The Architecture of Ecology: Systems Design for Sustainable Agricultural Landscapes

Total Page:16

File Type:pdf, Size:1020Kb

The Architecture of Ecology: Systems Design for Sustainable Agricultural Landscapes Kinkaid 1 The architecture of ecology: Systems design for sustainable agricultural landscapes A thesis presented to the Honors Tutorial College, Ohio University In partial fulfillment of the requirements for graduation from the Honors Tutorial College with the degree of Bachelor of Science in Environmental and Plant Biology. Eden Kinkaid 2013 Kinkaid 2 Contents Introduction: The transformation of agriculture ............................................................................. 5 Chapter 1: The history and present state of modern industrial agriculture ................................... 10 Looking toward the past........................................................................................................ 10 The history of modern industrial agriculture .........................................................................11 Trends in modern industrial agriculture ................................................................................ 13 A vulnerable system? ............................................................................................................ 18 Looking toward the future .................................................................................................... 19 Chapter 2: Approaching agriculture as a socio-ecological system ............................................... 21 The Panarchy model ............................................................................................................. 24 Self-Organization .................................................................................................................. 28 Nonlinearity and thresholds .................................................................................................. 30 Understanding a panarchy as a whole ................................................................................... 31 Conclusion ............................................................................................................................ 33 Chapter 3: An agricultural panarchy ............................................................................................. 34 Criteria and parts of a system................................................................................................ 34 Constructing an agricultural panarchy .................................................................................. 37 Chapter 4: The patch ..................................................................................................................... 41 Soil as a landscape ................................................................................................................ 41 Soil organic matter as indicator of soil quality ..................................................................... 42 Soil organic matter dynamics as an adaptive cycle............................................................... 44 Patterns at the scale of the patch ........................................................................................... 46 Drivers at the scale of the patch ............................................................................................ 48 Summary and conclusion ...................................................................................................... 63 Chapter 5: The site ........................................................................................................................ 64 The farm as a landscape ........................................................................................................ 64 The annual cropping season as an adaptive cycle ................................................................. 66 Patterns at the scale of the site .............................................................................................. 68 Drivers at the scale of the site ............................................................................................... 78 Summary and conclusion ...................................................................................................... 84 Chapter 6: The landscape .............................................................................................................. 86 The agricultural landscape .................................................................................................... 86 The concept of the landscape ................................................................................................ 86 Land use history as an adaptive cycle ................................................................................... 90 Patterns at the scale of the landscape .................................................................................... 93 Drivers at the scale of the landscape ................................................................................... 106 Summary and conclusion .....................................................................................................110 Summary of Part I ................................................................................................................110 Chapter 7: Cross-scale interactions ..............................................................................................114 The nature of a panarchy......................................................................................................114 Making predictions of an uncertain future ...........................................................................115 Building scenarios ................................................................................................................117 The Reference Scenario ...................................................................................................... 120 The Agribusiness Wins Scenario ........................................................................................ 126 The Agricultural Deserts Scenario ...................................................................................... 127 The Just World Scenario ..................................................................................................... 129 Kinkaid 3 The Localization Scenario .................................................................................................. 130 Summary and conclusion .................................................................................................... 132 Chapter 8: The structure of the problem ..................................................................................... 134 Lessons from future scenarios ............................................................................................ 134 Adaptive vs. maladaptive systems ...................................................................................... 136 System traps ........................................................................................................................ 137 Redirecting a maladaptive system ...................................................................................... 141 Chapter 9: The synthesis of form ................................................................................................ 143 Deconstructing the problem ................................................................................................ 143 Understanding the context of design................................................................................... 144 The process of design.......................................................................................................... 146 Diagrams ............................................................................................................................. 149 The constructive diagram as a hypothesis .......................................................................... 153 The adaptive cycle as a constructive diagram ..................................................................... 154 Requirements of “Sustainable Agriculture” ........................................................................ 156 Synthesis ............................................................................................................................. 161 Form .................................................................................................................................... 163 (Re)designing agriculture .................................................................................................... 165 Creating physical form ........................................................................................................ 167 Conclusion: Design, intuition, and logic..................................................................................... 170 The logic of design.............................................................................................................. 170 Connecting science and design ........................................................................................... 172 Confronting an uncertain future .......................................................................................... 173 References ........................................................................................................................... 174 Acknowledgements ............................................................................................................. 186 Appendix ............................................................................................................................. 187 Kinkaid 4 Table of Figures Fig. 1: A sustainable
Recommended publications
  • Fire Exclusion Forest Service in Rocky Mountain Ecosystems: Rocky Mountain Research Station
    United States Department of Agriculture Cascading Effects of Fire Exclusion Forest Service in Rocky Mountain Ecosystems: Rocky Mountain Research Station General Technical Report RMRS-GTR-91 A Literature Review May 2002 Robert E. Keane, Kevin C. Ryan Tom T. Veblen, Craig D. Allen Jesse Logan, Brad Hawkes Abstract Keane, Robert E.; Ryan, Kevin C.; Veblen, Tom T.; Allen, Craig D.; Logan, Jessie; Hawkes, Brad. 2002. Cascading effects of fire exclusion in the Rocky Mountain ecosystems: a literature review. General Technical Report. RMRS- GTR-91. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 24 p. The health of many Rocky Mountain ecosystems is in decline because of the policy of excluding fire in the management of these ecosystems. Fire exclusion has actually made it more difficult to fight fires, and this poses greater risks to the people who fight fires and for those who live in and around Rocky Mountain forests and rangelands. This paper discusses the extent of fire exclusion in the Rocky Mountains, then details the diverse and cascading effects of suppressing fires in the Rocky Mountain landscape by spatial scale, ecosystem characteristic, and vegetation type. Also discussed are the varied effects of fire exclusion on some important, keystone ecosystems and human concerns. Keywords: wildland fire, fire exclusion, fire effects, landscape ecology Research Summary Since the early 1930s, fire suppression programs in the United States and Canada successfully reduced wildland fires in many Rocky Mountain ecosystems. This lack of fires has created forest and range landscapes with atypical accumulations of fuels that pose a hazard to many ecosystem characteristics.
    [Show full text]
  • Progressive and Regressive Soil Evolution Phases in the Anthropocene
    Progressive and regressive soil evolution phases in the Anthropocene Manon Bajard, Jérôme Poulenard, Pierre Sabatier, Anne-Lise Develle, Charline Giguet- Covex, Jeremy Jacob, Christian Crouzet, Fernand David, Cécile Pignol, Fabien Arnaud Highlights • Lake sediment archives are used to reconstruct past soil evolution. • Erosion is quantified and the sediment geochemistry is compared to current soils. • We observed phases of greater erosion rates than soil formation rates. • These negative soil balance phases are defined as regressive pedogenesis phases. • During the Middle Ages, the erosion of increasingly deep horizons rejuvenated pedogenesis. Abstract Soils have a substantial role in the environment because they provide several ecosystem services such as food supply or carbon storage. Agricultural practices can modify soil properties and soil evolution processes, hence threatening these services. These modifications are poorly studied, and the resilience/adaptation times of soils to disruptions are unknown. Here, we study the evolution of pedogenetic processes and soil evolution phases (progressive or regressive) in response to human-induced erosion from a 4000-year lake sediment sequence (Lake La Thuile, French Alps). Erosion in this small lake catchment in the montane area is quantified from the terrigenous sediments that were trapped in the lake and compared to the soil formation rate. To access this quantification, soil processes evolution are deciphered from soil and sediment geochemistry comparison. Over the last 4000 years, first impacts on soils are recorded at approximately 1600 yr cal. BP, with the erosion of surface horizons exceeding 10 t·km− 2·yr− 1. Increasingly deep horizons were eroded with erosion accentuation during the Higher Middle Ages (1400–850 yr cal.
    [Show full text]
  • REGENERATIVE AGRICULTURE and the SOIL CARBON SOLUTION SEPTEMBER 2020
    REGENERATIVE AGRICULTURE and the SOIL CARBON SOLUTION SEPTEMBER 2020 AUTHORED BY: Jeff Moyer, Andrew Smith, PhD, Yichao Rui, PhD, Jennifer Hayden, PhD REGENERATIVE AGRICULTURE IS A WIN-WIN-WIN CLIMATE SOLUTION that is ready for widescale implementation now. WHAT ARE WE WAITING FOR? Table of Contents 3 Executive Summary 5 Introduction 9 A Potent Corrective 11 Regenerative Principles for Soil Health and Carbon Sequestration 13 Biodiversity Below Ground 17 Biodiversity Above Ground 25 Locking Carbon Underground 26 The Question of Yields 28 Taking Action ACKNOWLEDGMENTS 30 Soil Health for a Livable Future Many thanks to the Paloma Blanca Foundation and Tom and Terry Newmark, owners of Finca Luna Nueva Lodge and regenerative farm in 31 References Costa Rica, for providing funding for this paper. Tom is also the co-founder and chairman of The Carbon Underground. Thank you to Roland Bunch, Francesca Cotrufo, PhD, David Johnson, PhD, Chellie Pingree, and Richard Teague, PhD for providing interviews to help inform the paper. EXECUTIVE SUMMARY The environmental impacts of agricultural practices This introduction is co-authored by representatives of two The way we manage agricultural land 140 billion new tons of CO2 contamination to the blanket of and translocation of carbon from terrestrial pools to formative organizations in the regenerative movement. matters. It matters to people, it matters to greenhouse gases already overheating our planet. There is atmospheric pools can be seen and felt across a broad This white paper reflects the Rodale Institute’s unique our society, and it matters to the climate. no quarreling with this simple but deadly math: the data are unassailable.
    [Show full text]
  • Program Guide For: Newly Adopted Course of Study Agriculture, Food and Natural Resources Cluster, and Argiscience Middle School
    2020-2021 PROGRAM GUIDE FOR: NEWLY ADOPTED COURSE OF STUDY AGRICULTURE, FOOD AND NATURAL RESOURCES CLUSTER, AND ARGISCIENCE MIDDLE SCHOOL NOVEMBER 20, 2020 ALABAMA STATE DEPARTMENT OF EDUCATION CAREER AND TECHNICAL EDUCATION ANDY CHAMNESS, EDUCATION ADMINISTRATOR COLLIN ADCOCK, EDUCATION SPECIALIST JERAD DYESS, EDUCATION SPECIALIST MAGGIN EDWARDS, ADMINISTRATIVE ASSISTANT (334) 694-4746 Revised 2/23/2021 Agriculture, Food and Natural Resources Cluster This cluster prepares students for employment in career pathways that relate to the $70 billion plus industry of agriculture. The mission of agriscience education is to prepare students for successful careers and a lifetime of informed choices in the global agriculture, food, fiber and natural resource industries. There are six program areas in this cluster: General Agriculture, Animal Science, Plant Science, Environmental and Natural Resources, Industrial Agriculture and Middle School. Extended learning experiences to enrich and enhance instruction are reinforced through learner participation in the career and technical student organization related to agriculture education. The National FFA organization (FFA) serves as the CTSO for this cluster. Additionally, project-based learning experiences, otherwise known as a Supervised Agriculture Experience (SAE) are an integral part of agriculture education. General Agriculture Program Pathway Career (Must teach three courses from this program list within two years) Pathway This program is designed to deliver a variety of agricultural disciplines
    [Show full text]
  • IMPROVING AGRICULTURAL RESILIENCE to CLIMATE CHANGE THROUGH SOIL MANAGEMENT Peningkatan Ketahanan Pertanian Terhadap Perubahan Iklim Melalui Pengelolaan Tanah
    ImprovingJ. Litbang agricultural Pert. Vol. resilience 32 No. to2 Juniclimate 2013: change ....-.... .... (Fahmuddin Agus et al.) 147 IMPROVING AGRICULTURAL RESILIENCE TO CLIMATE CHANGE THROUGH SOIL MANAGEMENT Peningkatan Ketahanan Pertanian terhadap Perubahan Iklim melalui Pengelolaan Tanah Fahmuddin Agus, Husnain, and Rahmah Dewi Yustika Indonesian Soil Research Institute Jalan Tentara Pelajar No. 12, Bogor 16114, Indonesia Phone. (0251) 8336757, Fax. (0251) 8321608 E-mail: [email protected]; [email protected] Diterima: 29 Maret 2015; Direvisi: 7 Oktober 2015; Disetujui: 21 Oktober 2015 ABSTRACT musim hujan dan musim kemarau yang sulit diduga, dan penurunan atau kenaikan jumlah curah hujan merupakan kondisi yang tidak menguntungkan yang dapat memengaruhi pertumbuhan dan Climate change affects soil properties and hence crop growth. produksi tanaman. Beberapa pendekatan, baik secara tunggal atau Several soil management practices potentially reduce vulnerability kombinasi dari dua atau lebih tindakan, bisa dipilih untuk to unfavorable climate conditions. This paper reviews how climate beradaptasi dengan perubahan iklim. Ini termasuk olah tanah change affects soil properties and how should soil management be konservasi, konservasi tanah vegetatif dan mekanis, penggunaan tailored to increase adaptation capacity to extreme climatic mulsa, pemanenan air, pengelolaan hara, ameliorasi tanah, dan conditions. The main symptoms of climate change such as the manajemen biologi tanah. Pengelolaan bahan organik tanah sangat increase in the global atmospheric temperature, unpredictable sentral dalam praktik pengelolaan tanah karena bahan organik onset of the wet and dry seasons and excessive or substantial tanah berperan penting dalam meningkatkan kapasitas tanah decrease in rainfall are unfavorable conditions that affect crop memegang air, meningkatkan kapasitas infiltrasi dan perkolasi growth and production.
    [Show full text]
  • Contemporary Anarchist Studies
    Contemporary Anarchist Studies This volume of collected essays by some of the most prominent academics studying anarchism bridges the gap between anarchist activism on the streets and anarchist theory in the academy. Focusing on anarchist theory, pedagogy, methodologies, praxis, and the future, this edition will strike a chord for anyone interested in radical social change. This interdisciplinary work highlights connections between anarchism and other perspectives such as feminism, queer theory, critical race theory, disability studies, post- modernism and post-structuralism, animal liberation, and environmental justice. Featuring original articles, this volume brings together a wide variety of anarchist voices whilst stressing anarchism’s tradition of dissent. This book is a must buy for the critical teacher, student, and activist interested in the state of the art of anarchism studies. Randall Amster, J.D., Ph.D., professor of Peace Studies at Prescott College, publishes widely in areas including anarchism, ecology, and social movements, and is the author of Lost in Space: The Criminalization, Globalization , and Urban Ecology of Homelessness (LFB Scholarly, 2008). Abraham DeLeon, Ph.D., is an assistant professor at the University of Rochester in the Margaret Warner Graduate School of Education and Human Development. His areas of interest include critical theory, anarchism, social studies education, critical pedagogy, and cultural studies. Luis A. Fernandez is the author of Policing Dissent: Social Control and the Anti- Globalization Movement (Rutgers University Press, 2008). His interests include protest policing, social movements, and the social control of late modernity. He is a professor of Criminology and Criminal Justice at Northern Arizona University. Anthony J. Nocella, II, is a doctoral student at Syracuse University and a professor at Le Moyne College.
    [Show full text]
  • Soil Resilience and Sustainability of Semi-Arid and Humid Tropical Soils of India: a Commentary*
    Agropedology 2016, 26 (01), 1-9 Soil Resilience and Sustainability of Semi-Arid and Humid Tropical Soils of India: A Commentary* M. Velayutham1* and D.K. Pal2 1Former Director, Indian Council of Agricultural Research-National Bureau of Soil Survey and Land Use Planning (NBSS&LUP), Nagpur, India; and Former Executive Director, M.S. Swaminathan Research Foundation, Chennai, India. 2Former Head, Division of Soil Resource Studies, NBSS&LUP, Nagpur, India and Visiting Scientist, ICRISAT, Hyderabad, India. Introduction Historic non - resilient soil situation leading to abandoning of the site, due to man-made soil degradation has Soil is a dynamic and living natural resource, which been recorded as in the collapse of Harappan civilization of supports to produce goods and services of value to humans the Indo-Gangetic Plains. In present times we are witnessing but not necessarily with perpetual ability against the it in the shifting cultivation areas of North - East India, by the degradative processes. It is well known that soil formation is rapidity with which old sites are abandoned and new sites are a slow process, and a substantial amount of soil can form only chosen for cultivation. over a geologic timescale. Soil misuse and extreme climatic conditions can damage self-regulating capacity and give way A wealth of soil information has been developed by to regressive pedogenesis (Pal et al. 2013), and thus might the NARS, state government departments and ISRO. Pal lead to the soil to regress from higher to lower usefulness and et al. (2000), Bhattacharyya et al. (2013) have given a or drastically diminished productivity.
    [Show full text]
  • A Review on the Interactive Exploration of Soil Health and How to Improve It to Boost Crop Production
    International Journal of Innovative Agriculture & Biology Research 7(1):39-46, Jan.-Mar., 2019 © SEAHI PUBLICATIONS, 2019 www.seahipaj.org ISSN: 2354- 2934 A Review on the Interactive Exploration of Soil Health and How to Improve It to Boost Crop Production Mohammed D. Toungos (Ph.D.) Department Of Crop Science , Adamawa State University Mubi, Adamawa State, Nigeria Corresponding Author Email: [email protected]; [email protected] ABSTRACT Soil health is becoming so important these days as a result of more and more, producers are understanding that healthy soils are more productive and lead to healthier crops. This led to more about sustainable production practices that can help build healthy soil that can sustain the production of healthier crops to the populace. These can be achieved by exploring the on-farm benefits of using cover crops, crop rotation, manure amendments, composting and more on the complex web of life below the surface of the soil in order to improve them. Soil management encompasses a number of strategies used by farmers and ranchers to protect soil resources, one of their most valuable assets. By practicing soil conservation, including appropriate soil preparation methods, they reduce soil erosion and increase soil stabilization. Soil health is a state of a soil meeting its range of ecosystem functions as appropriate to its environment. Soil health testing is an assessment of this status. Soil health depends on soil biodiversity (with a robust soil biota), and it can be improved via soil conditioning. The underlying principle in the use of the term ―soil health‖ is that soil is not just an inert, lifeless growing medium, which modern farming tends to represent, rather it is a living, dynamic and ever-so-subtly changing whole environment.
    [Show full text]
  • How Can Landscape Ecology Contribute to Sustainability Science?
    Landscape Ecol (2018) 33:1–7 https://doi.org/10.1007/s10980-018-0610-7 EDITORIAL How can landscape ecology contribute to sustainability science? Paul Opdam . Sandra Luque . Joan Nassauer . Peter H. Verburg . Jianguo Wu Received: 7 January 2018 / Accepted: 9 January 2018 / Published online: 15 January 2018 Ó Springer Science+Business Media B.V., part of Springer Nature 2018 While landscape ecology is distinct from sustainability science, landscape ecologists have expressed their ambitions to help society advance sustainability of landscapes. In this context Wu (2013) coined the concept of landscape sustainability science. In August of 2017 we joined the 5th forum of landscape sustainability science in P. Opdam (&) P. H. Verburg Land Use Planning Group & Alterra, Wageningen Swiss Federal Institute for Forest, Snow and Landscape University and Research, Wageningen, The Netherlands Research (WSL), Birmensdorf, Switzerland e-mail: [email protected] J. Wu S. Luque School of Life Sciences, School of Sustainability, Julie A. IRSTEA – UMR TETIS Territoires, Environnement, Wrigley Global Institute of Sustainability, Arizona State Te´le´de´tection ET Information Spatiale, Montpellier, University, Tempe, USA France J. Wu J. Nassauer Center for Human–Environment System Sustainability School for Environment and Sustainability, University of (CHESS), Beijing Normal University, Beijing, China Michigan, Ann Arbor, USA P. H. Verburg Institute for Environmental Studies, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands 123 2 Landscape Ecol (2018) 33:1–7 Beijing (see http://leml.asu.edu/chess/FLSS/05/index.html). To inspire landscape ecologists in developing research for a more sustainable future, we highlight some of the key points raised there. We emphasize challenges that have been identified in sustainability science that we consider particularly relevant for landscape sustainability.
    [Show full text]
  • Principles of Economics in a Nutshell Lorenzo Garbo, Dorene Isenberg, and Nicholas Reksten
    Principles of Economics in a Nutshell Lorenzo Garbo, Dorene Isenberg, and Nicholas Reksten Suggested Readings Chapter 1: More Than Just the Stock Market. Introduction to Economics Brown, Claire (2017) Buddhist Economics. An Enlightened Approach to the Dismal Science, London: Bloomsbury Press. Diersmeier, Claus and Michael Pirson (2009) “Oikonomia Versus Chrematistike: Learning from Aristotle About the Future Orientation of Business Management,” Journal of Business Ethics, 88: 417-430. Daly, Herman E. and John B. Cobb Jr. (1994) For the Common Good, Boston: Beacon Press. Dobb, Maurice (1973) Theories of Value and Distribution since Adam Smith. Ideology and Economic Theory, Cambridge (UK): Cambridge University Press. Friedman, Milton (1962) Capitalism and Freedom, Chicago: Chicago University Press. Gabriel, Mary (2011) Love and Capital. Karl and Jenny Marx and the Birth of a Revolution, New York: Back Bay Books. Giddens, Anthony (1976) “Introduction,” in Max Weber’s The protestant Ethic and the Spirit of Capitalism, pp. vii-xxvi, London: Routledge (Reprint 1992). Heilbroner, Robert (1996) “Adam Smith,” in Teachings from the Worldly Philosophy, pp. 55- 105, New York: W.W. Norton & Company, Inc. Heilbroner, Robert (1996) “Karl Marx,” in Teachings from the Worldly Philosophy, pp. 159-195, New York: W.W. Norton & Company, Inc. Heilbroner, Robert (1996) “John Maynard Keynes,” in Teachings from the Worldly Philosophy, pp. 264-296, New York: W.W. Norton & Company, Inc. Heilbroner Robert and Peter Boettke (2018) “Economic System,” in Encyclopedia Britannica, https://www.britannica.com/topic/economic-system. Letwin, William (1964) The Origins of Scientific Economics, Garden City (NY): Doubleday & Company, Inc. Lutz, Mark and Kenneth Lux (1988) Humanistic Economics: The New Challenge, Lanham (MD): Rowman & Littlefield Publishers.
    [Show full text]
  • Towards an Integrative Understanding of Soil Biodiversity
    Towards an integrative understanding of soil biodiversity Madhav Thakur, Helen Phillips, Ulrich Brose, Franciska de Vries, Patrick Lavelle, Michel Loreau, Jérôme Mathieu, Christian Mulder, Wim van der Putten, Matthias Rillig, et al. To cite this version: Madhav Thakur, Helen Phillips, Ulrich Brose, Franciska de Vries, Patrick Lavelle, et al.. Towards an integrative understanding of soil biodiversity. Biological Reviews, Wiley, 2020, 95, pp.350 - 364. 10.1111/brv.12567. hal-02499460 HAL Id: hal-02499460 https://hal.archives-ouvertes.fr/hal-02499460 Submitted on 5 Mar 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Biol. Rev. (2020), 95, pp. 350–364. 350 doi: 10.1111/brv.12567 Towards an integrative understanding of soil biodiversity Madhav P. Thakur1,2,3∗ , Helen R. P. Phillips2, Ulrich Brose2,4, Franciska T. De Vries5, Patrick Lavelle6, Michel Loreau7, Jerome Mathieu6, Christian Mulder8,WimH.Van der Putten1,9,MatthiasC.Rillig10,11, David A. Wardle12, Elizabeth M. Bach13, Marie L. C. Bartz14,15, Joanne M. Bennett2,16, Maria J. I. Briones17, George Brown18, Thibaud Decaens¨ 19, Nico Eisenhauer2,3, Olga Ferlian2,3, Carlos Antonio´ Guerra2,20, Birgitta Konig-Ries¨ 2,21, Alberto Orgiazzi22, Kelly S.
    [Show full text]
  • Handout 3.1: Looking at Industrial Agriculture and Agricultural Innovation
    Handout 3.1: Looking at Industrial Agriculture and Agricultural Innovation Agricultural Innovation:1 “A form of modern farming that refers to the industrialized production of livestock, poultry, fish and crops. The methods it employs include innovation in agricultural machinery and farming methods, genetic technology, techniques for achieving economies of scale in production, the creation of new markets for consumption, the application of patent protection to genetic information, and global trade.” Benefits Downsides + Cheap and plentiful food ‐ Environmental and social costs + Consumer convenience ‐ Damage to fisheries + Contribution to the economy on many levels, ‐ Animal waste causing surface and groundwater from growers to harvesters to sellers pollution ‐ Increased health risks from pesticides ‐ Heavy use of fossil fuels leading to increased ozone pollution and global warming Factors that influence agricultural innovation • Incentive or regulatory government policies • Different abilities and potentials in agriculture and food sectors • Macro economic conditions (i.e. quantity and quality of public and private infrastructure and services, human capital, and the existing industrial mix) • The knowledge economy (access to agricultural knowledge and expertise) • Regulations at the production and institution levels The Challenge: Current industrial agriculture practices are temporarily increasing the Earth’s carrying capacity of humans while slowly destroying its long‐term carrying capacity. There is, therefore, a need to shift to more sustainable forms of industrial agriculture, which maximize its benefits while minimizing the downsides. Innovation in food Example (Real or hypothetical) processing Cost reduction / productivity improvement Quality enhancement / sensory performance Consumer convenience / new varieties Nutritional delivery / “healthier” Food safety 1 www.wikipedia.org .
    [Show full text]