Period: Properties of the Rectangle, Rhombus, and Square - Notes

Total Page:16

File Type:pdf, Size:1020Kb

Period: Properties of the Rectangle, Rhombus, and Square - Notes Name: Period: Properties of the Rectangle, Rhombus, and Square - Notes Rectangles 1. On Rectangle 1, measure each side length to the nearest tenth of a centimeter. 2. On Rectangles 1 and 2, measure each angle and record your measurement next to each angle number. Rectangle 1 Rectangle 2 1 2 6 7 5 8 13 14 15 16 9 12 4 3 10 11 3. Check each of the properties of a parallelogram that Rectangle 1 has: _____Opposite sides are parallel. _____Opposite sides are congruent. _____Opposite angles are congruent. _____Consecutive angles are supplementary. _ _Diagonals bisect each other. _ _One pair of opposite sides are both parallel and congruent. _ _Each diagonal divides the quadrilateral into two congruent triangles. 4. Check each of these additional properties that a rectangle has: _____All 4 sides are congruent. _____All angles are right angles. _____The diagonals are congruent. _____The diagonals are perpendicular. _____The diagonals bisect the opposite angles. 5. Determine how many lines of symmetry are in a rectangle and describe where they are located. 6. Rectangle – a quadrilateral that has __________ __________ angles. Name: Period: Properties of the Rectangle, Rhombus, and Square Rhombus 7. On Rhombus 1, measure each side length to the nearest tenth of a centimeter. 8. On Rhombi 1 and 2, measure each angle and record your measurement next to each angle number. Rhombus 1 Rhombus 2 1 2 6 7 5 8 13 14 15 16 9 12 3 4 10 11 9. Check each of the properties of a parallelogram that Rhombus 1 has: _____Opposite sides are parallel. _____Opposite sides are congruent. _____Opposite angles are congruent. _____Consecutive angles are supplementary. _ _Diagonals bisect each other. _ _One pair of opposite sides are both parallel and congruent. _ _Each diagonal divides the quadrilateral into two congruent triangles . 10. Check each of these additional properties that a rhombus has: _____All 4 sides are congruent. _____All angles are right angles. _____The diagonals are congruent. _____The diagonals are perpendicular. _____The diagonals bisect the opposite angles. 11. Determine how many lines of symmetry are in a rhombus and describe where they are located. 12. Rhombus – a quadrilateral that has __________ ___________________ sides. Name: Period: Properties of the Rectangle, Rhombus, and Square - Notes Square 13. On Square 1, measure each side length to the nearest tenth of a centimeter. 14. On Squares 1 and 2, measure each angle and record your measurement next to each angle number. Square 1 Square 2 6 7 1 2 5 8 13 14 15 16 9 12 3 4 10 11 15. Check each of the properties of a parallelogram that Square 1 has: _____Opposite sides are parallel. _____Opposite sides are congruent. _____Opposite angles are congruent. _____Consecutive angles are supplementary. _ _Diagonals bisect each other. _ _One pair of opposite sides are both parallel and congruent. _ _Each diagonal divides the quadrilateral into two congruent triangles. 16. Check each of these additional properties that a square has: _____All 4 sides are congruent. _____All angles are right angles. _____The diagonals are congruent. _____The diagonals are perpendicular. _____The diagonals bisect the opposite angles. 17. Determine how many lines of symmetry are in a square and describe where they are located. 18. Square – a quadrilateral that has __________ __________ angles and __________ ___________________ sides. Name: Period: Properties of the Rectangle, Rhombus, and Square - Notes Parallelogram Rectangle Rhombus Square 4 sides opposite sides are parallel opposite sides are congruent opposite angles are congruent consecutive angles = 180° diagonals bisect each other one pair of opposites sides are both ll and each diagonal divides the quad. into 2 triangles all 4 sides are congruent all 4 angles are right angles diagonals are congruent the diagonals are perpendicular the diagonals bisect opposite angles .
Recommended publications
  • How Can You Put Shapes Together to Make Other Shapes?
    Lesson 27 Understand Tiling in Rectangles Name: How can you put shapes together to make other shapes? Study the example showing how to put shapes together to make other shapes. Then solve Problems 1–4. Example How can you use smaller shapes to make a circle? Look at the shapes in the green box Draw lines to show how you could use the shapes Write how many of each shape you would need 2 4 1 Draw a line to show how you could use squares like the one in the green box to make a rectangle How many squares would you need? squares 2 Draw lines to show how you could use triangles like the one in the green box to make a rectangle How many triangles would you need? triangles ©Curriculum Associates, LLC Copying is not permitted. Lesson 27 Understand Tiling in Rectangles 283 Solve. 3 Draw lines to show how you could use hexagons to make the first shape below Then show how you could use trapezoids to make the second shape How many of each shape would you need? hexagons trapezoids 4 Draw lines to show how you could use triangles to make the first shape below Then show how you could use trapezoids to make the second shape Then show how you could use rhombuses to make the third shape How many of each shape would you need? triangles trapezoids rhombuses 284 Lesson 27 Understand Tiling in Rectangles ©Curriculum Associates, LLC Copying is not permitted. Lesson 27 Name: Draw and Count Squares Study the example showing how to draw and count squares.
    [Show full text]
  • Square Rectangle Triangle Diamond (Rhombus) Oval Cylinder Octagon Pentagon Cone Cube Hexagon Pyramid Sphere Star Circle
    SQUARE RECTANGLE TRIANGLE DIAMOND (RHOMBUS) OVAL CYLINDER OCTAGON PENTAGON CONE CUBE HEXAGON PYRAMID SPHERE STAR CIRCLE Powered by: www.mymathtables.com Page 1 what is Rectangle? • A rectangle is a four-sided flat shape where every angle is a right angle (90°). means "right angle" and show equal sides. what is Triangle? • A triangle is a polygon with three edges and three vertices. what is Octagon? • An octagon (eight angles) is an eight-sided polygon or eight-gon. what is Hexagon? • a hexagon is a six-sided polygon or six-gon. The total of the internal angles of any hexagon is 720°. what is Pentagon? • a plane figure with five straight sides and five angles. what is Square? • a plane figure with four equal straight sides and four right angles. • every angle is a right angle (90°) means "right ang le" show equal sides. what is Rhombus? • is a flat shape with four equal straight sides. A rhombus looks like a diamond. All sides have equal length. Opposite sides are parallel, and opposite angles are equal what is Oval? • Many distinct curves are commonly called ovals or are said to have an "oval shape". • Generally, to be called an oval, a plane curve should resemble the outline of an egg or an ellipse. Powered by: www.mymathtables.com Page 2 What is Cube? • Six equal square faces.tweleve edges and eight vertices • the angle between two adjacent faces is ninety. what is Sphere? • no faces,sides,vertices • All points are located at the same distance from the center. what is Cylinder? • two circular faces that are congruent and parallel • faces connected by a curved surface.
    [Show full text]
  • Quadrilateral Theorems
    Quadrilateral Theorems Properties of Quadrilaterals: If a quadrilateral is a TRAPEZOID then, 1. at least one pair of opposite sides are parallel(bases) If a quadrilateral is an ISOSCELES TRAPEZOID then, 1. At least one pair of opposite sides are parallel (bases) 2. the non-parallel sides are congruent 3. both pairs of base angles are congruent 4. diagonals are congruent If a quadrilateral is a PARALLELOGRAM then, 1. opposite sides are congruent 2. opposite sides are parallel 3. opposite angles are congruent 4. consecutive angles are supplementary 5. the diagonals bisect each other If a quadrilateral is a RECTANGLE then, 1. All properties of Parallelogram PLUS 2. All the angles are right angles 3. The diagonals are congruent If a quadrilateral is a RHOMBUS then, 1. All properties of Parallelogram PLUS 2. the diagonals bisect the vertices 3. the diagonals are perpendicular to each other 4. all four sides are congruent If a quadrilateral is a SQUARE then, 1. All properties of Parallelogram PLUS 2. All properties of Rhombus PLUS 3. All properties of Rectangle Proving a Trapezoid: If a QUADRILATERAL has at least one pair of parallel sides, then it is a trapezoid. Proving an Isosceles Trapezoid: 1st prove it’s a TRAPEZOID If a TRAPEZOID has ____(insert choice from below) ______then it is an isosceles trapezoid. 1. congruent non-parallel sides 2. congruent diagonals 3. congruent base angles Proving a Parallelogram: If a quadrilateral has ____(insert choice from below) ______then it is a parallelogram. 1. both pairs of opposite sides parallel 2. both pairs of opposite sides ≅ 3.
    [Show full text]
  • Teach the Square…And the Rectangle
    f e a t u r e Teach the square…and the rectangle eaching these two geometric needs of ancient civilizations. familiar and trusted shapes, they Tshapes is like a line from an (Some believe the square symbol- represent order and stability. old song: “You can’t have one izes civilization.) Ancient peoples Because a square has four equal without the other.” needed to measure plots of land, sides, it can also be said to sym- The square and rectangle go build structures, collect taxes, bolize the seasons (spring, sum- hand in hand—maybe not like describe constellations, and create mer, fall, winter), cardinal direc- “love and marriage” or “horse calendars, all of which required tions (north, east, south, west), and carriage,” but perhaps best numbers, shapes, and calculations. and the elements (fire, water, air, understood in terms of the other. Of the basic geometric shapes in earth). Children have undoubtedly had today’s world, the rectangle is the In nature, we see no naturally experience with the two shapes in most common. The rectangle and formed squares or rectangles. objects all around them. They its square soul-mate form the Trees, branches, and leaves, for begin learning geometric shapes structure of most buildings. As example, are uneven, rounded, in a more formal way in preschool z T and are usually expected to know gae how to make and take apart N shapes by the time they finish kindergarten. by susa oto Texas Child Care has posted two ph previous articles on teaching geo- metric shapes: Go round: Teach the circle shape in Spring 2015 and Teach the triangle in Spring 2017.
    [Show full text]
  • Petrie Schemes
    Canad. J. Math. Vol. 57 (4), 2005 pp. 844–870 Petrie Schemes Gordon Williams Abstract. Petrie polygons, especially as they arise in the study of regular polytopes and Coxeter groups, have been studied by geometers and group theorists since the early part of the twentieth century. An open question is the determination of which polyhedra possess Petrie polygons that are simple closed curves. The current work explores combinatorial structures in abstract polytopes, called Petrie schemes, that generalize the notion of a Petrie polygon. It is established that all of the regular convex polytopes and honeycombs in Euclidean spaces, as well as all of the Grunbaum–Dress¨ polyhedra, pos- sess Petrie schemes that are not self-intersecting and thus have Petrie polygons that are simple closed curves. Partial results are obtained for several other classes of less symmetric polytopes. 1 Introduction Historically, polyhedra have been conceived of either as closed surfaces (usually topo- logical spheres) made up of planar polygons joined edge to edge or as solids enclosed by such a surface. In recent times, mathematicians have considered polyhedra to be convex polytopes, simplicial spheres, or combinatorial structures such as abstract polytopes or incidence complexes. A Petrie polygon of a polyhedron is a sequence of edges of the polyhedron where any two consecutive elements of the sequence have a vertex and face in common, but no three consecutive edges share a commonface. For the regular polyhedra, the Petrie polygons form the equatorial skew polygons. Petrie polygons may be defined analogously for polytopes as well. Petrie polygons have been very useful in the study of polyhedra and polytopes, especially regular polytopes.
    [Show full text]
  • Quadrilaterals
    Name: Quadrilaterals Match the quadrilateral with its definition. a. 1. All sides are the same length. There are four right angles. Parallelogram b. 2. There is only one pair of parallel sides. Rectangle c. 3. Opposite sides are parallel and the same length. There are four right angles. Trapezoid d. 4. There are two pairs of parallel sides. All sides are the same length. Rhombus 5. There are two pairs of opposite parallel e. sides. Square 6. List two ways a rectangle and square are alike and one way in which they are different. Super Teacher Worksheets - www.superteacherworksheets.com ANSWER KEY Quadrilaterals Match the quadrilateral with its definition. a. e 1. All sides are the same length. There are four right angles. Parallelogram b. c 2. There is only one pair of parallel sides. Rectangle c. b 3. Opposite sides are parallel and the same length. There are four right angles. Trapezoid d. d 4. There are two pairs of parallel sides. All sides are the same length. Rhombus a 5. There are two pairs of opposite parallel e. sides. Square 6. List two ways a rectangle and square are alike and one way in which they are different. Rectangles and squares are alike in that both have two pairs of parallel sides and four right angles. They are different because a square must have four equal sides lengths and a rectangle has two pairs of equal side lengths. Super Teacher Worksheets - www.superteacherworksheets.com.
    [Show full text]
  • Cyclic Quadrilaterals
    GI_PAGES19-42 3/13/03 7:02 PM Page 1 Cyclic Quadrilaterals Definition: Cyclic quadrilateral—a quadrilateral inscribed in a circle (Figure 1). Construct and Investigate: 1. Construct a circle on the Voyage™ 200 with Cabri screen, and label its center O. Using the Polygon tool, construct quadrilateral ABCD where A, B, C, and D are on circle O. By the definition given Figure 1 above, ABCD is a cyclic quadrilateral (Figure 1). Cyclic quadrilaterals have many interesting and surprising properties. Use the Voyage 200 with Cabri tools to investigate the properties of cyclic quadrilateral ABCD. See whether you can discover several relationships that appear to be true regardless of the size of the circle or the location of A, B, C, and D on the circle. 2. Measure the lengths of the sides and diagonals of quadrilateral ABCD. See whether you can discover a relationship that is always true of these six measurements for all cyclic quadrilaterals. This relationship has been known for 1800 years and is called Ptolemy’s Theorem after Alexandrian mathematician Claudius Ptolemaeus (A.D. 85 to 165). 3. Determine which quadrilaterals from the quadrilateral hierarchy can be cyclic quadrilaterals (Figure 2). 4. Over 1300 years ago, the Hindu mathematician Brahmagupta discovered that the area of a cyclic Figure 2 quadrilateral can be determined by the formula: A = (s – a)(s – b)(s – c)(s – d) where a, b, c, and d are the lengths of the sides of the a + b + c + d quadrilateral and s is the semiperimeter given by s = 2 . Using cyclic quadrilaterals, verify these relationships.
    [Show full text]
  • Rectangles with the Same Numerical Area and Perimeter
    Rectangles with the Same Numerical Area and Perimeter About Illustrations: Illustrations of the Standards for Mathematical Practice (SMP) consist of several pieces, including a mathematics task, student dialogue, mathematical overview, teacher reflection questions, and student materials. While the primary use of Illustrations is for teacher learning about the SMP, some components may be used in the classroom with students. These include the mathematics task, student dialogue, and student materials. For additional Illustrations or to learn about a professional development curriculum centered around the use of Illustrations, please visit mathpractices.edc.org. About the Rectangles with the Same Numerical Area and Perimeter Illustration: This Illustration’s student dialogue shows the conversation among three students who are trying to find all rectangles that have the same numerical area and perimeter. After trying different rectangles of specific dimensions, students finally develop an equation that describes the relationship between the width and length of a rectangle with equal area and perimeter. Highlighted Standard(s) for Mathematical Practice (MP) MP 1: Make sense of problems and persevere in solving them. MP 2: Reason abstractly and quantitatively. MP 7: Look for and make use of structure. MP 8: Look for and express regularity in repeated reasoning. Target Grade Level: Grades 8–9 Target Content Domain: Creating Equations (Algebra Conceptual Category) Highlighted Standard(s) for Mathematical Content A.CED.A.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. A.CED.A.4 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.
    [Show full text]
  • 2 Dimensional Figures
    Study Island Copyright © 2021 Edmentum - All rights reserved. Generation Date: 07/26/2021 Generated By: Jennifer Fleming 1. An equilateral triangle is always an example of a/an: I. isosceles triangle II. scalene triangle III. right triangle A. I only B. II and III C. I and II D. II only 2. Which of the following is true about a parallelogram? Parallelograms always have four congruent sides. A. The diagonals of a parallelogram always bisect each other. B. Only two sides of a parallelogram are parallel. C. Opposite angles of a parallelogram are not congruent. D. 3. What is the difference between a rectangle and a rhombus? A rectangle has opposite sides parallel and a rhombus has no sides parallel. A. A rectangle has four right angles and a rhombus has opposite angles of equal measure. B. A rhombus has four right angles and a rectangle has opposite angles of equal measure. C. A rectangle has opposite sides of equal measure and a rhombus has no sides of equal measure. D. 4. What is a property of all rectangles? The four sides of a rectangle have equal length. A. The opposite sides of a rectangle are parallel. B. The diagonals of a rectangle do not have equal length. C. A rectangle only has two right angles. D. 5. An obtuse triangle is sometimes an example of a/an: I. scalene triangle II. isosceles triangle III. equilateral triangle IV. right triangle A. I or II B. I, II, or III C. III or IV D. II or III 6. What is the main difference between squares and rhombuses? Squares always have four interior angles which each measure 90°; rhombuses do not.
    [Show full text]
  • Cyclic and Bicentric Quadrilaterals G
    Cyclic and Bicentric Quadrilaterals G. T. Springer Email: [email protected] Hewlett-Packard Calculators and Educational Software Abstract. In this hands-on workshop, participants will use the HP Prime graphing calculator and its dynamic geometry app to explore some of the many properties of cyclic and bicentric quadrilaterals. The workshop will start with a brief introduction to the HP Prime and an overview of its features to get novice participants oriented. Participants will then use ready-to-hand constructions of cyclic and bicentric quadrilaterals to explore. Part 1: Cyclic Quadrilaterals The instructor will send you an HP Prime app called CyclicQuad for this part of the activity. A cyclic quadrilateral is a convex quadrilateral that has a circumscribed circle. 1. Press ! to open the App Library and select the CyclicQuad app. The construction consists DEGH, a cyclic quadrilateral circumscribed by circle A. 2. Tap and drag any of the points D, E, G, or H to change the quadrilateral. Which of the following can DEGH never be? • Square • Rhombus (non-square) • Rectangle (non-square) • Parallelogram (non-rhombus) • Isosceles trapezoid • Kite Just move the points of the quadrilateral around enough to convince yourself for each one. Notice HDE and HE are both inscribed angles that subtend the entirety of the circle; ≮ ≮ likewise with DHG and DEG. This leads us to a defining characteristic of cyclic ≮ ≮ quadrilaterals. Make a conjecture. A quadrilateral is cyclic if and only if… 3. Make DEGH into a kite, similar to that shown to the right. Tap segment HE and press E to select it. Now use U and D to move the diagonal vertically.
    [Show full text]
  • A Regular Octagon Is Inscribed Inside a Square. Another Square Is Inscribed Inside the Octagon
    This brainteaser was written by Derrick Niederman. A regular octagon is inscribed inside a square. Another square is inscribed inside the octagon. What is the ratio of the area of the smaller square to the area of the larger square? © 2009 National Council of Teachers of Mathematics, Inc. Resources for Teaching Math http://illuminations.nctm.org Solution: ½. One way to see this is to rotate the blue triangles onto the top of the red trapezoids, with the hypotenuse of the triangle flush with the shorter base of the trapezoid. Then it’s pretty easy to see that if the four red and blue triangles are folded over, they’d completely cover the yellow square. In other words, the area of the yellow square is equal to the area of red trapezoids and blue triangles combined, so the ratio of the smaller square to the larger square is ½. It is also possible to calculate the area of the larger and smaller squares. Start by assuming that the length of the shorter sides of the triangles is 1 unit, as shown below. Then the hypotenuse of each triangle is 2 , and since the hypotenuse is also a side of the regular octagon, then all sides of the octagon are 2 . Consequently, the side length of the larger square is 2+ 2, and the side length of the smaller square is 1+ 2, so their 2 2 respective areas are (22+=+) 642 and (12+=+) 322. Dividing the area of the smaller square by that of the larger yields ½. If those calculations are a little too messy for you, then here is an alternative solution.
    [Show full text]
  • Understanding Inclusion Relations Between Quadrilaterals
    www.ijres.net Understanding Inclusion Relations between Quadrilaterals Zulfiye Zeybek Gaziosmanpasa University ISSN: 2148-9955 To cite this article: Zeybek, Z. (2018). Understanding inclusion relations between quadrilaterals. International Journal of Research in Education and Science (IJRES), 4(2), 595-612. DOI:10.21890/ijres.428968 This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Authors alone are responsible for the contents of their articles. The journal owns the copyright of the articles. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of the research material. International Journal of Research in Education and Science Volume 4, Issue 2, Summer 2018 DOI:10.21890/ijres.428968 Understanding Inclusion Relations between Quadrilaterals Zulfiye Zeybek Article Info Abstract Article History This study investigated pre-service mathematics teachers’ (PST), who are going to teach middle grade mathematics (grade 5-8), understanding of Received: inclusion relationships of quadrilaterals. In addition to describing PSTs’ 05 January 2018 understanding of inclusion relations of quadrilaterals; it was also aimed to document the development of PSTs’ understanding of quadrilaterals during a Accepted: geometry course. A designed questionnaire was administered to 48 PSTs at 21 March 2018 the beginning and again at the end of the semester after the PSTs was engaged in a designed five-week geometry unit. The findings of this study Keywords demonstrated that the majority of the PSTs struggled with identifying Geometry quadrilaterals and especially inclusion relations of quadrilaterals primarily.
    [Show full text]