Teach the Square…And the Rectangle

Total Page:16

File Type:pdf, Size:1020Kb

Teach the Square…And the Rectangle f e a t u r e Teach the square…and the rectangle eaching these two geometric needs of ancient civilizations. familiar and trusted shapes, they Tshapes is like a line from an (Some believe the square symbol- represent order and stability. old song: “You can’t have one izes civilization.) Ancient peoples Because a square has four equal without the other.” needed to measure plots of land, sides, it can also be said to sym- The square and rectangle go build structures, collect taxes, bolize the seasons (spring, sum- hand in hand—maybe not like describe constellations, and create mer, fall, winter), cardinal direc- “love and marriage” or “horse calendars, all of which required tions (north, east, south, west), and carriage,” but perhaps best numbers, shapes, and calculations. and the elements (fire, water, air, understood in terms of the other. Of the basic geometric shapes in earth). Children have undoubtedly had today’s world, the rectangle is the In nature, we see no naturally experience with the two shapes in most common. The rectangle and formed squares or rectangles. objects all around them. They its square soul-mate form the Trees, branches, and leaves, for begin learning geometric shapes structure of most buildings. As example, are uneven, rounded, in a more formal way in preschool z T and are usually expected to know gae how to make and take apart N shapes by the time they finish kindergarten. by susa oto Texas Child Care has posted two ph previous articles on teaching geo- metric shapes: Go round: Teach the circle shape in Spring 2015 and Teach the triangle in Spring 2017. Find them on the website at www.childcarequarterly.com/ backissu.php. What’s the difference? By definition a square is a flat fig- ure with four equal sides and four right-angle corners. A rectangle is the same except that two of its parallel sides are longer than the opposite sides. Squares and rectangles are part of the math and geometry that developed in response to the © Texas Child Care quarTerly / fall 2017 / VOLUMe 41, NO. 2 / ChildCarequarTerly.com and irregular. The same is true of the walls straight or curved? How cut out of construction paper or rocks, mountains, rivers, oceans, many walls are there? Is the room cardboard. Label the shapes in and icebergs. Nonetheless, nature a square or a rectangle? block lettering. Point out the has its own structure, as shown in Read a book such as Squares by length of the sides. Provide Patterns in Nature and other books Yusuke Yonezu. Each page has lengths of yarn and demonstrate by science journalist Philip Ball square or rectangular holes, how to measure a shape’s sides. (See www.thestar.com/entertain- which—as you turn the page--allow Use vocabulary such as long, wide, ment/books/2016/05/28/pat- you to see shapes, such as square same, equal, and angle. terns-in-nature-explores-worlds- windows or a rectangular door. Invite children to pat lumps of chaotic-beauty.html). Challenge children to identify clay or playdough into squares each of the two shapes in the and rectangles. Have them test Learning activities classroom and place a sticky tab the lengths of their shape’s sides Teaching the square and rectangle on each, where possible. They using string to measure. can fit easily into daily routines might identify a square tabletop Encourage children to compare and learning center themes. To or bulletin board, for example, as the size of each shape. For exam- help preschoolers distinguish well as a rectangular cubbie and a ple: Which square is larger (or between the square and rectangle, book. Encourage children to com- smaller) than another square? offer hands-on activities and ask pare the size of the shapes. For Invite children to make a square questions to encourage close example: Which is larger—the on a sheet of paper using tooth- observation and comparison. book or the door? picks, straws, or ice-cream sticks. As children become more adept, Circle time Math and challenge them to turn the square As children gather, ask them to manipulatives center into another shape: How can you observe the sides of the room. Are Provide squares and rectangles turn the square into a rectangle z (or vice versa)? Similarly, invite T children to tear paper into a gae N square shape, and then turn it into a triangle by folding or cut- by susa ting the square diagonally. oto ph Outdoor walk Take a walk with children in the playground or neighborhood. Ask them to find examples of squares and rectangles. You may see square and rectangular signs, windows, and buildings, for example. Snap photos and print them when you return to the classroom. Place the photos in a binder, label each one, and place the binder in the library center for children to view on their own. Snack Have children wash their hands before helping prepare and serve snack. Ask about the shape of the paper napkins. Provide plastic © Texas Child Care quarTerly / fall 2017 / VOLUMe 41, NO. 2 / ChildCarequarTerly.com knives so children can cut cheese Music art center into squares to eat with square Have each child hold a different Provide square and rectangular crackers. Invite children to cut shape (square, rectangle, triangle, sponges that children can dip into toasted whole wheat bread slices circle) and sing The Hokey Pokey. paint and press onto sheets of into fourths and spread them with Instead of a body part, children paper. peanut or almond butter. Talk will put the named shape into the Provide paper cut-outs of about the number of sides and middle. “Put a square in, put a squares and rectangles in different corners of each piece. square out. Do the hokey pokey sizes that children can glue to and shake it all about….” construction paper to make a col- Dramatic play lage. Children may want to As children play in the home cen- Block center spread glue on top of the shapes ter, encourage them to identify As children play with blocks, dis- and sprinkle with glitter, confetti, shapes, such as a square plastic cuss the difference between flat or sand. container or rectangular cereal box. (two-dimensional) shapes and Read Perfect Square by Michael (If necessary, stock the center with solid (three-dimensional) shapes. Hall. The book begins with an appropriate items beforehand.) Compare a paper square to a illustration of a large red square Invite children to use cardboard wooden cube, for example. How that changes in subsequent pages boxes to make a train or a house. are they the same? How are they into a babbling fountain, a gar- Ask how many rectangle or different? Do the same with a den, a park, and other images. squares they see in a box (top, rectangular block. Press a block The illustrations may stimulate bottom, four sides). As they deco- into paint or playdough so chil- creativity and inspire children to rate their structures, talk about dren can see one of its flat sides. tear, cut, shred, or crumple paper the shapes of windows and doors squares into collages. and lengths of the sides. Borrow a patchwork quilt from z a family or friend. Or borrow a T book from the library, such as gae N Patchwork & Quilting with Kids by Maggie Ball. Encourage children by susa to identify the squares and rectan- oto ph gles in a quilt pattern. Children may be inspired to make a patch- work placemat, a baby quilt, or a larger group quilt. Parents and friends can donate fabric scraps, children can cut the shapes, and a volunteer may sew the pieces together. Writing center Envelopes, paper, greeting cards, note cards, and stamps all offer opportunities for recognizing square and rectangular shapes. Families and friends may recycle these items for you. Stock the cen- ter with writing instruments, such as ballpoint pens, graphite pen- cils, colored pencils, and markers. Clipboards provide a hard surface © Texas Child Care quarTerly / fall 2017 / VOLUMe 41, NO. 2 / ChildCarequarTerly.com for writing. Other supplies may Square Cat by Elizabeth include a stapler, scissors, glue, Schoonmaker (2011), a delightful rubber alphabet stamps, and ink tale about the only square cat in stamp pads. town and her round friends. Younger children may engage Two Short, Two Long: A Book in pretend and practice writing, about Rectangles by Christianne C. while children aged 5 and older Jones (2006), an introduction to may write real notes to family rectangular items in a school. n members and friends. Children may mail their notes in a pretend mailbox in the dramatic play cen- ter or in a real mailbox on a street corner. Library center Stock the library with books about squares and rectangles. Here’s a sampling you might find in a library or bookstore: Cuadrados/Squares: Cuadrados a nuestro alrededor/Seeing Squares All Around Us (Figuras Geometricas/ Shapes) by Sarah Schuette (2012), a book of simple illustrations and photos that show squares in everyday objects, in Spanish and English. Find the Square by Britta Teckentrup (2016), a simple and colorful book that introduces pre- schoolers to shapes. How Many Squares: Geometric Puzzlers for 1st and 2nd Graders (Vol. 1), by C. Mahoney (2013), pages of illustrations that chal- lenge children to count the squares in different diagrams. Rectangulos by Sarah Schuette (2010), Photos and illustrations show rectangles in everyday objects, in both English and Spanish. Squares & Other Shapes: With Josef Albers (2016), a board book that takes children through this artist’s range of geometrics. Squares by Jennifer S.
Recommended publications
  • Square Rectangle Triangle Diamond (Rhombus) Oval Cylinder Octagon Pentagon Cone Cube Hexagon Pyramid Sphere Star Circle
    SQUARE RECTANGLE TRIANGLE DIAMOND (RHOMBUS) OVAL CYLINDER OCTAGON PENTAGON CONE CUBE HEXAGON PYRAMID SPHERE STAR CIRCLE Powered by: www.mymathtables.com Page 1 what is Rectangle? • A rectangle is a four-sided flat shape where every angle is a right angle (90°). means "right angle" and show equal sides. what is Triangle? • A triangle is a polygon with three edges and three vertices. what is Octagon? • An octagon (eight angles) is an eight-sided polygon or eight-gon. what is Hexagon? • a hexagon is a six-sided polygon or six-gon. The total of the internal angles of any hexagon is 720°. what is Pentagon? • a plane figure with five straight sides and five angles. what is Square? • a plane figure with four equal straight sides and four right angles. • every angle is a right angle (90°) means "right ang le" show equal sides. what is Rhombus? • is a flat shape with four equal straight sides. A rhombus looks like a diamond. All sides have equal length. Opposite sides are parallel, and opposite angles are equal what is Oval? • Many distinct curves are commonly called ovals or are said to have an "oval shape". • Generally, to be called an oval, a plane curve should resemble the outline of an egg or an ellipse. Powered by: www.mymathtables.com Page 2 What is Cube? • Six equal square faces.tweleve edges and eight vertices • the angle between two adjacent faces is ninety. what is Sphere? • no faces,sides,vertices • All points are located at the same distance from the center. what is Cylinder? • two circular faces that are congruent and parallel • faces connected by a curved surface.
    [Show full text]
  • Petrie Schemes
    Canad. J. Math. Vol. 57 (4), 2005 pp. 844–870 Petrie Schemes Gordon Williams Abstract. Petrie polygons, especially as they arise in the study of regular polytopes and Coxeter groups, have been studied by geometers and group theorists since the early part of the twentieth century. An open question is the determination of which polyhedra possess Petrie polygons that are simple closed curves. The current work explores combinatorial structures in abstract polytopes, called Petrie schemes, that generalize the notion of a Petrie polygon. It is established that all of the regular convex polytopes and honeycombs in Euclidean spaces, as well as all of the Grunbaum–Dress¨ polyhedra, pos- sess Petrie schemes that are not self-intersecting and thus have Petrie polygons that are simple closed curves. Partial results are obtained for several other classes of less symmetric polytopes. 1 Introduction Historically, polyhedra have been conceived of either as closed surfaces (usually topo- logical spheres) made up of planar polygons joined edge to edge or as solids enclosed by such a surface. In recent times, mathematicians have considered polyhedra to be convex polytopes, simplicial spheres, or combinatorial structures such as abstract polytopes or incidence complexes. A Petrie polygon of a polyhedron is a sequence of edges of the polyhedron where any two consecutive elements of the sequence have a vertex and face in common, but no three consecutive edges share a commonface. For the regular polyhedra, the Petrie polygons form the equatorial skew polygons. Petrie polygons may be defined analogously for polytopes as well. Petrie polygons have been very useful in the study of polyhedra and polytopes, especially regular polytopes.
    [Show full text]
  • Rectangles with the Same Numerical Area and Perimeter
    Rectangles with the Same Numerical Area and Perimeter About Illustrations: Illustrations of the Standards for Mathematical Practice (SMP) consist of several pieces, including a mathematics task, student dialogue, mathematical overview, teacher reflection questions, and student materials. While the primary use of Illustrations is for teacher learning about the SMP, some components may be used in the classroom with students. These include the mathematics task, student dialogue, and student materials. For additional Illustrations or to learn about a professional development curriculum centered around the use of Illustrations, please visit mathpractices.edc.org. About the Rectangles with the Same Numerical Area and Perimeter Illustration: This Illustration’s student dialogue shows the conversation among three students who are trying to find all rectangles that have the same numerical area and perimeter. After trying different rectangles of specific dimensions, students finally develop an equation that describes the relationship between the width and length of a rectangle with equal area and perimeter. Highlighted Standard(s) for Mathematical Practice (MP) MP 1: Make sense of problems and persevere in solving them. MP 2: Reason abstractly and quantitatively. MP 7: Look for and make use of structure. MP 8: Look for and express regularity in repeated reasoning. Target Grade Level: Grades 8–9 Target Content Domain: Creating Equations (Algebra Conceptual Category) Highlighted Standard(s) for Mathematical Content A.CED.A.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. A.CED.A.4 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.
    [Show full text]
  • A Regular Octagon Is Inscribed Inside a Square. Another Square Is Inscribed Inside the Octagon
    This brainteaser was written by Derrick Niederman. A regular octagon is inscribed inside a square. Another square is inscribed inside the octagon. What is the ratio of the area of the smaller square to the area of the larger square? © 2009 National Council of Teachers of Mathematics, Inc. Resources for Teaching Math http://illuminations.nctm.org Solution: ½. One way to see this is to rotate the blue triangles onto the top of the red trapezoids, with the hypotenuse of the triangle flush with the shorter base of the trapezoid. Then it’s pretty easy to see that if the four red and blue triangles are folded over, they’d completely cover the yellow square. In other words, the area of the yellow square is equal to the area of red trapezoids and blue triangles combined, so the ratio of the smaller square to the larger square is ½. It is also possible to calculate the area of the larger and smaller squares. Start by assuming that the length of the shorter sides of the triangles is 1 unit, as shown below. Then the hypotenuse of each triangle is 2 , and since the hypotenuse is also a side of the regular octagon, then all sides of the octagon are 2 . Consequently, the side length of the larger square is 2+ 2, and the side length of the smaller square is 1+ 2, so their 2 2 respective areas are (22+=+) 642 and (12+=+) 322. Dividing the area of the smaller square by that of the larger yields ½. If those calculations are a little too messy for you, then here is an alternative solution.
    [Show full text]
  • Parallelogram Rhombus Nonagon Hexagon Icosagon Tetrakaidecagon Hexakaidecagon Quadrilateral Ellipse Scalene T
    Call List parallelogram rhombus nonagon hexagon icosagon tetrakaidecagon hexakaidecagon quadrilateral ellipse scalene triangle square rectangle hendecagon pentagon dodecagon decagon trapezium / trapezoid right triangle equilateral triangle circle octagon heptagon isosceles triangle pentadecagon triskaidecagon Created using www.BingoCardPrinter.com B I N G O parallelogram tetrakaidecagon square dodecagon circle rhombus hexakaidecagon rectangle decagon octagon Free trapezium / nonagon quadrilateral heptagon Space trapezoid right isosceles hexagon hendecagon ellipse triangle triangle scalene equilateral icosagon pentagon pentadecagon triangle triangle Created using www.BingoCardPrinter.com B I N G O pentagon rectangle pentadecagon triskaidecagon hexakaidecagon equilateral scalene nonagon parallelogram circle triangle triangle isosceles Free trapezium / octagon triangle Space square trapezoid ellipse heptagon rhombus tetrakaidecagon icosagon right decagon hendecagon dodecagon hexagon triangle Created using www.BingoCardPrinter.com B I N G O right decagon triskaidecagon hendecagon dodecagon triangle trapezium / scalene pentagon square trapezoid triangle circle Free tetrakaidecagon octagon quadrilateral ellipse Space isosceles parallelogram hexagon hexakaidecagon nonagon triangle equilateral pentadecagon rectangle icosagon heptagon triangle Created using www.BingoCardPrinter.com B I N G O equilateral trapezium / pentagon pentadecagon dodecagon triangle trapezoid rectangle rhombus quadrilateral nonagon octagon isosceles Free scalene hendecagon
    [Show full text]
  • Rhombus Rectangle Square Trapezoid Kite NOTES
    Geometry Notes G.9 Rhombus, Rectangle, Square, Trapezoid, Kite Mrs. Grieser Name: _________________________________________ Date: _________________ Block: _______ Rhombuses, Rectangles, Squares The Venn diagram below describes the relationship between different kinds of parallelograms: A rhombus is a parallelogram with four congruent sides A rectangle is a parallelogram with four right angles A square is a parallelogram with four congruent sides and four right angles Corollaries: A quadrilateral is a rhombus IFF it has four congruent sides A quadrilateral is a rectangles IFF it has four right angles A quadrilateral is a square IFF it is a rhombus and a rectangle. Since rhombuses, squares, and rectangles are parallelograms, they have all the properties of parallelograms (opposite sides parallel, opposite angles congruent, diagonals bisect each other, etc.) In addition… Rhombus Rectangle Square 4 congruent sides 4 right angles 4 congruent sides diagonals bisect angles diagonals congruent diagonals bisect each other diagonals perpendicular diagonals perpendicular 4 right angles diagonals congruent Theorems: A parallelogram is a rhombus IFF its diagonals are perpendicular. A parallelogram is a rhombus IFF each diagonal bisects a pair of opposite angles. A parallelogram is a rectangle IFF its diagonals are congruent. Examples: 1) Given rhombus DEFG, are the statements 2) Classify the parallelogram and find missing sometimes, always, or never true: values: a) b) a) D F b) D E c) DG GF 3) Given rhombus WXYZ 4) Given rectangle PQRS and and mXZY 34, find: mRPS 62 and QS=18, a) mWZV b) WY c) XY find: a) mQPR b) mPTQ c) ST Geometry Notes G.9 Rhombus, Rectangle, Square, Trapezoid, Kite Mrs.
    [Show full text]
  • Two-Dimensional Figures a Plane Is a Flat Surface That Extends Infinitely in All Directions
    NAME CLASS DATE Two-Dimensional Figures A plane is a flat surface that extends infinitely in all directions. A parallelogram like the one below is often used to model a plane, but remember that a plane—unlike a parallelogram—has no boundaries or sides. A plane figure or two-dimensional figure is a figure that lies completely in one plane. When you draw, either by hand or with a computer program, you draw two-dimensional figures. Blueprints are two-dimensional models of real-life objects. Polygons are closed, two-dimensional figures formed by three or more line segments that intersect only at their endpoints. These figures are polygons. These figures are not polygons. This is not a polygon A heart is not a polygon A circle is not a polygon because it is an open because it is has curves. because it is made of figure. a curve. Polygons are named by the number of sides and angles they have. A polygon always has the same number of sides as angles. Listed on the next page are the most common polygons. Each of the polygons shown is a regular polygon. All the angles of a regular polygon have the same measure and all the sides are the same length. SpringBoard® Course 1 Math Skills Workshop 89 Unit 5 • Getting Ready Practice MSW_C1_SE.indb 89 20/07/19 1:05 PM Two-Dimensional Figures (continued) Triangle Quadrilateral Pentagon Hexagon 3 sides; 3 angles 4 sides; 4 angles 5 sides; 5 angles 6 sides; 6 angles Heptagon Octagon Nonagon Decagon 7 sides; 7 angles 8 sides; 8 angles 9 sides; 9 angles 10 sides; 10 angles EXAMPLE A Classify the polygon.
    [Show full text]
  • Patterned Triply Periodic Polyhedra
    Patterned Triply Periodic Polyhedra Douglas Dunham Department of Computer Science University of Minnesota, Duluth Duluth, MN 55812-3036, USA E-mail: [email protected] Web Site: http://www.d.umn.edu/˜ddunham/ Abstract This paper discusses repeating patterns on infinite skew polyhedra, which are triply periodic polyhedra. We exhibit patterns on each of the three regular skew polyhedra. These patterns are each related to corresponding repeating patterns in the hyperbolic plane. This correspondence will be explained in the paper. 1. Introduction A number of people, including M.C. Escher, created convex polyhedra with patterns on them. Later, in 1977 Doris Schattschneider and Wallace Walker designed non-convex rings of polyhedra, called Kaleidocycles, that could be rotated, which are described in [Sch05]. The goal of this paper is to start an investigation of repeating patterns on infinite skew polyhedra — i.e. triply periodic polyhedra. Figure 1 shows a finite piece of such a pattern. Figure 1: A pattern of fish on the tessellation {6, 6|3}. We begin with a discussion of infinite skew polyhedra and show how they are related to tessellations of the hyperbolic plane. This relationship can also be applied to repeating patterns on those respective surfaces. Then we present patterns on each of the three regular triply periodic polyhedra. Finally, we indicate possible directions of further investigation. 2. Patterns, Hyperbolic Geometry, and Infinite Skew Polyhedra. A repeating pattern is a pattern made up of congruent copies of a basic subpattern or motif. There can be repeating patterns on the Euclidean plane, hyperbolic plane, sphere, and polyhedra.
    [Show full text]
  • The Wizard of Oz”
    Dealing with Triangles Name ________________________ “The Wizard of Oz” In the movie, “The Wizard of Oz”, Dorothy Gale is swept away to a magical land in a tornado and embarks upon a quest to see the Wizard who can help her return home. Accompanying her on this journey are a scarecrow (looking for brains), a tin man (looking for a heart), and a lion (looking for courage). When the wizard bestows an honorary degree of “thinkology” upon the scarecrow, the scarecrow states, "The sum of the square roots of any two sides of an isosceles triangle is equal to the square root of the remaining side." Was the scarecrow actually stating a mathematical truth, or was he simply misstating the Pythagorean Theorem? Let’s examine the scarecrow’s statement. Theorem???? "The sum of the square roots of any two sides of an isosceles triangle is equal to the square root of the remaining side." 1. Let’s consider this example in relation to our questionable theorem. Examine this isosceles triangle with the given length sides. Does the theorem apply? Remember that the theorem states “ANY two sides”. (Use your graphing calculator to check the validity of the statements.) State your findings. ? 664+= ? 646+= 2. Create another counterexample of this theorem. Be sure that the numbers that you choose for the lengths of the sides of your triangle, do, in fact, form a triangle. Show your diagram and your work. 3. What happens to our theorem if we add an additional restriction, such as “an isosceles RIGHT triangle”? Show whether the theorem applies to this right triangle? Hint: Find the hypotenuse first.
    [Show full text]
  • The Triangle Square up Ruler Use This Ruler to Square Pieces up to 9H"
    The Triangle Square Up Ruler Use this ruler to square pieces up to 9H". Finished Cut Square Finished Cut Square Size Squares Up To Size Squares Up To H" 3" 1" 1" 4" 1H" 1" 2H" 1H" 1H" 5" 2" 1H" 3" 2" 2" 6" 2H" 2" 3H" 2H" 2H" 7" 3" 2H" 4" 3" 3" 8" 3H" 3" 4H" 3H" 3H" 9" 4" 3H" 5" 4" 4" 10" 4H" 4" 5H" 4H" 4H" 11" 5" 4H" 6" 5" 5" 12" 5H" 5" 6H" 5H" 5H" 13" 6" 5H" 7" 6" 6" 14" 6H" 6" 7H" 6H" 6H" 15" 7" 6H" 8" 7" 7" 16" 7H" 7" 8H" 7H" 7H" 17" 8" 7H" 9" 8" 8" 18" 8H" 8" 9H" 8H" 8H" 19" 9" 8H" 10" 9" 9" 20" 9H" 9" 10H" 9H" ® 1955 Diamond Street San Marcos, CA 92078 800 777-4852 • www.quiltinaday.com Making Eight Half Triangle Squares 1. Cut one square of Background and one square of Triangle fabric. 2. Draw diagonal lines on the wrong side of Background square. 3. Place marked Background square right sides together with Triangle square. Pin. 4. Set up machine with thread that shows against the wrong side of both fabrics. It is important to see the stitching. 5. Sew exactly ¼” from lines with 15 stitches to the inch or a 2.0 on computerized macjine. 6. Press to set seams. 7. Lay on cutting mat grid lines. 8. Without moving fabric, cut squares horizontally and vertically. 9. Cut on both diagonal lines. There should be a total of 8 closed triangles.
    [Show full text]
  • The Octagon in Leonardo's Drawings
    Mark Reynolds Research 667 Miller Avenue The Octagon in Leonardo’s Drawings Mill Valley, CA 94941 USA [email protected] Abstract. Mark Reynolds presents a study on Leonardo’s abundant use of the octagon in his drawings and architectural renderings. Keywords: Leonardo da Specifically, he focuses on Leonardo’s applications of the octagon: in Vinci, octagons, geometric his studies and sketches of the centralized church, and for which we constructions can find influences specifically from Brunelleschi, as well as from other fifteenth-century architects working with this type of religious structure; in his almost obsessive and frequently repetitious drawing of octagonal shapes and forms in his notebooks throughout his career; in his project for a pavilion while with the Sforzas in the last part of his period in Milan. Also examined are ways to develop the modules to accommodate ¥2 and the T rectangles. The application of the modular units, so far, have been within the square and its gridwork, but as the octagon has traditionally been used in the development of both the circle and the square, this shape is an interesting challenge in terms of linking the two-dimensional surface to the three-dimensional forms we are planning to generate. The object is to provide us with more insight as to why the octagon held so much fascination for Leonardo as one of the ultimate geometric expressions of grandeur and practicality in spatial organization, design, and development. Often in Leonardo’s drawings of octagons, precise geometric constructions were lacking; the master’s approach was freehand. The author seeks to learn if Leonardo’s sketches can be put to the rigors of strict geometric construction, and still be viable as accurate renderings of octagonal geometric spaces with his own geometric constructions of those same spaces.
    [Show full text]
  • Period: Properties of the Rectangle, Rhombus, and Square - Notes
    Name: Period: Properties of the Rectangle, Rhombus, and Square - Notes Rectangles 1. On Rectangle 1, measure each side length to the nearest tenth of a centimeter. 2. On Rectangles 1 and 2, measure each angle and record your measurement next to each angle number. Rectangle 1 Rectangle 2 1 2 6 7 5 8 13 14 15 16 9 12 4 3 10 11 3. Check each of the properties of a parallelogram that Rectangle 1 has: _____Opposite sides are parallel. _____Opposite sides are congruent. _____Opposite angles are congruent. _____Consecutive angles are supplementary. _ _Diagonals bisect each other. _ _One pair of opposite sides are both parallel and congruent. _ _Each diagonal divides the quadrilateral into two congruent triangles. 4. Check each of these additional properties that a rectangle has: _____All 4 sides are congruent. _____All angles are right angles. _____The diagonals are congruent. _____The diagonals are perpendicular. _____The diagonals bisect the opposite angles. 5. Determine how many lines of symmetry are in a rectangle and describe where they are located. 6. Rectangle – a quadrilateral that has __________ __________ angles. Name: Period: Properties of the Rectangle, Rhombus, and Square Rhombus 7. On Rhombus 1, measure each side length to the nearest tenth of a centimeter. 8. On Rhombi 1 and 2, measure each angle and record your measurement next to each angle number. Rhombus 1 Rhombus 2 1 2 6 7 5 8 13 14 15 16 9 12 3 4 10 11 9. Check each of the properties of a parallelogram that Rhombus 1 has: _____Opposite sides are parallel.
    [Show full text]