Battery-like Supercapacitorsfrom Vertically Aligned Carbon Nanofibers Coated Diamond: Design and Demonstrator Siyu Yu,a Nianjun Yang,a* Michael Vogel,a Soumen Mandal,b Oliver A. Williams,b Siyu Jiang,c Holger Schönherr,c Bing Yang,d and Xin Jianga,d* a Institute of Materials Engineering, University of Siegen, 57076 Siegen, Germany b School of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA, UK c Physical Chemistry I, Department of Chemistry and Biology, University of Siegen, 57076 Siegen, Germany d Shenyang National Laboratory for Materials Science, Institute of Metal Research (IMR), Chinese Academy of Sciences (CAS), No.72 Wenhua Road, Shenyang 110016 China E-mail:
[email protected],
[email protected] Abstract Battery-like supercapacitors feature high power and energy densities as well as long-term capacitance retention. The utilized capacitor electrodes are thus better to have large surface areas, high conductivity, high stability, and importantly be of binder free. Herein, vertically aligned carbon nanofibers (CNFs) coated boron-doped diamonds (BDD) are employed as the capacitor electrodes to construct battery-like supercapacitors. Grown via a thermal chemical vapor deposition technique, these CNFs/BDD hybrid films are binder free and own porous structures, resulting in large surface areas. Meanwhile, the containment of graphene layers and copper metal catalysts inside CNFs/BDD leads to their high conductivity. Electric double layer capacitors (EDLCs) and pseudocapacitors (PCs) are then constructed in the inert electrolyte (1.0 M H2SO4 solution) and in the redox-active electrolyte (1.0 M Na2SO4 + 0.05 M 3-/4- Fe(CN)6 ), respectively For assembled two-electrode symmetrical supercapacitor devices, the capacitances of EDLC and PC devices reach 30 and 48 mF cm-2 at 10 mV s-1, respectively.