______________________ candidate for the Doctor of Philosophy degree *. (signed)_____Roger Marchant______________ (chair of the committee) ________________Stuart Rowan____________________________ __________________Steve Eppell___________________________ __________________Brian Johnstone________________________ _______________Joseph Mansour___________________________ _______________Lloyd A. Culp_____________________________ (date) ___April 3, 2007____________________ *We also certify that written approval has been obtained for any proprietary material contained therein. TABLE OF CONTENTS List of Tables iii List of Figures iv Acknowledgements vii List of Abbreviations viii Glossary ix Abstract 1 Chapter One: Background & Significance 3 Structure & Function of Articular Cartilage 4 Formation of Cartilage 13 Articular Cartilage Pathology & Repair 17 Tissue Engineering Design Criteria 20 Cell Source 21 Scaffold Considerations 22 Addition of Bioactive Factors 25 Chapter Two: In Vitro Chondrogenesis in a Poly(ethylene glycol) Diacrylate
    [Show full text]