Molecular Phylogenetics of Allodapine Bees, with Implications for the Evolution of Sociality and Progressive Rearing

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Phylogenetics of Allodapine Bees, with Implications for the Evolution of Sociality and Progressive Rearing Syst. Biol. 52(1):1–14, 2003 DOI: 10.1080/10635150390132632 Molecular Phylogenetics of Allodapine Bees, with Implications for the Evolution of Sociality and Progressive Rearing MICHAEL P. S CHWARZ,1 NICHOLAS J. BULL,1 AND STEVEN J. B. COOPER2 1School of Biological Sciences, Flinders University, G.P.O. Box 2100, Adelaide, South Australia 5001, Australia 2Evolutionary Biology Unit, South Australian Museum, Adelaide, South Australia 5000, Australia Abstract.—Allodapine bees have long been regarded as providing useful material for examining the origins of social behavior. Previous researchers have assumed that sociality arose within the Allodapini and have linked the evolution of sociality to a transition from mass provisioning to progressive provisioning of brood. Early phylogenetic studies of allodapines were based on morphological and life-history data, but critical aspects of these studies relied on small character sets, where the polarity and coding of characters is problematic. We used nucleotide sequence data from one nuclear and two mitochondrial gene fragments to examine phylogenetic structure among nine allodapine genera. Our data set comprised Downloaded from https://academic.oup.com/sysbio/article/52/1/1/1656919 by guest on 03 October 2021 1,506 nucleotide positions, of which 402 were parsimony informative. Maximum parsimony,log determinant, and maximum likelihood analyses produced highly similar phylogenetic topologies, and all analyses indicated that the tropical African genus Macrogalea was the sister group to all other allodapines. This finding conflicts with that of previous studies, in which Compsomelissa + Halterapis formed the most basal group. Changing the basal node of the Allodapini has major consequences for understanding evolution in this tribe. Our results cast doubt on the previous hypotheses that progressive provisioning and castelike social behavior evolved among lineages leading to the extant allodapine taxa. Instead, our results suggest that mass provisioning in Halterapis is a derived feature and that social behavior is an ancestral trait for all allodapine lineages. The forms of social behavior present in extant allodapines are likely to have resulted from a long evolutionary history, which may help explain the complexity of social traits found in many allodapine bees. [Allodapini; bees; phylogenetics; progressive rearing; social evolution.] Allodapine bees (family Apidae, tribe Allodapini) are concerns the evolution of progressive rearing from a most diverse and abundant in subsaharan Africa, but mass-provisioning ancestor and the consequences of this their distribution extends throughout the Old World scenario for social evolution (Michener, 1974, 1977, 1985, tropical and austral regions, northward into temperate 1990b). Asia Minor, and throughout the southern parts of this On the basis of morphological and brood-rearing region from India eastward (Michener, 1977). This tribe traits, Michener (1974, 1977) and Reyes (1998) suggested of bees is one of the most useful insect groups for exam- that Compsomelissa + Halterapis form the most basal allo- ining the evolution of social behavior because (1) social- dapine group. Halterapis mass provisions eggs once they ity varies widely among species and genera, allowing are laid, and Compsomelissa progressively rears young comparisons at multiple hierarchical levels, (2) there is larvae but mass provisions older larvae. Because bees substantial variation in demographic and ecological fea- in all other extant tribes in the Xylocopinae (Ceratinini, tures that are likely to affect selection on social traits, and Xylocopini, and Manueliini) are mass provisioners, it (3) many species are amenable to large-scale field experi- was thought that Halterapis and Compsomelissa repre- mentation, allowing statistical description of social and sented retention and partial retention, respectively, of a ecological traits (Schwarz et al., 1997, 1998). Allodapine plesiomorphic mass provisioning trait. This scenario is bees differ from all other bees in that for all genera other supported by the fact that in the Ceratinini (the sister than Halterapis, immatures are progressively and com- tribe to the Allodapini) most species remove cell parti- munally reared in undivided tunnels. This method of tions between immatures shortly before or after the pu- rearing leads to quite different selective factors under- pal moult, whereas in the more basal tribes (Manueliini lying sociality than are found for mass provisioning in- and Xylocopini), cell partitions are not removed at all sects (Michener, 1985). Progressive provisioning means or are removed by adults during pollen robbery or cell that immatures are dependent on the continued presence destruction involving nestmate conflict (Velthuis, 1987; of adults for food and protection, and communal rear- Blom and Velthuis, 1988; Hogendoorn and Velthuis, ing means that in multifemale colonies, parental care by 1995). Halterapis + Compsomelissa therefore seemed to mothers cannot be restricted to just their own daughters represent an intermediate stage between mass provision- but is spread to the entire brood within a nest (Schwarz, ing with late disruption of cell partitions, and complete 1988). progressive provisioning. The range in sociality among allodapines has lead In previous studies, the phylogenetic position of Hal- to much speculation on evolutionary transitions in so- terapis + Compsomelissa was based on only a few charac- cial behavior from a phylogenetic perspective. Neville ters, and one of these was the trait of mass provisioning et al. (1998) examined several life-history traits in the itself. However, the trait of mass provisioning as evi- Australian exoneurine genera (Exoneura, Exoneurella, dence for the basal position of Halterapis + Compsomelissa Brevineura, and the parasitic genus Inquilina), and Tierney in the Allodapini is problematic. In all Xylocopinae other et al. (2000) argued that a high level of phylogenetic than allodapines, pollen and nectar are accumulated and conservatism is present in the exoneurine genera for worked into a pollen ball before the egg is laid, whereas several life history traits. However, one of the most in all allodapines, eggs are laid first and then provided important phylogenetic hypotheses for allodapine bees with food. In all allodapines, pollen balls of various sizes 1 2 SYSTEMATIC BIOLOGY VOL. 52 can be provided to larvae and, in Allodapula, can even be TABLE 1. Taxa used in this study and their geographic origin. deposited on eggs (Michener, 1971). Thus, the kind of mass provisioning that occurs in Halterapis need not be Genus Species Collecting locality an intermediate stage between mass provisioning and Exoneura angophorae Dandenong Ranges, Victoria, Australia progressive provisioning, where the major evolutionary robusta Dandenong Ranges, Victoria, Australia Inquilina schwarzi Dandenong Ranges, Victoria, Australia change has simply been loss of cell partitions, but rather dawsoni Dandenong Ranges, Victoria, Australia may be a derived form of the provisioning patterns found Exoneurella tridentata Lake Gilles, South Australia, Australia in other allodapines. setosa Semaphore, South Australia, Australia Progressive provisioning in allodapines has been Brevineura xanthoclypeata Cobboboonee State Forest, Victoria, Australia viewed as an important factor in social evolution. ploratula Lake Gilles, South Australia, Australia Studies by Michener (1971) suggested that sociality in Allodape mucronata Kleinmond, Cape Province, + Halterapis Compsomelissa was either weakly developed South Africa Downloaded from https://academic.oup.com/sysbio/article/52/1/1/1656919 by guest on 03 October 2021 or only involved temporary predispersal assemblages. skaifeorum Kleinmond, Cape Province, In contrast, most other allodapines show more complex South Africa Braunsapis unicolor Lake Gilles, South Australia, Australia forms of sociality, suggesting that the evolution of social- protuberans Great Sandy National Park, ity may be associated with the transition from mass to Queensland, Australia progressive provisioning (Michener, 1985, 1990a). vitrea Soutpansberg Range, South Africa In this study, we used sequence data from one nu- paradoxa Cape St. Francis, Cape Province, South Africa clear and two mitochondrial gene fragments to exam- Compsomelissa borneri Meru National Park, Kenya ine phylogenetic relationships among several key allo- Halterapis nigrinervis Beaufort, Cape Province, South Africa dapine groups. Here, we discuss the implications of our Macrogalea candida Meru National Park, Kenya results for understanding the evolution of progressive zanzibarica Jambiani, Zanzibar Island, Tanzania provisioning and social behavior in these bees. Xylocopa bombylans Kangaroo Island, South Australia, (Lestis) Australia Manuelia postica Pucon, Chile Ceratina japonica Hokkaido, Japan METHODS (Neoceratina) Taxa Used We used 18 allodapine species from Africa and Doyle and Doyle’s (1990) CTAB method. Proteinase K Australia as our ingroup. We did not include repre- sentatives from the Allodapula clade (Michener, 1977) (10 l) was added to the solution prior to incubation at 55C for 2 hr with occasional mixing. DNA pellets because of problems with gene amplification, and we did not have representatives of the middle eastern genus were resuspended in 60 l of Millipore filtered ultrapure Exoneuridia (the nesting and social biology of this group (mq)H2O and stored frozen. A 1:5 dilution in mqH2Oof each DNA sample was used
Recommended publications
  • Sensory and Cognitive Adaptations to Social Living in Insect Societies Tom Wenseleersa,1 and Jelle S
    COMMENTARY COMMENTARY Sensory and cognitive adaptations to social living in insect societies Tom Wenseleersa,1 and Jelle S. van Zwedena A key question in evolutionary biology is to explain the solitarily or form small annual colonies, depending upon causes and consequences of the so-called “major their environment (9). And one species, Lasioglossum transitions in evolution,” which resulted in the pro- marginatum, is even known to form large perennial euso- gressive evolution of cells, organisms, and animal so- cial colonies of over 400 workers (9). By comparing data cieties (1–3). Several studies, for example, have now from over 30 Halictine bees with contrasting levels of aimed to determine which suite of adaptive changes sociality, Wittwer et al. (7) now show that, as expected, occurred following the evolution of sociality in insects social sweat bee species invest more in sensorial machin- (4). In this context, a long-standing hypothesis is that ery linked to chemical communication, as measured by the evolution of the spectacular sociality seen in in- the density of their antennal sensillae, compared with sects, such as ants, bees, or wasps, should have gone species that secondarily reverted back to a solitary life- hand in hand with the evolution of more complex style. In fact, the same pattern even held for the socially chemical communication systems, to allow them to polymorphic species L. albipes if different populations coordinate their complex social behavior (5). Indeed, with contrasting levels of sociality were compared (Fig. whereas solitary insects are known to use pheromone 1, Inset). This finding suggests that the increased reliance signals mainly in the context of mate attraction and on chemical communication that comes with a social species-recognition, social insects use chemical sig- lifestyle indeed selects for fast, matching adaptations in nals in a wide variety of contexts: to communicate their sensory systems.
    [Show full text]
  • Classification of the Apidae (Hymenoptera)
    Utah State University DigitalCommons@USU Mi Bee Lab 9-21-1990 Classification of the Apidae (Hymenoptera) Charles D. Michener University of Kansas Follow this and additional works at: https://digitalcommons.usu.edu/bee_lab_mi Part of the Entomology Commons Recommended Citation Michener, Charles D., "Classification of the Apidae (Hymenoptera)" (1990). Mi. Paper 153. https://digitalcommons.usu.edu/bee_lab_mi/153 This Article is brought to you for free and open access by the Bee Lab at DigitalCommons@USU. It has been accepted for inclusion in Mi by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. 4 WWvyvlrWryrXvW-WvWrW^^ I • • •_ ••^«_«).•>.• •.*.« THE UNIVERSITY OF KANSAS SCIENC5;^ULLETIN LIBRARY Vol. 54, No. 4, pp. 75-164 Sept. 21,1990 OCT 23 1990 HARVARD Classification of the Apidae^ (Hymenoptera) BY Charles D. Michener'^ Appendix: Trigona genalis Friese, a Hitherto Unplaced New Guinea Species BY Charles D. Michener and Shoichi F. Sakagami'^ CONTENTS Abstract 76 Introduction 76 Terminology and Materials 77 Analysis of Relationships among Apid Subfamilies 79 Key to the Subfamilies of Apidae 84 Subfamily Meliponinae 84 Description, 84; Larva, 85; Nest, 85; Social Behavior, 85; Distribution, 85 Relationships among Meliponine Genera 85 History, 85; Analysis, 86; Biogeography, 96; Behavior, 97; Labial palpi, 99; Wing venation, 99; Male genitalia, 102; Poison glands, 103; Chromosome numbers, 103; Convergence, 104; Classificatory questions, 104 Fossil Meliponinae 105 Meliponorytes,
    [Show full text]
  • Development of Native Bees As Pollinators of Vegetable Seed Crops
    Development of native bees as pollinators of vegetable seed crops Dr Katja Hogendoorn The University of Adelaide Project Number: VG08179 VG08179 This report is published by Horticulture Australia Ltd to pass on information concerning horticultural research and development undertaken for the vegetables industry. The research contained in this report was funded by Horticulture Australia Ltd with the financial support of Rijk Zwaan Australia Pty Ltd. All expressions of opinion are not to be regarded as expressing the opinion of Horticulture Australia Ltd or any authority of the Australian Government. The Company and the Australian Government accept no responsibility for any of the opinions or the accuracy of the information contained in this report and readers should rely upon their own enquiries in making decisions concerning their own interests. ISBN 0 7341 2699 9 Published and distributed by: Horticulture Australia Ltd Level 7 179 Elizabeth Street Sydney NSW 2000 Telephone: (02) 8295 2300 Fax: (02) 8295 2399 © Copyright 2011 Horticulture Australia Limited Final Report: VG08179 Development of native bees as pollinators of vegetable seed crops 1 July 2009 – 9 September 2011 Katja Hogendoorn Mike Keller The University of Adelaide HAL Project VG08179 Development of native bees as pollinators of vegetable seed crops 1 July 2009 – 9 September 2011 Project leader: Katja Hogendoorn The University of Adelaide Waite Campus Adelaide SA 5005 e-mail: [email protected] Phone: 08 – 8303 6555 Fax: 08 – 8303 7109 Other key collaborators: Assoc. Prof. Mike Keller, The University of Adelaide Mr Arie Baelde, Rijk Zwaan Australia Ms Lea Hannah, Rijk Zwaan Australia Ir. Ronald Driessen< Rijk Zwaan This report details the research and extension delivery undertaken in the above project aimed at identification of the native bees that contribute to the pollination of hybrid carrot and leek, and at the development of methods to enhance the presence of these bees on the crops and at enabling their use inside greenhouses.
    [Show full text]
  • 12 ESPINOZA.Indd
    FLOWER DAMAGE IN CONTRASTING HABITATS 503 REVISTA CHILENA DE HISTORIA NATURAL Revista Chilena de Historia Natural 85: 503-511, 2012 © Sociedad de Biología de Chile RESEARCH ARTICLE Reproductive consequences of fl ower damage in two contrasting habitats: The case of Viola portalesia (Violaceae) in Chile Consecuencias reproductivas del daño fl oral en dos hábitats contrastantes: el caso de Viola portalesia (Violaceae) en Chile CLAUDIA L. ESPINOZA, MAUREEN MURÚA, RAMIRO O. BUSTAMANTE, VÍCTOR H. MARÍN & RODRIGO MEDEL* 1Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile *Corresponding author: [email protected] ABSTRACT The indirect impact of fl ower herbivory on plant reproduction depends on the pollination environment, particularly on the presence or absence of pollinator species with the ability to discriminate damaged from undamaged fl owers. The change in pollinator assemblages, due to habitat modifi cation, may modify the impact of fl ower herbivory on plant reproductive success. In this work, we evaluate the effect of fl ower herbivory on the seed production of Viola portalesia (Gay) in two contrasting environments, a native and low-disturbed habitat and an extensively transformed habitat characterized by Pinus radiata plantations. Even though the two habitats differed substantially in the composition of pollinator assemblages and visitation rate, the fl ower damage performed on different petals had no impact on seed production neither within nor between habitats, indicating that change in pollinator assemblages have no indirect reproductive impact via discrimination of damaged fl owers. There was a strong habitat effect, however, for seed production, being higher in the pine plantation than in the native habitat.
    [Show full text]
  • Comparative Methods Offer Powerful Insights Into Social Evolution in Bees Sarah Kocher, Robert Paxton
    Comparative methods offer powerful insights into social evolution in bees Sarah Kocher, Robert Paxton To cite this version: Sarah Kocher, Robert Paxton. Comparative methods offer powerful insights into social evolution in bees. Apidologie, Springer Verlag, 2014, 45 (3), pp.289-305. 10.1007/s13592-014-0268-3. hal- 01234748 HAL Id: hal-01234748 https://hal.archives-ouvertes.fr/hal-01234748 Submitted on 27 Nov 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie (2014) 45:289–305 Review article * INRA, DIB and Springer-Verlag France, 2014 DOI: 10.1007/s13592-014-0268-3 Comparative methods offer powerful insights into social evolution in bees 1 2 Sarah D. KOCHER , Robert J. PAXTON 1Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA 2Institute for Biology, Martin-Luther-University Halle-Wittenberg, Halle, Germany Received 9 September 2013 – Revised 8 December 2013 – Accepted 2 January 2014 Abstract – Bees are excellent models for studying the evolution of sociality. While most species are solitary, many form social groups. The most complex form of social behavior, eusociality, has arisen independently four times within the bees.
    [Show full text]
  • (Hymenoptera: Apidae: Xylocopinae: Xylocopini) De La Región Neotropical Biota Colombiana, Vol
    Biota Colombiana ISSN: 0124-5376 [email protected] Instituto de Investigación de Recursos Biológicos "Alexander von Humboldt" Colombia Ospina, Mónica Abejas Carpinteras (Hymenoptera: Apidae: Xylocopinae: Xylocopini) de la Región Neotropical Biota Colombiana, vol. 1, núm. 3, diciembre, 2000, pp. 239-252 Instituto de Investigación de Recursos Biológicos "Alexander von Humboldt" Bogotá, Colombia Disponible en: http://www.redalyc.org/articulo.oa?id=49110307 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto OspinaBiota Colombiana 1 (3) 239 - 252, 2000 Carpenter Bees of the Neotropic - 239 Abejas Carpinteras (Hymenoptera: Apidae: Xylocopinae: Xylocopini) de la Región Neotropical Mónica Ospina Fundación Nova Hylaea, Apartado Aéreo 59415 Bogotá D.C. - Colombia. [email protected] Palabras Clave: Hymenoptera, Apidae, Xylocopa, Abejas Carpinteras, Neotrópico, Lista de Especies Los himenópteros con aguijón conforman el grupo detectable. Son abejas polilécticas, es decir, visitan gran monofilético de los Aculeata o Vespomorpha, que se divide variedad de plantas, algunas de importancia económica en tres superfamilias, una de las cuales comprende las avis- como el maracuyá; sus provisiones son generalmente una pas esfécidas y las abejas (Apoidea). Dentro de las abejas, mezcla firme y seca de polen (Fernández & Nates 1985, Michener (2000) reconoce varias familias, siendo Apidae la Michener et al. 1994, Fernández 1995, Michener 2000). Exis- más grande en número de especies y la más ampliamente te dentro de algunas especies del género una tendencia distribuida.
    [Show full text]
  • Molecular Ecology and Social Evolution of the Eastern Carpenter Bee
    Molecular ecology and social evolution of the eastern carpenter bee, Xylocopa virginica Jessica L. Vickruck, B.Sc., M.Sc. Department of Biological Sciences Submitted in partial fulfillment of the requirements for the degree of PhD Faculty of Mathematics and Science, Brock University St. Catharines, Ontario © 2017 Abstract Bees are extremely valuable models in both ecology and evolutionary biology. Their link to agriculture and sensitivity to climate change make them an excellent group to examine how anthropogenic disturbance can affect how genes flow through populations. In addition, many bees demonstrate behavioural flexibility, making certain species excellent models with which to study the evolution of social groups. This thesis studies the molecular ecology and social evolution of one such bee, the eastern carpenter bee, Xylocopa virginica. As a generalist native pollinator that nests almost exclusively in milled lumber, anthropogenic disturbance and climate change have the power to drastically alter how genes flow through eastern carpenter bee populations. In addition, X. virginica is facultatively social and is an excellent organism to examine how species evolve from solitary to group living. Across their range of eastern North America, X. virginica appears to be structured into three main subpopulations: a northern group, a western group and a core group. Population genetic analyses suggest that the northern and potentially the western group represent recent range expansions. Climate data also suggest that summer and winter temperatures describe a significant amount of the genetic differentiation seen across their range. Taken together, this suggests that climate warming may have allowed eastern carpenter bees to expand their range northward. Despite nesting predominantly in disturbed areas, eastern carpenter bees have adapted to newly available habitat and appear to be thriving.
    [Show full text]
  • Interactions Among Introduced Ungulates, Plants, and Pollinators: a Field Study in the Temperate Forest of the Southern Andes
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2002 Interactions among Introduced Ungulates, Plants, and Pollinators: A Field Study in the Temperate Forest of the Southern Andes Diego P. Vazquez University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Ecology and Evolutionary Biology Commons Recommended Citation Vazquez, Diego P., "Interactions among Introduced Ungulates, Plants, and Pollinators: A Field Study in the Temperate Forest of the Southern Andes. " PhD diss., University of Tennessee, 2002. https://trace.tennessee.edu/utk_graddiss/2169 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Diego P. Vazquez entitled "Interactions among Introduced Ungulates, Plants, and Pollinators: A Field Study in the Temperate Forest of the Southern Andes." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Ecology and Evolutionary Biology. Daniel Simberloff, Major Professor We have read this dissertation and recommend its acceptance: David Buehler, Louis Gross, Jake Welzin Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) To the Graduate Council: I am submitting herewith a dissertation written by Diego P.
    [Show full text]
  • Manuelia Postica, a Solitary Species of the Xylocopinae (Hymenoptera: Apidae)
    NewFlores-Prado Zealand etJournal al.—Manuelia of Zoology, postica 2008,: nesting Vol. 35 :biology, 93–102 life cycle, interactions between females 93 0301–4223/08/3501–93 © The Royal Society of New Zealand 2008 Nesting biology, life cycle, and interactions between females of Manuelia postica, a solitary species of the Xylocopinae (Hymenoptera: Apidae) LUIS FLORES-PRADO1 INTRODUCTION 2 ELIZABETH CHIAPPA The Xylocopinae (Hymenoptera: Apidae) is cur- HERMANN M. NIEMEYER1 rently hypothesised as the sister group to other Api- 1Departamento de Ciencias Ecológicas dae subfamilies (Michener 2000). It has emerged Facultad de Ciencias as a valuable model to study transitions in social Universidad de Chile evolution (e.g., Schwarz et al. 1997, 1998, 2007; Casilla 653 Tierney et al. 2002) because it contains species Santiago, Chile ranging from solitary to social in nesting behaviour [email protected] and social organisation (Michener 2000). In the 2 Xylocopinae, some solitary species exhibit features Instituto de Entomología unusual in non-social life, which have been proposed Universidad Metropolitana de Ciencias de la as prerequisites for evolution to social life (Michener Educación 1974, 2000). Several of such features are related to Casilla 147 nesting biology: (a) protection of immature offspring Santiago, Chile through guarding behaviour by the mother, (b) phy- sical contact between the mother and her developing offspring while she cleans their cells, (c) existence of Abstract The Xylocopinae contains four tribes hibernating assemblages enabling contact between with species which show a range of nesting habits, siblings, and sometimes between siblings and their from solitary to social. The Manueliini is the sister mother, and (d) tolerance between these nestmate group to all other Xylocopine tribes, with one genus, individuals inside the nest (Michener 1969, 1974, Manuelia, of three species found mainly in Chile.
    [Show full text]
  • Cambodian Journal of Natural History
    Cambodian Journal of Natural History Giant ibis census Patterns of salt lick use Protected area revisions Economic contribution of NTFPs New plants, bees and range extensions June 2016 Vol. 2016 No. 1 Cambodian Journal of Natural History ISSN 2226–969X Editors Email: [email protected] • Dr Neil M. Furey, Chief Editor, Fauna & Flora International, Cambodia. • Dr Jenny C. Daltry, Senior Conservation Biologist, Fauna & Flora International, UK. • Dr Nicholas J. Souter, Mekong Case Study Manager, Conservation International, Cambodia. • Dr Ith Saveng, Project Manager, University Capacity Building Project, Fauna & Flora International, Cambodia. International Editorial Board • Dr Stephen J. Browne, Fauna & Flora International, • Dr Sovanmoly Hul, Muséum National d’Histoire Singapore. Naturelle, Paris, France. • Dr Martin Fisher, Editor of Oryx – The International • Dr Andy L. Maxwell, World Wide Fund for Nature, Journal of Conservation, Cambridge, U.K. Cambodia. • Dr L. Lee Grismer, La Sierra University, California, • Dr Brad Pett itt , Murdoch University, Australia. USA. • Dr Campbell O. Webb, Harvard University Herbaria, • Dr Knud E. Heller, Nykøbing Falster Zoo, Denmark. USA. Other peer reviewers for this volume • Prof. Leonid Averyanov, Komarov Botanical Institute, • Neang Thy, Minstry of Environment, Cambodia. Russia. • Dr Nguyen Quang Truong, Institute of Ecology and • Prof. John Blake, University of Florida, USA. Biological Resources, Vietnam. • Dr Stephan Gale, Kadoorie Farm & Botanic Garden, • Dr Alain Pauly, Royal Belgian Institute of Natural Hong Kong. Sciences, Belgium. • Fredéric Goes, Cambodia Bird News, France. • Dr Colin Pendry, Royal Botanical Garden, Edinburgh, • Dr Hubert Kurzweil, Singapore Botanical Gardens, UK. Singapore. • Dr Stephan Risch, Leverkusen, Germany. • Simon Mahood, Wildlife Conservation Society, • Dr Nophea Sasaki, University of Hyogo, Japan.
    [Show full text]
  • Changing Paradigms in Insect Social Evolution: Insights from Halictine and Allodapine Bees
    ANRV297-EN52-07 ARI 18 July 2006 2:13 V I E E W R S I E N C N A D V A Changing Paradigms in Insect Social Evolution: Insights from Halictine and Allodapine Bees Michael P. Schwarz,1 Miriam H. Richards,2 and Bryan N. Danforth3 1School of Biological Sciences, Flinders University, Adelaide S.A. 5001, Australia; email: Michael.Schwarz@flinders.edu.au 2Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; email: [email protected] 3Department of Entomology, Cornell University, Ithaca, New York 14853; email: [email protected] Annu. Rev. Entomol. 2007. 52:127–50 Key Words The Annual Review of Entomology is online at sex allocation, caste determination, phylogenetics, kin selection ento.annualreviews.org This article’s doi: Abstract 10.1146/annurev.ento.51.110104.150950 Until the 1980s theories of social insect evolution drew strongly Copyright c 2007 by Annual Reviews. on halictine and allodapine bees. However, that early work suffered All rights reserved from a lack of sound phylogenetic inference and detailed informa- 0066-4170/07/0107-0127$20.00 tion on social behavior in many critical taxa. Recent studies have changed our understanding of these bee groups in profound ways. It has become apparent that forms of social organization, caste de- termination, and sex allocation are more labile and complex than previously thought, although the terminologies for describing them are still inadequate. Furthermore, the unexpected complexity means that many key parameters in kin selection and reproductive skew models remain unquantified, and addressing this lack of informa- tion will be formidable.
    [Show full text]
  • Journal of Melittology 21:41646
    KU ScholarWorks | http://kuscholarworks.ku.edu Please share your stories about how Open Access to this article benefits you. A new species of the allodapine bee genus Braunsapis from the Central African Republic (Hymenoptera: Apidae) by Michael S. Engel 2013 This is the published version of the article, made available with the permission of the publisher. The original published version can be found at the link below. Engel, Michael S. (2013). A new species of the allodapine bee genus Braunsapis from the Central African Republic (Hymenoptera: Apidae). Journal of Melittology 21:41646. Published version: https://journals.ku.edu/index.php/melittology/ article/view/4609 Terms of Use: http://www2.ku.edu/~scholar/docs/license.shtml KU ScholarWorks is a service provided by the KU Libraries’ Office of Scholarly Communication & Copyright. Journal of Melittology Bee Biology, Ecology, Evolution, & Systematics The latest buzz in bee biology No. 21, pp. 1–7 29 October 2013 A new species of the allodapine bee genus Braunsapis from the Central African Republic (Hymenoptera: Apidae) Michael S. Engel1 Abstract. A new species of the allodapine bee genus Braunsapis Michener (Allodapini: Allodapi- na) is described and figured from a series of females collected in the Central African Republic. Braunsapis maxschwarzi Engel, new species, is similar to B. paradoxa (Strand) from South Africa, both species sharing the concave dorsal surface of the sixth metasomal tergum and the peculiar bifid apical projection of the sixth metasomal sternum. The new species, however, can be distin- guished by the more extensively developed yellow markings of the face, the yellow pronotal lobe, the more shoulder-like posterolateral margins of the sixth tergum [more similar in this regard to B.
    [Show full text]