Instrumental Characterization and Observations of the Sun and the Moon with a Scientific Dissemination Module in Microwaves
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
High-Frequency Waves in Solar and Stellar Coronae
A&A 463, 1165–1170 (2007) Astronomy DOI: 10.1051/0004-6361:20065956 & c ESO 2007 Astrophysics High-frequency waves in solar and stellar coronae V. G. Ledenev1,V.V.Tirsky2,andV.M.Tomozov1 1 Institute of Solar-Terrestrial Physics, Russian Academy of Sciences, PO Box 4026, Irkutsk, Russia e-mail: [email protected] 2 Institute of Laser Physics, Russian Academy of Sciences, Irkutsk Branch, Russia Received 3 July 2006 / Accepted 15 November 2006 ABSTRACT On the basis of a numerical solution of dispersion equation we analyze characteristics of low-damping high-frequency waves in hot magnetized solar and stellar coronal plasmas in conditions when the electron gyrofrequency is equal or higher than the electron plasma frequency. It is shown that branches that correspond to Z-mode and ordinary waves approach each other when the magnetic field increases and become practically indistinguishable in a broad region of frequencies at all angles between the wave vector and the magnetic field. At angles between the wave vector and the magnetic field close to 90◦, a wave branch with an anomalous dispersion may occur. On the basis of the obtained results we suggest a new interpretation of such events in solar and stellar radio emission as broadband pulsations and spikes. Key words. plasmas – turbulence – radiation mechanisms: non-thermal – Sun: flares – Sun: radio radiation – stars: flare 1. Introduction in the magnetic field and, consequently, for determining solar coronal parameters in the flare region. Magnetic field estima- It has been widely accepted that numerous flare processes with tions give values of the ratio ωHe/ωpe < 1 (Ledenev et al. -
Disrupted Solar Transit at 140 Mhz Over the Mexican Array Radio Telescope Due Space Weather Events
URSI AP-RASC 2019, New Delhi, India; 09 - 15 March 2019 Disrupted Solar Transit at 140 MHz over the Mexican Array Radio Telescope due Space Weather Events *Victor De la Luz(1)(2), Julio Mejia-Ambriz(1)(2), and Americo Gonzalez(2) (1) Conacyt, Servicio de Clima Espacial Mexico, Morelia, Mexico. 58190. http://www.sciesmex.unam.mx (2) Instituto de Geofisica, Unidad Michoacan, UNAM, Morelia, Mexico. 58190. Abstract Figure 2 show two solar transits centered at peak, for 22 (green line, quiet) and 26 (blue line, close to the solar flare) In this work we present the records of the disrupted so- June, 2015. We observed clearly the changes of amplitude lar transits at 140 MHz at Mexican Array Radio Telescope of the signal. (MEXART) related with active regionsand a solar flare dur- ing the week of June 20 - 26, 2015. 4 Conclusions 1 Introduction We show that space weather, in particular solar flares, mod- ifies the antenna pattern related with solar transit in the MEXART at 140 MHz. The increase in the flux saturated The transit instrument Mexican Array Radio Telescope the instrument at June 22. For this reasson, we used the 5Th (MEXART) is located in Coeneo, Mexico. Their main pro- lateral left lobe to characterize the increase of the flux. We pose is record extra-galactic radio source to observe the observed that at peak, the flux increases 16 mV in the max- interplanetary scintillation (IPS) [3]. The radio telescope imum level at June 22, 2015 compared against the baseline have central frequency of 139.65 MHz and bandwidth of 2 of the transit in quiet conditions. -
1 Comparison of Solar Evaluation Tools
COMPARISON OF SOLAR EVALUATION TOOLS: FROM LEARNING TO PRACTICE Sophia Duluk Heather Nelson Department of Architecture Department of Architecture University of Oregon University of Oregon Eugene, OR 97403 Eugene, OR 97403 Email: [email protected] Email: [email protected] Alison Kwok Department of Architecture University of Oregon Eugene, OR 97403 Email: [email protected] ABSTRACT obstacles to the use of software and a number of misunderstandings about principles and concepts of solar Solar tools and software have evolved in the last ten years to radiation. These can cause under- or overestimations, assist designers in evaluating a site for shading, solar access, leading to heavy energy consequences when handling daylighting design, photovoltaic placement, and passive building loads and thermal comfort. solar heating potential. This paper presents a comparative evaluation of solar site analysis tools as base cases for This study focuses on comparing six tools readily available evaluation. We present the results from on site to design professionals: Solar Transit (1), Solar Pathfinder measurements, software predictions, output accuracy, ease (http://www.solarpathfinder.com/index), Solmetric Suneye of use, design inputs needed for Passive House Planning (http://www.solmetric.com), HORIcatcher+Meteonorm Protocol (PHPP), and other criteria to discuss the (http://www.meteotest.ch/en/footernavi/solar_energy/horicat capabilities of the tools in education and in architectural cher/) and two iPhone applications. Additionally, the study design practice. We compare six tools: Solar Transit, Solar will examine shading protocols used for the Passive House Pathfinder + Solar Pathfinder Assistant software, Solmetric Planning Package (PHPP) to see how the tools compare to Suneye + Thermal Assistant Software, HORIcatcher + the PHPP shading assumptions, and determine the Meteonorm, and two iPhone applications. -
Chapter 11 SOLAR RADIO EMISSION W
Chapter 11 SOLAR RADIO EMISSION W. R. Barron E. W. Cliver J. P. Cronin D. A. Guidice Since the first detection of solar radio noise in 1942, If the frequency f is in cycles per second, the wavelength radio observations of the sun have contributed significantly X in meters, the temperature T in degrees Kelvin, the ve- to our evolving understanding of solar structure and pro- locity of light c in meters per second, and Boltzmann's cesses. The now classic texts of Zheleznyakov [1964] and constant k in joules per degree Kelvin, then Bf is in W Kundu [1965] summarized the first two decades of solar m 2Hz 1sr1. Values of temperatures Tb calculated from radio observations. Recent monographs have been presented Equation (1 1. 1)are referred to as equivalent blackbody tem- by Kruger [1979] and Kundu and Gergely [1980]. perature or as brightness temperature defined as the tem- In Chapter I the basic phenomenological aspects of the perature of a blackbody that would produce the observed sun, its active regions, and solar flares are presented. This radiance at the specified frequency. chapter will focus on the three components of solar radio The radiant power received per unit area in a given emission: the basic (or minimum) component, the slowly frequency band is called the power flux density (irradiance varying component from active regions, and the transient per bandwidth) and is strictly defined as the integral of Bf,d component from flare bursts. between the limits f and f + Af, where Qs is the solid angle Different regions of the sun are observed at different subtended by the source. -
Nimbus-7 Earth Radiation Budget Calibration History--Part I: the Solar Channels
NASA Reference Publication 1316 1993 Nimbus-7 Earth Radiation Budget Calibration History--Part I: The Solar Channels H. Lee Kyle Goddard Space Flight Center Greenbelt, Maryland Douglas V. Hoyt Brenda J. Vallette Research and Data Systems Corporation Greenbelt, Maryland John R. Hickey The Eppley Laboratories Newport, Rhode Island Robert H. Maschhoff Gulton Industries Albuquerque, New Mexico National Aeronautics and Space Administration Scientific and Technical Information Branch ACRONYMS AND ABBREVIATIONS ACRIM Active Cavity Radiometer Irradiance Monitor A/D analog to digital convertor APEX Advanced Photovoltaic Experiment CZCS Coastal Zone Color Scanner DSAS Digital Solar Aspect Sensor ERB Earth Radiation Budget ERBS Earth Radiation Budget Satellite FOV field of view H-F Hickey-Frieden Cavity Radiometer IPS International Pyrheliometric Standard JPL Jet Propulsion Laboratory LDEF Long Duration Exposure Facility LIMS Limb Infrared Monitor of the Stratosphere NASA National Aeronautics and Space Administration NIP Normal Incidence Pyrheliometer NSSDC National Space Science Data Center PEERBEC Passive Exposure Earth Radiation Budget Experiment Components ppm parts per million RSM reference sensor model SEFDT Solar Earth Flux Data Tapes SMM Solar Maximum Mission SMMR Scanning Multichannel Microwave Radiometer UARS Upper Atmosphere Research Satellite UV ultraviolet WRR World Radiometric Reference iii TABLE OF CONTENTS Section 1. INTRODUCTION ............................................ 1 o THE HICKEY-FRIEDEN (H-F) CAVITY RADIOMETER .................. -
Tures in the Chromosphere, Whereas at Meter Wavelengths It Is of the Order of 1.5 X 106 Degrees, the Temperature of the Corona
1260 ASTRONOMY: MAXWELL PROC. N. A. S. obtained directly from the physical process, shows that the functions rt and d are nonnegative for x,y > 0. It follows from standard arguments that as A 0 these functions approach the solutions of (2). 4. Solution of Oriqinal Problem.-The solution of the problem posed in (2.1) can be carried out in two ways, once the functions r(y,x) and t(y,x) have been deter- mined. In the first place, since u(x) = r(y,x), a determination of r(y,x) reduces the problem in (2.1) to an initial value process. Secondly, as indicated in reference 1, the internal fluxes, u(z) and v(z) can be expressed in terms of the reflection and transmission functions. Computational results will be presented subsequently. I Bellman, R., R. Kalaba, and G. M. Wing, "Invariant imbedding and mathematical physics- I: Particle processes," J. Math. Physics, 1, 270-308 (1960). 2 Ibid., "Invariant imbedding and dissipation functions," these PROCEEDINGS, 46, 1145-1147 (1960). 3Courant, R., and P. Lax, "On nonlinear partial dyperential equations with two independent variables," Comm. Pure Appl. Math., 2, 255-273 (1949). RECENT DEVELOPMENTS IN SOLAR RADIO ASTRONOJIY* BY A. MAXWELL HARVARD UNIVERSITYt This paper deals briefly with present radio models of the solar atmosphere, and with three particular types of experimental programs in solar radio astronomy: radio heliographs, spectrum analyzers, and a sweep-frequency interferometer. The radio emissions from the sun, the only star from which radio waves have as yet been detected, consist of (i) a background thermal emission from the solar atmosphere, (ii) a slowly varying component, also believed to be thermal in origin, and (iii) nonthermal transient disturbances, sometimes of great intensity, which originate in localized active areas. -
Radio Stars: from Khz to Thz Lynn D
Publications of the Astronomical Society of the Pacific, 131:016001 (32pp), 2019 January https://doi.org/10.1088/1538-3873/aae856 © 2018. The Astronomical Society of the Pacific. All rights reserved. Printed in the U.S.A. Radio Stars: From kHz to THz Lynn D. Matthews MIT Haystack Observatory, 99 Millstone Road, Westford, MA 01886 USA; [email protected] Received 2018 July 20; accepted 2018 October 11; published 2018 December 10 Abstract Advances in technology and instrumentation have now opened up virtually the entire radio spectrum to the study of stars. An international workshop, “Radio Stars: From kHz to THz”, was held at the Massachusetts Institute of Technology Haystack Observatory on 2017 November 1–3 to discuss the progress in solar and stellar astrophysics enabled by radio wavelength observations. Topics covered included the Sun as a radio star; radio emission from hot and cool stars (from the pre- to post-main-sequence); ultracool dwarfs; stellar activity; stellar winds and mass loss; planetary nebulae; cataclysmic variables; classical novae; and the role of radio stars in understanding the Milky Way. This article summarizes meeting highlights along with some contextual background information. Key words: Sun: general – stars: general – stars: winds – outflows – stars: activity – radio continuum: stars – radio lines: stars – (stars:) circumstellar matter – stars: mass-loss Online material: color figures 1. Background and Motivation for the Workshop Recent technological advances have led to dramatic improvements in sensitivity and achievable angular, temporal, Detectable radio emission1 is ubiquitous among stars and spectral resolution for observing stellar radio emission. As spanning virtually every temperature, mass, and evolutionary a result, stars are now being routinely observed over essentially stage. -
STELLAR RADIO ASTRONOMY: Probing Stellar Atmospheres from Protostars to Giants
30 Jul 2002 9:10 AR AR166-AA40-07.tex AR166-AA40-07.SGM LaTeX2e(2002/01/18) P1: IKH 10.1146/annurev.astro.40.060401.093806 Annu. Rev. Astron. Astrophys. 2002. 40:217–61 doi: 10.1146/annurev.astro.40.060401.093806 Copyright c 2002 by Annual Reviews. All rights reserved STELLAR RADIO ASTRONOMY: Probing Stellar Atmospheres from Protostars to Giants Manuel Gudel¨ Paul Scherrer Institut, Wurenlingen¨ & Villigen, CH-5232 Villigen PSI, Switzerland; email: [email protected] Key Words radio stars, coronae, stellar winds, high-energy particles, nonthermal radiation, magnetic fields ■ Abstract Radio astronomy has provided evidence for the presence of ionized atmospheres around almost all classes of nondegenerate stars. Magnetically confined coronae dominate in the cool half of the Hertzsprung-Russell diagram. Their radio emission is predominantly of nonthermal origin and has been identified as gyrosyn- chrotron radiation from mildly relativistic electrons, apart from some coherent emission mechanisms. Ionized winds are found in hot stars and in red giants. They are detected through their thermal, optically thick radiation, but synchrotron emission has been found in many systems as well. The latter is emitted presumably by shock-accelerated electrons in weak magnetic fields in the outer wind regions. Radio emission is also frequently detected in pre–main sequence stars and protostars and has recently been discovered in brown dwarfs. This review summarizes the radio view of the atmospheres of nondegenerate stars, focusing on energy release physics in cool coronal stars, wind phenomenology in hot stars and cool giants, and emission observed from young and forming stars. Eines habe ich in einem langen Leben gelernt, namlich,¨ dass unsere ganze Wissenschaft, an den Dingen gemessen, von kindlicher Primitivitat¨ ist—und doch ist es das Kostlichste,¨ was wir haben. -
Satellite Data Communications Link Requirements for a Proposed Flight Simulation System
Theses - Daytona Beach Dissertations and Theses 4-1994 Satellite Data Communications Link Requirements for a Proposed Flight Simulation System Gerald M. Kowalski Embry-Riddle Aeronautical University - Daytona Beach Follow this and additional works at: https://commons.erau.edu/db-theses Part of the Aviation Commons Scholarly Commons Citation Kowalski, Gerald M., "Satellite Data Communications Link Requirements for a Proposed Flight Simulation System" (1994). Theses - Daytona Beach. 266. https://commons.erau.edu/db-theses/266 This thesis is brought to you for free and open access by Embry-Riddle Aeronautical University – Daytona Beach at ERAU Scholarly Commons. It has been accepted for inclusion in the Theses - Daytona Beach collection by an authorized administrator of ERAU Scholarly Commons. For more information, please contact [email protected]. Gerald M. Kowalski A Thesis Submitted to the Office of Graduate Programs in Partial Fulfillment of the Requirements for the Degree of Master of Aeronautical Science Embry-Riddle Aeronautical University Daytona Beach, Florida April 1994 UMI Number: EP31963 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. UMI® UMI Microform EP31963 Copyright 2011 by ProQuest LLC All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. -
Bremsstrahlung (Free-Free Emission)
High energy solar/stellar atmospheres Eduard Kontar School of Physics and Astronomy University of Glasgow, UK STFC Summer School, Northumbria University, Sept 11 2017 Lecture outline I) Observations, motivations II) X-ray and emission mechanisms/properties III) Energetic particles from the Sun to the Earth IV) Particle acceleration mechanisms Solar flares and accelerated particles X-ray and radio impact Most GPS receivers in the sunlit hemisphere failed for ~10 minutes. (P. Kintner) at Dec 6th, 2006 (tracking less than 4 s/c) See Gary et al, 2008 Ionising radiation and impact on ionosphere Solar flares: basics rays Solar flares are rapid localised - brightening in the lower X atmosphere. More prominent in X-rays, UV/EUV and radio…. but can be seen from radio to 100 MeV waves radio Particles 1AU Particles Figure from Krucker et al, 2007 Solar Flares: Basics Solar flares are rapid localised brightening in the lower atmosphere. More prominent in X-rays, UV/EUV and radio…. but can be seen from radio to 100 MeV From Battaglia & Kontar, 2011 Energy ~2 1032 ergs From Emslie et al, 2004, 2005 “Standard” model of a solar flare/CME Energy release/acceleration Solar corona T ~ 106 K => 0.1 keV per particle Flaring region T ~ 4x107 K => 3 keV per particle Flare volume 1027 cm3 => (104 km)3 Plasma density 1010 cm-3 Photons up to > 100 MeV Number of energetic electrons 1036 per second Electron energies >10 MeV Proton energies >100 MeV Large solar flare releases about 1032 ergs (about half energy in energetic electrons) 1 megaton of TNT is equal to about 4 x 1022 ergs. -
Space Weather Study Through Analysis of Solar Radio Bursts Detected by a Single Station CALLSTO Spectrometer
https://doi.org/10.5194/angeo-2021-26 Preprint. Discussion started: 7 May 2021 c Author(s) 2021. CC BY 4.0 License. Space Weather Study through Analysis of Solar Radio Bursts detected by a Single Station CALLSTO Spectrometer Theogene Ndacyayisenga1, Ange Cyanthia Umuhire1, Jean Uwamahoro2, and Christian Monstein3 1University of Rwanda, College of Science and Technology, Kigali, Rwanda. 2University of Rwanda, College of Education, P.O. BOX 55, Rwamagana – Rwanda. 3Istituto Ricerche Solari (IRSOL), Università della Svizzera italiana (USI), CH-6605 Locarno-Monti, Switzerland. Correspondence: Theogene Ndacyayisenga ([email protected]) Abstract. This article summarizes the results of an analysis of solar radio bursts detected by the e-Compound Astronomical Low cost Low-frequency Instrument for spectroscopy and Transportable Observatory (e-CALLISTO) spectrometer hosted by the University of Rwanda, College of Education. The data analysed were detected during the first year (2014–2015) of the instrument operation. The Atmospheric Imaging Assembly (AIA) images on board the Solar Dynamics Observatory (SDO) 5 were used to check the location of propagating waves associated with type III radio bursts detected without solar flares. Using quick plots provided by the e-CALLISTO website, we found a total of 202 solar radio bursts detected by the CALLISTO station located in Rwanda. Among them, 5 are type IIs, 175 are type IIIs, and 22 type IVs radio bursts. It is found that all analysed type IIs and 37% of type III bursts are associated with impulsive solar flares while Type IV radio bursts are poorly ∼ associated with flares. Furthermore, all of the analysed type II bursts are associated with CMEs which is consistent with the 10 previous studies, and 44% of type IIIs show association with CMEs. -
Using the SFA Star Charts and Understanding the Equatorial Coordinate System
Using the SFA Star Charts and Understanding the Equatorial Coordinate System SFA Star Charts created by Dan Bruton of Stephen F. Austin State University Notes written by Don Carona of Texas A&M University Last Updated: August 17, 2020 The SFA Star Charts are four separate charts. Chart 1 is for the north celestial region and chart 4 is for the south celestial region. These notes refer to the equatorial charts, which are charts 2 & 3 combined to form one long chart. The star charts are based on the Equatorial Coordinate System, which consists of right ascension (RA), declination (DEC) and hour angle (HA). From the northern hemisphere, the equatorial charts can be used when facing south, east or west. At the bottom of the chart, you’ll notice a series of twenty-four numbers followed by the letter “h”, representing “hours”. These hour marks are right ascension (RA), which is the equivalent of celestial longitude. The same point on the 360 degree celestial sphere passes overhead every 24 hours, making each hour of right ascension equal to 1/24th of a circle, or 15 degrees. Each degree of sky, therefore, moves past a stationary point in four minutes. Each hour of right ascension moves past a stationary point in one hour. Every tick mark between the hour marks on the equatorial charts is equal to 5 minutes. Right ascension is noted in ( h ) hours, ( m ) minutes, and ( s ) seconds. The bright star, Antares, in the constellation Scorpius. is located at RA 16h 29m 30s. At the left and right edges of the chart, you will find numbers marked in degrees (°) and being either positive (+) or negative(-).