Solvent Extraction of Iron from Aluminium Nitrate Solutions

Total Page:16

File Type:pdf, Size:1020Kb

Solvent Extraction of Iron from Aluminium Nitrate Solutions SOLVENT EXTRACTION OF IRON FROM ALUMINIUM NITRATE SOLUTIONS by MICHAIL IOANNOU STEFANAKIS Mill, and Met. Engineer National Technical University of Athens A thesis submitted for the Degree of Doctor of Philosophy of the University of London Department of Metallurgy and January 1982 Materials Science, Royal School of Mines, Imperial College of Science and Technology. F I I Dedicated to my parents and my brother I '$ucris KpU7TTea0a\ 4> i X e i ... ! (HpaKAeiT os The real constitution of things, is accustomed to hide itself Heraclitus [G.K. Kirk, "Heraclitus: The Cosmic Fragments", Cambridge 1954, p.227] ABSTRACT A study has been carried out on the solvent extraction of iron(lll) from aluminium nitrate solutions using Versatic 10 extractant in Escaid 110 diluent. Factorial experiments were performed for the evalu- ation of the effect of variables such as, temperature, extractant and aqueous iron(IIl) concentration, pH and aqueous aluminium concentration. Extraction isotherms of iron(III) were derived using the AKUFVE 110 apparatus coupled with a pH-stat deVice. Equilibrium data were evaluated by classical slope analysis and by the use of statistical techniques. Statistical determination of the most probable complexes in the organic phase was carried out by a computer program. Infrared analysis of the extracts was also performed and the results were found to be in good agreement with the aforementioned methods. Equilibrium constant values derived by the statistical analysis of equilibrium data were used for the formulation of a chemically-based model for the prediction of equilibrium composition profile of a countercurrent cascade. A computer program was written to perform the stagewise calculations and the agreement between experi- mental and predicted values was found to be It seems that iron purification of aluminium leach liquors arising from acid treatment of non-bauxite aluminium-bearing materials for the production of aluminium is technically feasible by solvent extraction with Versatic 10 acid. V CONTENTS Abstract 1V Contents v List of symbols x Chapter 1 INTRODUCTION 1 Chapter 2 ACIDIC METHODS FOR PRODUCING ALUMINA FROM NON-BAUXITIC ALUMINIUM BEARING MATERIALS 4 • Chapter 3 CARBOXYLIC ACIDS AS METAL EXTRACTANTS 13 3.1 Applications 13 3.2 Distribution of carboxylic acids between the aqueous and organic phases l4 3.3 Equilibrium data treatment 18 3.4 Mechanism of iron extraction 24 3.5 Mechanism of Aluminium extraction 33 3.6 Modelling of equilibrium data 34 Chapter 4 EXPERIMENTAL PROCEDURE AND MATERIALS 39 4.1 Materials and their specifications 39 4.2 Analytical methods 4l 4.2.1 Iron 41 4.2.2 Aluminium 45 4.2.3 pH 45 4.3 Experimental procedure 48 Chapter 5 PRELIMINARY EXPERIMENTS 55 5.1 Initial observations 55 5.2 Loading of Versatic 10 with Fe(lll) and AI(III) 57 5.2.1 Experimental 57 » vi Page 5.2.2 Results 57 5.2.3 Discussion 60 5.3 Phase separation studies 6l Chapter 6 2k_1 FACTORIAL EXPERIMENTS 63 6.1 Introduction 63 6.2.1 Experimental 6.2.2 Results 6.2.3 Discussion 76 6.3 Coextraction of Al(IIl) 79 6.4 Conclusions 79 Chapter 7 EQUILIBRIUM EXTRACTION ISOTHERMS OF Fe(lll) 81 7-1 Introduction 8l 7.2.1 Experimental 82 7-2.2 Results and Discussion 82 7.3 Characteristics of Al(lll) extraction - Coextraction of Al(lll) with Fe(IIl) 108 7.4 Conclusions 109 Chapter 8 HYDRATION IN THE ORGANIC PHASE m 8.1 Introduction 111 8.2 Experimental procedure Hi 8.2.1 Standardization of Karl Fischer reagent with water-methanol solution 112 8.2.2 Standardization of Karl Fischer reagent with water 112 8.2.3 Determination of water in the organic phase 112 8.3 Results 113 8.4 Discussion H3 8.5 Conclusions H5 vii Page Chapter 9 STATISTICAL EVALUATION OF EQUILIBRIUM DATA FOR THE DETERMINATION OF Fe(lll) COMPLEXES IN THE ORGANIC PHASE 117 9.1 Introduction 117 9.2 Derivation of extraction equation and limitations 117 9.3 Results and Discussion 121 9.3-1 Computational method and discussion 121 9.3-2 Equilibrium data analysis 124 9.4 Conclusions 153 Chapter 10 INFRARED ANALYSIS OF Fe(IIl)-HV COMPLEXES 155 10.1 Introduction 155 10.2 Experimental procedure 162 10.3 Results atd Discussion 163 10.4 Conclusions 176 Chapter 11 CHEMICAL MODELLING OF COUNTER- CURRENT EQUILIBRIUM DATA 177 11.1 Introduction 177 11.2 Computer-aided solution of solvent-extraction cascade 180 11.3 Experimental 184 11.4 Results and Discussion 186 11.4.1 Relationship between Fe(IIl) extracted into the organic phase and pH change of the aqueous phase 186 11.4.2 Batch simulation of countercurrent extraction and modelling of the equilibrium data of the cascade 190 11.5 Conclusions 196 viii Page Chapter 12 FURTHER DISCUSSION AND CONCLUSIONS 197 Appendices 6.1 Calculation of Standard error of effects and analysis of variance 205 6.2 Calculation of Standard error of effects using high order interactions 207 6.3 Factorial experimentation data 208 6.4 Data of combined effect of ionic strength and temperature on Fe(lll) extraction 210 7.1 Data for extraction isotherms 211 7.2 Computer regression program "REG" and output Surface data generation computer program "SURFGEN" for MATMAP three-dimensional plotting 217 7.3 Slope analysis calculations 22 5 7.4 Calculations relating alkali consumption with Fe(IIl) extraction 23 3 7.5 Data on the loading-stripping cycle of Fe(lll) 238 9.1 Computer programs "KSTAT" for the statistical evaluation of equilibrium data and "KPREDG" for prediction and correlation with the experimental data 239 9.2 Details of the subroutine G02CCF for correlation and regression analysis 244 9-3 Correlation tables of predicted and experimental data representing the most probable Fe(lIl)-HV complexes in the organic phase 247 1 X Page 10.1 Infrared evaluated data and calculation of the sum of association and solvation numbers 253 11.1 Equilibrium data obtained with the CRODA reactor 256 11.2 Computer program "MIXSETl" for the solution of a countercurrent cascade, sample output and modifications required with preset pH(N) 257 References 262 Acknowledgements 271 > X List of symbols AG free energy change HL carboxylic acid HV Versatic 10 acid K' thermodynamic equilibrium constant K apparent equilibrium constant or stage number P partition constant I_> K _ dimerization constant dm K acid dissociation constant a D distribution coefficient concentration M moles/litre Y mean activity coefficient x polymerization number s solvation number n,n-m association number m,r hydroxylation number h hydration number I ionic strength or generator in factorial designs B activity coefficient product of the equilibrium constant expression t student's t-value a significance level $ degrees of freedom x mean x value RC regression coefficient CC correlation coefficient s standard deviation cr standard deviation of the population A difference Y frequency pH pH of 30% extraction 0.5 O.D. optical density L ligand or aqueous flow rate X ligand G organic flow rate Y metal concentration in the organic phase X metal concentration in the aqueous phase xi YO metal concentration of the solvent feed XF metal concentration of the aqueous feed X(K),Y(K) aqueous and organic metal concentrations of the Kth stage of a countercurrent cascade pH(K) pH of the Kth stage A(K) coefficient of an empirical regression equation g proportionality factor between acid concentration change and metal extracted or number of replicated runs df dilution factor sum KFR Karl Fischer reagent It litre t 1 CHAPTER 1 INTRODUCTION Aluminium is the most abundant metal in the earth's crust, having an average concentration 15-6%, almost twice the value for iron in the continental areas. At present, in the western world, aluminium is produced almost exclusively from bauxite ore by a combination of the Bayer and Hall-Heroult processes. Bauxite is a rich aluminium ore containing 45-60% Al 0 . Alternative processes developed during the war for the production of alumina from aluminium bearing non-bauxitic resources, were abandoned after the war, because bauxite was cheap and abundant and could be economically treated by the Bayer process. However, the formation of the Inter- national Bauxite Association (IBA) by the major bauxite producing countries has resulted in increases in the bauxite price. This triggered interest in the economic reevaluation of alternative processes for alumina production from indigenous non-bauxite aluminium materials. Such materials include by-products of other operations, for example, fly ash from power stations and colliery spoil and coal ash, and utilization of these materials would have the advantage of producing a cleaner environment. The strategic importance of utilizing indigenous aluminium materials is also a stimulating factor in those countries which lack bauxite deposits. Of the various process routes available for recovery of alumina from non-bauxite materials, acid dissolution methods appear to be the most economically attractive. Among the most promising of these are the Pechiney H+ process, hydrochloric acid leaching followed by HC1 injection to precipitate A1C1 '6Ho0, and nitric acid 3 ^ leaching followed by solvent extraction for iron removal. None of these, however, can compete economically at the present time with the production of aluminium from bauxite ore by the Bayer process. Nevertheless, research into acid routes still continues. k 2 Acid leach routes apart from the desired dissolution 3 + of aluminium succeed in bringing Fe ions into the solution which have to be removed or bypassed in order to precipitate alumina to meet the target impurity levels of of the aluminium industry. One of the means achieving that goal is the solvent extraction technique. Past experience had shown that di-02 ethylhexyl) phosphoric acid (D2EHPA) alone or in a mixture with tri- butyl phosphate (TBP) were successful in removing the iron.
Recommended publications
  • Methanol Synthesis Catalyst
    Office europeen des brevets (fi) Publication number : 0 482 753 A2 @ EUROPEAN PATENT APPLICATION @ Application number: 91308468.7 @ Int. CI.5: B01J 23/80, B01J 23/84, B01J 23/88, C07C 29/154 @^ Date of filing : 17.09.91 Claim 16 is deemed to be abandoned due to (72) Inventor : Sofianos, Alkeos non-payment of the claim fee (Rule 31 (2) EPC). 253 Asimptote Street, Meyerspark Pretoria, Transvaal Province (ZA) (§) Priority : 18.09.90 ZA 907437 (74) Representative : Spall, Christopher John @ Date of publication of application : BARKER, BRETTELL & DUNCAN 138 Hagley 29.04.92 Bulletin 92/18 Road Edgbaston Birmingham B16 9PW (GB) @ Designated Contracting States : AT BE CH DE DK ES FR GB GR IT LI LU NL SE (7i) Applicant : CSIR Corporate Building, Scientia Pretoria Transvaal Province (ZA) (54) Methanol synthesis catalyst. (57) A method of forming a methanol synthesis catalyst precursor comprises forming a precipi- tate comprising compounds, thermally decom- posable to oxides or mixed oxides, of copper, zinc, aluminium and at least one element of Group IVB and/or Group VIIB of the Periodic Table of Elements. CM < CO If) h- CM 00 LU Jouve, 18, rue Saint-Denis, 75001 PARIS EP 0 482 753 A2 THIS INVENTION relates to the synthesis of methanol. It relates in particular to a methanol synthesis catal- yst precursor and to a method of forming such precursor; to a methanol synthesis catalyst and to a method of making such a catalyst; to an active methanol synthesis catalyst, and to a method of making thereof; and to a methanol synthesis process.
    [Show full text]
  • Combustion Synthesis of Nanocrystalline Al2o3 Powder
    Available online a t www.pelagiaresearchlibrary.com Pelagia Research Library Advances in Applied Science Research, 2012, 3 (6):3819-3824 ISSN: 0976-8610 CODEN (USA): AASRFC Combustion Synthesis of Nanocrystalline Al 2O3 Powder using Aluminium Nitrate and Urea as reactants—influence of reactant composition Amit Sharma *, O. P. Modi ** and Gourav K Gupta** *Department of Mechanical Engineering, Arni School of Technology, Arni University, Kathgarh, Indora, (H.P.)-176401. ** Advanced Materials and Processes Research Institute (CSIR), Bhopal _____________________________________________________________________________________________ ABSTRACT Combustion synthesis technique for synthesis of Aluminium oxide using urea as fuel and Aluminium Nitrate as an oxidizer is found to be easy & economical route & is able to produce Nano phase alumina powder. In present experiment urea is found to have outstanding potential towards solution combustion. Exothermicity is excellent and exothermic flame temperature increase with increase in oxidizer/ fuel ratio. A well defined crystalline structure and Nano scale particles size found after XRD and SEM analysis. Overall Urea-Nitrate combustion synthesis has an outstanding potential for producing pure Alumina powder. Crystallinity is excellent in case of urea, which leads to use in applications require high strength crystalline material. Keywords: Metal oxide, ceramic oxides, Combustion synthesis, SHS (Self propagating high temperature synthesis), Solution Combustion, Nano-ceramics. _____________________________________________________________________________________________
    [Show full text]
  • Radiochemical Assessment of Uranium in Locally Used Marbles
    Journal of the Institute of Engineering 200 TUTA/IOE/PCU January 2019, Vol. 15 (No. 1):cl 200-209 © TUTA/IOE/PCU, Printed in Nepal Radiochemical Assessment of Uranium in Locally Used Marbles Birendra Thapa1, Kamal Krishna Shrestha2a, Khagendra Prasad Bohara2 1Department of Applied Sciences, Pulchowk Campus, Institute of Engineering, TU, Nepal 2Central Department of Chemistry, Tribhuvan University, Kathmandu, Nepal Corresponding author: [email protected] Received: Nov 5, 2018 Revised: Jan 1, 2019 Accepted: Jan 3, 2019 Abstract: A sensitive method is used for the extraction and determination of soluble uranium in locally used marble has been developed. Isobutyl Methyl Ketone (IBMK) was used as extractant and 0.02 % (w/v) Arsenazo (III) as a chromogenic reagent. The present study assesses the gross radioactivity and extractable uranium in marble samples. A Multichannel Analyzer (MCA) coupled with NaI (Tl) crystal detector was used for the measurement of gross radioactivity whereas spectrophotometer was used to estimate the uranium contained in sample with the help of Arsenazo (III). The extraction involved the adjustment of pH at 0.9. The efficient extraction was achieved by the addition of at (+2) least 10 g of Al (NO3)3. This method involved the reduction of UO2 to U (IV) by using granulated Zinc in concentrated hydrochloric acid. The physical measurements showed the presence of gross radioactivity in the range 266.19 Bq/kg to 644.268 Bq/Kg while the chemical analysis showed the uranium concentration in the range of 0.02ppm to 0.06 ppm. Key Words: Arsenazo (III), IBMK, multichannel analyzer, spectrophotometer, uranium 1.
    [Show full text]
  • Opinion of the Scientific Committee on Consumer Safety on O
    SCCS/1613/19 Final Opinion Version S Scientific Committee on Consumer Safety SCCS OPINION ON the safety of aluminium in cosmetic products Submission II The SCCS adopted this document at its plenary meeting on 03-04 March 2020 SCCS/1613/19 Final Opinion Opinion on the safety of aluminium in cosmetic products – submission II ___________________________________________________________________________________________ ACKNOWLEDGMENTS Members of the Working Group are acknowledged for their valuable contribution to this Opinion. The members of the Working Group are: For the preliminary and the final versions SCCS members Dr U. Bernauer Dr L. Bodin (Rapporteur) Prof. Q. Chaudhry (SCCS Chair) Prof. P.J. Coenraads (SCCS Vice-Chair and Chairperson of the WG) Prof. M. Dusinska Dr J. Ezendam Dr E. Gaffet Prof. C. L. Galli Dr B. Granum Prof. E. Panteri Prof. V. Rogiers (SCCS Vice-Chair) Dr Ch. Rousselle Dr M. Stepnik Prof. T. Vanhaecke Dr S. Wijnhoven SCCS external experts Dr A. Koutsodimou Dr A. Simonnard Prof. W. Uter All Declarations of Working Group members are available on the following webpage: http://ec.europa.eu/health/scientific_committees/experts/declarations/sccs_en.htm This Opinion has been subject to a commenting period of a minimum eight weeks after its initial publication (from 16 December 2019 until 17 February 2020). Comments received during this time period are considered by the SCCS. For this Opinion, some changes occurred, in particular in sections 1, 3.2, 3.3.4.5, 3.3.8.1, 3.5, as well as in related discussion parts and conclusion (question 1). The list of references has also been updated.
    [Show full text]
  • Safety Data Sheet
    SAFETY DATA SHEET Creation Date 05-Oct-2010 Revision Date 02-Feb-2021 Revision Number 3 SECTION 1: IDENTIFICATION OF THE SUBSTANCE/MIXTURE AND OF THE COMPANY/UNDERTAKING 1.1. Product identifier Product Description: Aluminum nitrate nonahydrate Cat No. : 43145 Synonyms Nitric acid, aluminum salt, nonahydrate.; Aluminum trinitrate nonahydrate CAS-No 7784-27-2 Molecular Formula Al N3 O9 . 9 H2 O Reach Registration Number - 1.2. Relevant identified uses of the substance or mixture and uses advised against Recommended Use Laboratory chemicals. Uses advised against No Information available 1.3. Details of the supplier of the safety data sheet Company Alfa Aesar . Avocado Research Chemicals, Ltd. Shore Road Port of Heysham Industrial Park Heysham, Lancashire LA3 2XY United Kingdom Office Tel: +44 (0) 1524 850506 Office Fax: +44 (0) 1524 850608 E-mail address [email protected] www.alfa.com Product Safety Department 1.4. Emergency telephone number Call Carechem 24 at +44 (0) 1865 407333 (English only); +44 (0) 1235 239670 (Multi-language) SECTION 2: HAZARDS IDENTIFICATION 2.1. Classification of the substance or mixture CLP Classification - Regulation (EC) No 1272/2008 Physical hazards Based on available data, the classification criteria are not met Health hazards ______________________________________________________________________________________________ ALFAA43145 Page 1 / 10 SAFETY DATA SHEET Aluminum nitrate nonahydrate Revision Date 02-Feb-2021 ______________________________________________________________________________________________ Serious Eye Damage/Eye Irritation Category 1 (H318) Environmental hazards Based on available data, the classification criteria are not met Full text of Hazard Statements: see section 16 2.2. Label elements Signal Word Danger Hazard Statements H318 - Causes serious eye damage Precautionary Statements P280 - Wear eye protection/ face protection P305 + P351 + P338 - IF IN EYES: Rinse cautiously with water for several minutes.
    [Show full text]
  • Molybdenum Behaviour During U-Al Research Reactor Spent Fuel Dissolution X
    molybdenum behaviour during u-al research reactor spent fuel dissolution X. Heres, D. Sans, E. Brackx, R. Domenger, M. Bertrand, E. Excoffier, C. Eysseric, Jf. Valery To cite this version: X. Heres, D. Sans, E. Brackx, R. Domenger, M. Bertrand, et al.. molybdenum behaviour during u-al research reactor spent fuel dissolution. RRFM 2017– European Research Reactor Conference, May 2017, Rotterdam, Netherlands. hal-02433875 HAL Id: hal-02433875 https://hal.archives-ouvertes.fr/hal-02433875 Submitted on 9 Jan 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. RRFM 2017– European Research Reactor Conference Rotterdam, 14-18 May 2017 MOLYBDENUM BEHAVIOUR DURING U-AL RESEARCH REACTOR SPENT FUEL DISSOLUTION X. HÉRÈS *, D. SANS, E. BRACKX, R. DOMENGER, M. BERTRAND, E. EXCOFFIER, C. EYSSERIC, CEA, Nuclear Energy Division, Research Department on Mining and Fuel Recycling Processes BP 17171, F-30207 Bagnols sur Cèze, France J. F. VALERY AREVA NC, BUR/DT/RDP, La Défense, France ABSTRACT In the frame of Research Reactors Spent Fuel (RRSF) treatment by hydrometallurgy, the dissolution in nitric acid of irradiated U-Al, is a key issue because of the low solubility of molybdenum fission product in presence of high concentration of aluminium.
    [Show full text]
  • Chemical Names and CAS Numbers Final
    Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride
    [Show full text]
  • Table of Contents
    Canadian Environmental Protection Act, 1999 PRIORITY SUBSTANCES LIST ASSESSMENT REPORT FOLLOW-UP TO THE STATE OF SCIENCE REPORT, 2000 Aluminum Chloride Aluminum Nitrate Aluminum Sulphate Chemical Abstracts Service Registry Numbers 7446-70-0 13473-90-0 10043-01-3 Environment Canada Health Canada January 2010 TABLE OF CONTENTS LIST OF FIGURES.............................................................................................................v LIST OF TABLES .............................................................................................................vi LIST OF ACRONYMS AND ABBREVIATIONS..........................................................vii SYNOPSIS.........................................................................................................................xi 1 INTRODUCTION........................................................................................................1 2 SUMMARY OF INFORMATION CRITICAL TO ASSESSMENT OF “TOXIC” UNDER CEPA 1999....................................................................................................5 2.1 Identity and physical/chemical properties.............................................................5 2.2 Entry characterization...........................................................................................6 2.2.1 Production, import, export and use ................................................................6 2.2.1.1 Aluminum chloride.................................................................................8 2.2.1.2 Aluminum
    [Show full text]
  • Government of India Atomic Energy Commission
    B.A.R.C.-638 "Ba^spjU' GOVERNMENT OF INDIA ATOMIC ENERGY COMMISSION SPECTROPHOTOMETRIC DETERMINATION OF URANIUM IN COMMERCIAL WET PROCESS PHOSPHORIC ACID AND PHOSPHATE ROCK USING THIOCYANATE by R. A. Nagle and T. K. S. Murthy Chemical Engineering Division BHABHA ATOMIC RESEARCH CENTRE BOMBAY, INDIA 1972 We regret that some of the pages in the microfiche copy of this report may not be up to the proper legibility standards, evea though the best possible copy was used for preparing the master fiche. B.A .B.C.-630 GOVERNMENT OF INDIA co ATOMIC ENERGY COMMISSION to o « « < SPECTROBiOKMETRIC DETERMINATION OF URANIUM IN COMMERCIAL WET PROCESS PHOSPHORIC? ACID AND PHOSPHATE RUCK USING TRIOCYANATE by R.A. Nagle and V.K.S. Murthy Chemical Engineerirg Division 1-JHABHA ATOMIC RESEARCH CENTRE BOMBAY, INDIA 1972 SPECTROIHCTOMETRIC DETERMINATION OP URANIUM IN COMMERCIAL WET PROCESS PHOSPHORIC ACID AND PHOSPHATE ROCK USING THIOCYANATE by R.A. Nagle and T.K.S. Murthy 1 . INTRODUCTION The thiocyanate method1 for the spectrophotometry determination 2 of uranium has been studied by several authors. Nietzel and DeSe3a reviewed the modifications introduced in the working of this method to make it applicable fo•r 4differen t types of samples. Clinch and Guy , Koppiker and Coworkers extracted the uranyl thiocyanate complex with tri-n-butyl phosphate (TBI?) and measured the absorbance in the organic layer. Moderate amounts of other ions could be tolerated in these procedures., During the course of studies on recovery of uranium from commercial wet process phosphoric acid the present authors felt the need for a quick and reliable spectrophotometry method.
    [Show full text]
  • Aluminium in Drinking-Water
    WHO/SDE/WSH/03.04/53 English only Aluminium in Drinking-water Background document for development of WHO Guidelines for Drinking-water Quality ______________________ Originally published in Guidelines for drinking-water quality, 2nd ed. Addendum to Vol. 2. Health criteria and other supporting information. World Health Organization, Geneva, 1998. © World Health Organization 2003 All rights reserved. Publications of the World Health Organization can be obtained from Marketing and Dissemination, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel: +41 22 791 2476; fax: +41 22 791 4857; email: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to Publications, at the above address (fax: +41 22 791 4806; email: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. The World Health Organization does not warrant that the information contained in this publication is complete and correct and shall not be liable for any damages incurred as a result of its use.
    [Show full text]
  • Novel Synthesis Method of Ca3al2o6 Using an Ethanol Solution Technique
    Journal of the Ceramic Society of Japan 118 [7] 617-619 2010 Note Novel synthesis method of Ca3Al2O6 using an ethanol solution technique Weining LIU*,** and Jiang CHANG*,³ *State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China **Graduate School of the Chinese Academy of Sciences, 319 Yueyang Road, Shanghai 200050, China A novel method was developed for preparation of Ca3Al2O6 which is one composition of Portland cement-based mineral trioxide aggregate for endodontic treatment. OnlyAl(NO3)3·9H2O and Ca(NO3)2·4H2O as raw materials and ethanol as solvent were needed in the whole process. The consequent dry Ca3Al2O6 precursor was examined by thermal analysis and the as-burnt powders calcined at different temperatures for 3 hours were measured by X-ray diffractometry. Pure phase Ca3Al2O6 with particlesize of 1­10 µm was obtained at 1100°C and highly pure Ca3Al2O6 (>99.5%) was obtained at 1350°C. Therefore, this method is usefulfor preparation of pure Ca3Al2O6 for biomedical applications. ©2010 The Ceramic Society of Japan. All rights reserved. Key-words : Tricalcium aluminate, Synthesis, Ethanol, Pure phase, Biomedical applications [Received November 24, 2009; Accepted April 15, 2010] Al(NO3)3·9H2O and Ca(NO3)2·4H2O for the reaction, without 1. Introduction any aidof other components or repeated calcination for the Tricalcium aluminate (Ca3Al2O6) isanimportant constituent of synthesis. A combination of techniques (TG/DSC, XRD, SEM 1) Portland cement. Besides, Ca3Al2O6 isalso a major phase of and BET) was introduced to monitor and analyze Ca3Al2O6 mineral trioxide aggregate (MTA) which is a Portland cement- precursors, intermediate calcium aluminate compounds and final like biomaterial with numerous exciting clinical applications pure phase Ca3Al2O6.
    [Show full text]
  • Separation of Actinides and Long-Lived Fission Products from ·High-Level Radioactive Wastes (A Review)
    KfK 4945 November 1991 Separation of Actinides and Long-Lived Fission Products from ·High-Level Radioactive Wastes (A Review) Z. Kolarik Institut für Heiße Chemie Kernforschungszentrum Karlsruhe KERNFORSCHUNGSZENTRUMKARLSRUHE Institut für Heisse Chemie KfK 4945 SEPARATION OF ACTIN/DES AND LONG-LIVED FISSION PRODUCTS FROM HIGH-LEVEL RADIOACTIVE WASTES (A REVIEW) Zdenek Kolarik Kernforschungszentrum Karlsruhe GmbH, Karlsruhe Als Manuskript gedruckt Für diesen Bericht behalten wir uns alle Rechte vor Kernforschungszentrum Karlsruhe GmbH Postfach 3640, 7500 Karlsruhe 1 ISSN 0303-4003 ABTRENNUNG VON ACTINIDEN UND LANGLEBIGEN SPALTPRODUKTEN AUS HOCHRADIOAKTIVEN ABFÄLLEN Zusammenfassung Die Entsorgung von hochradioaktiven Abfällen wird vereinfacht, wenn toxische, langle­ bige Actiniden und Spaltprodukte aus den Abfällen noch vor der Endlagerng abgetrennt werden. Besonders wichtig ist dabei die Abtrennung von Americium, Curium, Plutonium, Neptunium, Strontium, Cesium und Technetium. Die abgetrennten Nuklide könnten getrennt von der Hauptmenge der hochradioaktiven Abfälle endgelagert oder, anstre­ benswerter, zu kurzlebigeren Nukliden transmutiert werden. Dieser Bericht bietet eine Übersicht der chemischen Eigenschaften von Actiniden und langlebigen Spaltprodukten, die für ihre Abtrennung aus Abfällen von Bedeutung sind. Außerden werden chemische und physikalische Eigenschaften der Abfälle sowie ihre Konditionierung beschrieben und allgemeine Aspekte der Partitionierung kurz diskutiert. Die größte Aufmerksamkeit wird der Extraktionschemie der
    [Show full text]