REGENERATIVE AGRICULTURE and the SOIL CARBON SOLUTION SEPTEMBER 2020
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Finca+Slow+Permaculture.Pdf
Farming and Smallholding © Johanna McTiernan Dan McTiernan describes how regenerative agriculture is transforming olive groves in Spain and introduces © Johanna McTiernan transnational cropshare Restoring Agriculture in the Mediterranean “It’s not just that traditional Mediter- Together with our friends, who own healthy, perennial Mediterranean crops heavy input, bare-earth paradigm ranean agriculture isn’t sustainable a similar piece of land, and working that can’t be grown in Britain easily. of agriculture that is having such a ... it isn’t even viable on any level in partnership with IPM, we have If managed holistically, olives, nut destructive impact on the environ- anymore!” That was one of the first started Terra CSA, a multi-farm com- bearing trees such as almonds, and ment and the climate. All other things Richard Wade of Instituto munity supported agriculture project vine products like red wine, are about non-cold-pressed seed oils require Permacultura Montsant (IPM) said using permaculture and regenerative as perennial and sustainable as crops high levels of processing involving to us during our six month intern- agriculture to build soil and deliver come. We want the UK to still be heat and solvents in the extraction ship with him here in the south of olive oil, almonds and wine direct to able to access these incredibly process that are energy and resource Catalunya, Spain. cropshare members in the UK. nutritious products alongside the heavy and questionable in terms of With his doom laden words still Having been involved in community need to relocalise as much of our health to people and the planet. -
Carbon Dioxide Removal Policy in the Making: Assessing Developments in 9 OECD Cases
POLICY AND PRACTICE REVIEWS published: 04 March 2021 doi: 10.3389/fclim.2021.638805 Carbon Dioxide Removal Policy in the Making: Assessing Developments in 9 OECD Cases Felix Schenuit 1,2*, Rebecca Colvin 3, Mathias Fridahl 4, Barry McMullin 5, Andy Reisinger 6, Daniel L. Sanchez 7, Stephen M. Smith 8, Asbjørn Torvanger 9, Anita Wreford 10 and Oliver Geden 2 1 Center for Sustainable Society Research, University of Hamburg, Hamburg, Germany, 2 German Institute for International and Security Affairs (SWP), Berlin, Germany, 3 Crawford School of Public Policy, Australian National University, Canberra, ACT, Australia, 4 Department of Thematic Studies, Environmental Change, Centre for Climate Science and Policy Research, Linköping University, Linköping, Sweden, 5 Dublin City University, Dublin, Ireland, 6 Ministry for the Environment, Wellington, New Zealand, 7 Department of Environmental Science, Policy, and Management (ESPM), University of California, Berkeley, Berkeley, CA, United States, 8 Smith School of Enterprise and the Environment, Oxford University, Oxford, United Kingdom, 9 Center for International Climate Research (CICERO), Oslo, Norway, 10 Agribusiness and Economics Research Unit (AERU), Lincoln University, Christchurch, New Zealand Edited by: William C. Burns, Since the adoption of the Paris Agreement in 2015, spurred by the 2018 IPCC Special American University, United States Report on Global Warming of 1.5◦C, net zero emission targets have emerged as a Reviewed by: new organizing principle of climate policy. In this context, climate policymakers and Phillip Williamson, University of East Anglia, stakeholders have been shifting their attention to carbon dioxide removal (CDR) as United Kingdom an inevitable component of net zero targets. The importance of CDR would increase Charithea Charalambous, Heriot-Watt University, further if countries and other entities set net-negative emissions targets. -
Tillage and Soil Ecology: Partners for Sustainable Agriculture
Soil & Tillage Research 111 (2010) 33–40 Contents lists available at ScienceDirect Soil & Tillage Research journal homepage: www.elsevier.com/locate/still Review Tillage and soil ecology: Partners for sustainable agriculture Jean Roger-Estrade a,b,*, Christel Anger b, Michel Bertrand b, Guy Richard c a AgroParisTech, UMR 211 INRA/AgroParisTech., Thiverval-Grignon, 78850, France b INRA, UMR 211 INRA/AgroParisTech. Thiverval-Grignon, 78850, France c INRA, UR 0272 Science du sol, Centre de recherche d’Orle´ans, Orle´ans, 45075, France ARTICLE INFO ABSTRACT Keywords: Much of the biodiversity of agroecosystems lies in the soil. The functions performed by soil biota have Tillage major direct and indirect effects on crop growth and quality, soil and residue-borne pests, diseases Soil ecology incidence, the quality of nutrient cycling and water transfer, and, thus, on the sustainability of crop Agroecosystems management systems. Farmers use tillage, consciously or inadvertently, to manage soil biodiversity. Soil biota Given the importance of soil biota, one of the key challenges in tillage research is understanding and No tillage Plowing predicting the effects of tillage on soil ecology, not only for assessments of the impact of tillage on soil organisms and functions, but also for the design of tillage systems to make the best use of soil biodiversity, particularly for crop protection. In this paper, we first address the complexity of soil ecosystems, the descriptions of which vary between studies, in terms of the size of organisms, the structure of food webs and functions. We then examine the impact of tillage on various groups of soil biota, outlining, through examples, the crucial effects of tillage on population dynamics and species diversity. -
Pacific Biochar What Is Biochar?
Soil Health & Carbon Farming Charlie McIntosh, Pacific Biochar What is Biochar? Biochar: biomass charcoal when used or found in soils Biochar + Soil Health SOIL ORGANIC MATTER ! Biochar is a natural component of soil organic matter ! Seasonal fires deposit biochar in soils where it accumulates over time ! People have used biochar to improve soils for millenia (ex. Terra Preta soils of the Amazon Basin) ! Fertile soils around the world often contain high levels of biochar ~30-50% of SOM Photo courtesy of Julie Major and Bruno Glaser Biochar forms a portion of the “Stabilized Organic Matter” pool in soils Biochar + Soil Health SOIL BIOLOGY ! Biochar provides an ideal micro- habitat for soil organisms ! Porous surfaces retain air, water and nutrients available for microorganisms and root hairs ! Studies consistently demonstrate enhanced biological activity in soils & composting using biochar Photo showing microstructure of biochar particle and Photo showing the organic coating formed on biochar fungal hyphae extending from spore, courtesy of Ogawa surfaces and pores, courtesy of Yoshizawa Biochar + Soil Health WATER & NUTRIENT CONSERVATION ! Biochar acts like a sponge ! Micropores retain moisture while macropores allow drainage ! Improves plant available water in sandy and heavy clay soils ! Biochar acts like a filter ! Reduces leaching & volatilization of nutrients, especially nitrogen Biochar + Compost COMPOST QUALITY ! Biochar-amended compost improves compost quality and maturity while the biochar is improved by microbe colonization and -
AGENDA Regenerative Agriculture Is an Inclusive Agroecosystems Approach Session I: Introduction for Conserving Land and Soil, Biodiversity, and Improving
Research and Extension - TECA Webinar Regenerative Agriculture: good practices for small scale agricultural producers ©Inga Foundation 28 July 2021 | 14:00 – 15:30 Registration link: CET https://fao.zoom.us/webinar/register/WN_ojcMJ_NyRKWMxYia9V57og AGENDA Regenerative agriculture is an inclusive agroecosystems approach Session I: Introduction for conserving Land and soiL, biodiversity, and improving • Technologies and Practices for Small Agricultural Producers (TECA) ecosystem services within farming Selvaraju Ramasamy, Head of Research and Extension Unit, Office of systems. It focuses on the Innovation, Food and Agriculture Organization of the United Nations (FAO). regeneration of Living soiL, • Regenerative agriculture: ecologically sustainable and economically viable improved micro hydrology, and option for sustainable future conserving biodiversity at aLL LeveLs Chandrashekhar Biradar, Principal Agroecosystems Scientist, Head of whiLe enhancing inputs use Geoinformatics and Research Data Management Unit, ICARDA. efficiency and ecosystem system services. The approach helps to • Q & A session achieve food and nutritional Session II: Good practices for small holder agricultural producers security with economicaLLy viabLe and ecoLogical sustainabLe options. • Farmer managed natural regeneration Practices presented in this webinar Sarah McKenzie, Farmer Managed Natural Regeneration (FMNR) Programme focus on experiences and Lessons and Online Learning Advisor for World Vision Australia, Australia. learned from adoption of good • The Inga tree model: regenerative agroforestry practices reLated to regenerative agricuLture. Mike Hands, Founder and Director of The Inga Foundation, United Kingdom. • Good practices of agro-forestry systems: the Kuxur rum system The TECA Platform contains a wide Ogden Rodas, Project manager, FAO-KOICA project, Guatemala. range of practices that promote • Moderated discussion regenerative agricuLture from • Q & A session different parts of the worLd. -
Soil As a Huge Laboratory for Microorganisms
Research Article Agri Res & Tech: Open Access J Volume 22 Issue 4 - September 2019 Copyright © All rights are reserved by Mishra BB DOI: 10.19080/ARTOAJ.2019.22.556205 Soil as a Huge Laboratory for Microorganisms Sachidanand B1, Mitra NG1, Vinod Kumar1, Richa Roy2 and Mishra BB3* 1Department of Soil Science and Agricultural Chemistry, Jawaharlal Nehru Krishi Vishwa Vidyalaya, India 2Department of Biotechnology, TNB College, India 3Haramaya University, Ethiopia Submission: June 24, 2019; Published: September 17, 2019 *Corresponding author: Mishra BB, Haramaya University, Ethiopia Abstract Biodiversity consisting of living organisms both plants and animals, constitute an important component of soil. Soil organisms are important elements for preserved ecosystem biodiversity and services thus assess functional and structural biodiversity in arable soils is interest. One of the main threats to soil biodiversity occurred by soil environmental impacts and agricultural management. This review focuses on interactions relating how soil ecology (soil physical, chemical and biological properties) and soil management regime affect the microbial diversity in soil. We propose that the fact that in some situations the soil is the key factor determining soil microbial diversity is related to the complexity of the microbial interactions in soil, including interactions between microorganisms (MOs) and soil. A conceptual framework, based on the relative strengths of the shaping forces exerted by soil versus the ecological behavior of MOs, is proposed. Plant-bacterial interactions in the rhizosphere are the determinants of plant health and soil fertility. Symbiotic nitrogen (N2)-fixing bacteria include the cyanobacteria of the genera Rhizobium, Free-livingBradyrhizobium, soil bacteria Azorhizobium, play a vital Allorhizobium, role in plant Sinorhizobium growth, usually and referred Mesorhizobium. -
Dynamics of Carbon 14 in Soils: a Review C
Radioprotection, Suppl. 1, vol. 40 (2005) S465-S470 © EDP Sciences, 2005 DOI: 10.1051/radiopro:2005s1-068 Dynamics of Carbon 14 in soils: A review C. Tamponnet Institute of Radioprotection and Nuclear Safety, DEI/SECRE, CADARACHE, BP. 1, 13108 Saint-Paul-lez-Durance Cedex, France, e-mail: [email protected] Abstract. In terrestrial ecosystems, soil is the main interface between atmosphere, hydrosphere, lithosphere and biosphere. Its interactions with carbon cycle are primordial. Information about carbon 14 dynamics in soils is quite dispersed and an up-to-date status is therefore presented in this paper. Carbon 14 dynamics in soils are governed by physical processes (soil structure, soil aggregation, soil erosion) chemical processes (sequestration by soil components either mineral or organic), and soil biological processes (soil microbes, soil fauna, soil biochemistry). The relative importance of such processes varied remarkably among the various biomes (tropical forest, temperate forest, boreal forest, tropical savannah, temperate pastures, deserts, tundra, marshlands, agro ecosystems) encountered in the terrestrial ecosphere. Moreover, application for a simplified modelling of carbon 14 dynamics in soils is proposed. 1. INTRODUCTION The importance of carbon 14 of anthropic origin in the environment has been quite early a matter of concern for the authorities [1]. When the behaviour of carbon 14 in the environment is to be modelled, it is an absolute necessity to understand the biogeochemical cycles of carbon. One can distinguish indeed, a global cycle of carbon from different local cycles. As far as the biosphere is concerned, pedosphere is considered as a primordial exchange zone. Pedosphere, which will be named from now on as soils, is mainly located at the interface between atmosphere and lithosphere. -
Agricultural Soil Carbon Credits: Making Sense of Protocols for Carbon Sequestration and Net Greenhouse Gas Removals
Agricultural Soil Carbon Credits: Making sense of protocols for carbon sequestration and net greenhouse gas removals NATURAL CLIMATE SOLUTIONS About this report This synthesis is for federal and state We contacted each carbon registry and policymakers looking to shape public marketplace to ensure that details investments in climate mitigation presented in this report and through agricultural soil carbon credits, accompanying appendix are accurate. protocol developers, project developers This report does not address carbon and aggregators, buyers of credits and accounting outside of published others interested in learning about the protocols meant to generate verified landscape of soil carbon and net carbon credits. greenhouse gas measurement, reporting While not a focus of the report, we and verification protocols. We use the remain concerned that any end-use of term MRV broadly to encompass the carbon credits as an offset, without range of quantification activities, robust local pollution regulations, will structural considerations and perpetuate the historic and ongoing requirements intended to ensure the negative impacts of carbon trading on integrity of quantified credits. disadvantaged communities and Black, This report is based on careful review Indigenous and other communities of and synthesis of publicly available soil color. Carbon markets have enormous organic carbon MRV protocols published potential to incentivize and reward by nonprofit carbon registries and by climate progress, but markets must be private carbon crediting marketplaces. paired with a strong regulatory backing. Acknowledgements This report was supported through a gift Conservation Cropping Protocol; Miguel to Environmental Defense Fund from the Taboada who provided feedback on the High Meadows Foundation for post- FAO GSOC protocol; Radhika Moolgavkar doctoral fellowships and through the at Nori; Robin Rather, Jim Blackburn, Bezos Earth Fund. -
Soils and Soil-Forming Material Technical Information Note 04 /2017 30Th November 2017
Soils and Soil-forming Material Technical Information Note 04 /2017 30th November 2017 Contents 1. Introduction to Soils ........................................................................................................................ 2 2. Components and Properties of Soil ................................................................................................ 7 3. Describing and Categorising soils .................................................................................................. 29 4. Policy, Regulation and Roles ......................................................................................................... 34 5. Soil Surveys, Handling and Management ..................................................................................... 40 6. Recommended Soil Specifications ................................................................................................ 42 7. References .................................................................................................................................... 52 “Upon this handful of soil our survival depends. Husband it and it will grow our food, our fuel, and our shelter and surround us with beauty. Abuse it and the soil will collapse and die, taking humanity with it.” From Vedas Sanskrit Scripture – circa 1500 BC The aim of this Technical Information Note is to assist Landscape Professionals (primarily landscape architects) when considering matters in relation to soils and soil-forming material. Soil is an essential requirement for providing -
Program Guide For: Newly Adopted Course of Study Agriculture, Food and Natural Resources Cluster, and Argiscience Middle School
2020-2021 PROGRAM GUIDE FOR: NEWLY ADOPTED COURSE OF STUDY AGRICULTURE, FOOD AND NATURAL RESOURCES CLUSTER, AND ARGISCIENCE MIDDLE SCHOOL NOVEMBER 20, 2020 ALABAMA STATE DEPARTMENT OF EDUCATION CAREER AND TECHNICAL EDUCATION ANDY CHAMNESS, EDUCATION ADMINISTRATOR COLLIN ADCOCK, EDUCATION SPECIALIST JERAD DYESS, EDUCATION SPECIALIST MAGGIN EDWARDS, ADMINISTRATIVE ASSISTANT (334) 694-4746 Revised 2/23/2021 Agriculture, Food and Natural Resources Cluster This cluster prepares students for employment in career pathways that relate to the $70 billion plus industry of agriculture. The mission of agriscience education is to prepare students for successful careers and a lifetime of informed choices in the global agriculture, food, fiber and natural resource industries. There are six program areas in this cluster: General Agriculture, Animal Science, Plant Science, Environmental and Natural Resources, Industrial Agriculture and Middle School. Extended learning experiences to enrich and enhance instruction are reinforced through learner participation in the career and technical student organization related to agriculture education. The National FFA organization (FFA) serves as the CTSO for this cluster. Additionally, project-based learning experiences, otherwise known as a Supervised Agriculture Experience (SAE) are an integral part of agriculture education. General Agriculture Program Pathway Career (Must teach three courses from this program list within two years) Pathway This program is designed to deliver a variety of agricultural disciplines -
Carbon Farming Schemes in Europe - Roundtable Background Document
EUROPEAN COMMISSION DIRECTORATE-GENERAL CLIMATE ACTION Directorate C – Climate strategy, governance and emissions from non-trading sectors CLIMA.C.3 – Land Use and Finance for Innovation Carbon Farming Schemes in Europe - Roundtable Background document Contents 1. Introduction ................................................................................................................................................. 2 2. Carbon Farming Study ................................................................................................................................. 2 3. The aim of the Roundtable .......................................................................................................................... 3 4. EU result-based carbon farming examples: classification of existing schemes .......................................... 3 5. Guidance for the development of result- based carbon farming schemes in the EU ................................. 5 6. Questions for discussion at the Roundtable ............................................................................................... 6 Annex I: Description of existing European carbon farming schemes ................................................................. 8 Annex II: Carbon farming scheme options ........................................................................................................ 12 Annex III: Speaker bios ..................................................................................................................................... -
How Does Biodiversity Benefit Agriculture?
latrobe.edu.au How does biodiversity benefit agriculture? Jim Radford Research Centre for Future Landscapes La Trobe University Presentation to Goulburn Broken CMA, October 20, 2020 latrobe.edu.au What is biodiversity? latrobe.edu.au What is biodiversity? latrobe.edu.au What is biodiversity? latrobe.edu.au What is biodiversity? Biodiversity – is the diversity of all forms of living organisms. It includes diversity within and among species (including genetic diversity) and diversity within and among ecosystems. latrobe.edu.au What are ecological processes? Biotic processes – interactions between individual organisms or species (e.g. predation, herbivory, competition, parasitism, mutualisms) and movement of organisms that facilitate processes latrobe.edu.au What are ecological processes? Abiotic processes – processes associated with the physical environment, such as climatic processes, weathering, formation of biophysical habitats, hydrological processes (groundwater and surface water) latrobe.edu.au What are ecological processes? Biotic-abiotic processes – interactions between organisms and physical environment (e.g. photosynthesis, disturbance regimes, ecosystem engineers) Photo credit: Birchip Cropping Group latrobe.edu.au What are ecological processes? Ecosystem services – ecological processes that benefit people – crop production, timber, fibre and meat production – pollination, seed dispersal, pest control, waste decomposition – nitrogen-fixation, nutrient cycling, carbon sequestration Millennium Ecosystem Assessment (2005) latrobe.edu.au