A&A 595, A115 (2016) Astronomy DOI: 10.1051/0004-6361/201628528 & c ESO 2016 Astrophysics Multilayer modeling of the aureole photometry during the Venus transit: comparison between SDO/HMI and VEx/SOIR data C. Pere1,2,?, P. Tanga1, Th. Widemann2,3, Ph. Bendjoya1, A. Mahieux4,5, V. Wilquet4, and A. C. Vandaele4 1 Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, Bvd de l’Observatoire, CS 34229, 06304 Nice Cedex 4, France e-mail:
[email protected] 2 LESIA, UMR CNRS 8109, Paris Observatory, France 3 DYPAC, EA 2449, Université de Versailles-Saint-Quentin-en-Yvelines, Guyancourt, France 4 Belgian Institute for Space Aeronomy, 3 Av. Circulaire, 1180 Brussels, Belgium 5 Fonds National de la Recherche Scientifique, Brussels, Belgium Received 16 March 2016 / Accepted 12 July 2016 ABSTRACT Context. The mesosphere of Venus is a critical range of altitudes in which complex temperature variability has been extensively studied by the space mission Venus Express (VEx) during its eight-year mission (2006−2014). In particular, the Solar Occultation in the InfraRed (SOIR) instrument probed the morning and evening terminator in the 70−170 km altitude region, at latitudes extending from pole to pole, using spectroscopic multiband observations collected during occultations of the Sun at the limb. Data collected at different epochs and latitudes show evidence of short and medium timescale variability as well as latitudinal differences. Spatial and temporal variability is also predicted in mesospheric and thermospheric terminator models with lower boundary conditions at 70 km near cloud tops. Aims. The Venus transit on June 5−6, 2012 was the first to occur with a spacecraft in orbit around Venus.