Index

Numbers are page numbers. Letters f and t refer to a figure or table. absorption coefficient, 214, 221 aircraft safety, 348 absorption cross section, 188 ALEXIS. See Atmospheric absorption line strength, 215 Experiment in Space absorption lines, 214, 215, 218 ALISSA system, 380–381 ACE. See Characterization ALOHA. See Airborne Lidar and Experiment Observations of the Hawaiian additive Gaussian noise approximation Airglow (AGNA), 351 ammonia (NH3), 187, 204 ADEDIS. See Appareil de détection à amplified spontaneous emission (ASE), distance 411 ADM. See Atmospheric Dynamics AMPS payload. See Atmospheric, Mission Magnetospheric and Plasmas in ADN. See Asian Dust Network Space payload Advanced Remote Gaseous Oxides analytic solutions, QSA and, 79–82 Sensor (ARGOS), 197, 198f Ångström exponent, 106, 106t, 115, 192 aerodynamical alignment, 36 angular scattering function, 50, 80 Aerosol Characterization Experiment anti-Stokes , 244, 247, (ACE), 134 248, 283 . See particles APDS. See avalanche photodiodes AGNA. See additive Gaussian noise Appareil de détection à distance approximation (ADEDIS), 204 airborne lidar, 355–358, 360–368 ARGOS. See Advanced Remote Gaseous DIAL and, 357–358 Oxides Sensor history of, 355–358 ARM. See Atmospheric Radiation uses of, 360–363 Measurement Program measurement and, 344–347 AROTEL. See Airborne Raman , Airborne Lidar and Observations of the Aerosol and Lidar Hawaiian Airglow (ALOHA), 363 ASE. See amplified spontaneous emission Airborne Raman Ozone, Aerosol and Asian Dust Network (ADN), 107 Temperature Lidar (AROTEL), 364 ASSESS. See Airborne Science Spacelab Airborne Science Spacelab Experiments Experiments System Simulation System Simulation (ASSESS), 361 asymmetry factor, 80, 85 446 INDEX

ATLID. See Atmospheric Lidar System beam expansion, 4 Atmospheric Dynamics Mission (ADM), BELINDA. See broadband-emission lidar 391 with narrow-band determination of Atmospheric Lidar Experiment in Space absorption (ALEXIS), 359 Bernoulli equation, 45, 111 Atmospheric Lidar System (ATLID), 359 bioaerosol detection, 437–439 Atmospheric, Magnetospheric and Boltzmann distribution, 276, 284, Plasmas in Space (AMPS) payload, 319, 363 358 boundary layer flow, 108, 342f, 343 Atmospheric Radiation Measurement boundary value problem, 86 Program (ARM), 226 Brillouin scattering, 156, 274, 275t, atomic absorption filters, 149–151, 282 276, 402 automotive lighting, 182 broadband-emission lidar with narrow-band determination of absorption (BELINDA), 16, B-spline functions, 122 399–414, 413f Ba, See barium broadening processes, 215, 216, 317, background mode, 130 401, 403–414 backscatter, 8–10, 44, 105–141, 143, butane (C H ), 203 188, 242 4 10 aerosols and, 116, 158f. See also particles Ca. See calcium air molecules and, 10, 143 Cabannes line, 13, 15, 249, 274, 276, 402 attenuated, 158f Cai-Liou model, 66 coefficient, units of, 9 calcium (Ca), 276, 308, 315t, 316 conversion factors, 131 calibration, 155–157, 157f, 258, 286 depolarization and, 24, 30t, 50. See CALIOP. See -Aerosol Lidar with also depolarization Orthogonal Polarization DIAL. See differential absorption lidar CALIPSO mission, 380, 384, 385, 385f, Doppler shifts and, 17 386, 389, 389f, 390 effective, 89–90 CAMEX. See Convection And Moisture efficiency, 120 Experiment elastic, 12–13, 47, 107, 243, 292, 361 carbon dioxide (CO2), 25, 203, 242 equation for, 109–112 carbon monoxide (CO), 187, 203 extinction and, 45, 46, 89, 97, 131, CARL. See Cloud And Radiation Lidar 132f, 136f. See also extinction CART. See And Radiation inelastic. See Raman lidar Testbed lidar equation and, 44. See also lidar CAT. See clear-air turbulence equation ceilometers, 175, 175f, 179, 180f particulate matter and, 10. See also centrifugal distortion constant, 283, 285t particles CERES system, 390 polarization and, 23, 24, 30t, 50. See CH4. See methane also polarization C2H4. See ethylene ratio, 110, 131, 132f, 147, 192, 242, C2H6. See ethane 282, 292 C3H8. See propane rotational Raman method, 281 C4H10. See butane See also scattering; specific systems, Chebyshev particles, 24 parameters chirp, 422–424 backward enhancement, 435f chlorine (Cl2), 196 ballistic trajectories, 436–437 cirrus clouds. See clouds barium (Ba), 149 Cl2. See chlorine base functions, 122, 123 clear-air turbulence (CAT), 348 INDEX 447 climate forcing, 122 Deirmendjian distribution, 96, 171 climate modeling, 106 DEMP. See diethylmethylphosphonate Cloud-Aerosol Lidar with Orthogonal depolarization, 20, 26–33, 51–52, 361 Polarization (CALIOP), 385–386, backscatter and, 24, 30t, 50 388t causes of, 23 Cloud And Radiation Lidar (CARL) 226 circular, 21, 159, 159f clouds, 23, 27–28, 39, 107 cirrus, 37f average reflection, 87 clouds, 22 ceiling, 179–181 linear, 20, 21, 30, 30t, 33, 50, 52 cirrus, 29, 30, 34, 37f, 51, 90, 95 Lorenz-Mie theory, 28 climate and, 28 measures of, 20–23 cumulus, 50 ratio, 34f, 49 dense diffusion, 84–88 rotational Raman signal, 284, 290 detection of, 177–182 York University model, 52 droplets in, 29 See also polarization ice crystals in, 19, 22, 24, 29–31, 35t desert dust, 27 liquid water content, 99 di-isopropylmethylphosphonate LITE and. See Lidar In Space (DIMP), 204 Technology Experiment DIAL. See differential absorption lidar mesospheric, 363 DIAL approximation, 404 mixed phase in, 31 diethylmethylphosphonate (DEMP), 204 noctilucent, 28 differential absorption lidar (DIAL), particles in. See particles 15–16, 39, 187–212, 219, 224, small optical depths, 91 236, 274 stratospheric. See stratospheric clouds absorption lines, 218 subvisual, 34 airborne, 357, 364 temperature measurements in, 274, 292 backscattering and, 192 virtual profiles, 63 BELINDA and, 16, 399–441 and, 165–186 broadening effects, 403–405 water clouds, 28 convection experiment, 234 Clouds And Radiation Testbed (CART), corrections for, 190, 191, 206 226, 227f, 228, 230 data acquisition and, 224 CO. See carbon monoxide differential absorption coefficient, 214 CO2. See carbon dioxide dual, 207 coherent Doppler lidar, 337 equation for, 188, 190, 221 collision broadening, 216, 317, 401–414 extinction and, 190 collision parameters, 61, 216 far-infrared, 203–206 continuous-wave Doppler lidar, 331 guidelines for, 210 contrails, 29 LaRC and, 357, 362, 365–366 Convection And Moisture Experiment LASE and, 234 (CAMEX), 234 MDIAL, 208 convective boundary layer, 108 mid-infrared, 202–203 correction algorithms, 89, 192 model atmosphere, 192, 192f cross sections, 245–252, 284, 310, 311f multi-wavelength, 206–209 cross-sensitivity, 190 ozone and, 357 cross-validation, 126–127 Raman lidar and, 16 crosswinds, 329 scattering and, 407f spectral distribution, 217, 406 DAS lidar. See differential temperature measurement, 236–238, absorption lidar 276, 399 DBS. See Doppler beam swinging scan types of, 196–206 448 INDEX differential absorption lidar EOS. See Earth Observing System (DIAL) (Continued) equivalent radiance, 75–76 ultraviolet, 196–200 equivalent source profile, 76 visible-, 200–202 error amplification, 124 and, 213, 227f, 234, 357, error analysis, 124, 127–128 358, 365, 391, 399, 407f ESA. See European Space Agency wavelengths in, 195, 206, 218. See ethane (C2H6), 206 also specific systems ethylene (C2H4), 204 white-light femtosecond lidar, European Aerosol Research Lidar 399–441 Network (EARLINET), 107, 266 diffraction scattering, 96, 98 European Space Agency (ESA), 107, 218 diffusion limit, 84–88, 99 Experimental Lidar in Space Experiment DIMP. See (ELISE), 359 di-isoproplylmethylphosphonate extinction, 44, 45, 51, 63, 105, 167, 188 direct-detection Doppler lidar, 332–336, air molecules and, 11, 190 334f, 335f, 343 atmospheric, 143 direct-problem model, 90, 96, 98 backscatter ratio, 110, 131, 132f, 192, discrete dipole approximation, 24 242 Doppler beam swinging (DBS) scan, 341 coefficient, 105 Doppler broadening, 156, 215, 276, conversion factors, 131 317, 401 DIAL and, 190. See also DIAL Doppler-free saturated-absorption effective, 74, 89 spectroscopy, 318 efficiencies, 120 Doppler systems, 17, 18 lidar equation and, 10 DBS scan, 341 lidar ratio, 242 shift in, 243, 308, 325 particles and, 11. See also particles wind lidar, 325–354 rotational Raman and, 287f. See also double-cavity etalon, 412 rotational Raman systems drag forces, 32 wavelength-dependent effects, 189 droplets, 29, 430–439 VOR and, 167 dust, 35, 181 See also specific systems extinction-to-backscatter ratio, 120 EARLINET. See European Aerosol Research Lidar Network Fabry-Perot interferometer, 14, 113, Earth Observing System, 358–359, 368, 147–149, 148f, 282, 412 384, 391 fallstreak, 35t eddy-correlation technique, 233 Faraday filter, 313 effective absorption coefficient, 221 Fe. See iron effective cross section, 311f fiber amplifiers, 163 effective extinction, 74, 89 field-of-view range, 95, 98–99 effective medium theorem, 68–78, 92 filamentation, 416–417, 417f, 420 El Chichón, 130 finite difference methods, 24 elastic backscatter, 12–13, 107, 361 fluorescence, 197, 225t, 274, 275t, 276, equation for, 188 307, 317–321, 363, 432–435, lidar system, 12–13, 107 437–439 signal blocking, 299 flux measurement, 85, 197, 204, 205f suppression of, 292 fog, types of, 172f ELISE. See Experimental Lidar in forward propagation problem, 78 Space Experiment Fourier transforms, 74, 77, 86 Eloranta model, 67 fractal particles, 24 entrainment zone, 232 Fraunhofer formula, 94 INDEX 449

Fredholm integral equation, 120 hydrazine, 187 free path length, 61 (HCl), 187, 203 freon, 133, 204 hydrometeors, 20, 21

I . See iodine generalized cross-validation, 126, 127 2 ice, 25f, 29–31, 35t geometrical-optical theory, 24, 96–98 Iceland spar, 19 Geoscience Altimeter System ICESat, 355, 382f, 391 (GLAS), 355, 359, 380, 381, 384t, Imaging Infrared Radiometer (IIR), 385 386, 390 INDOEX. See Indian Ocean Experiment Glan prism, 19, 22 Indian Ocean Experiment (INDOEX), GLAS. See Geoscience Laser Altimeter 132–135, 362 System industrial emissions, 187–212 Global Backscatter Experiment inelastic scattering. See Raman scattering (GLOBE), 362 injection seeding, 224 Global Tropospheric Experiment iron (Fe), 276, 315t, 319, 363 (GTE), 362 integrated water vapor, 228, 229f GLOBE. See Global Backscatter integration-lidar technique, 274, 277–281 Experiment interfering gas, 190, 193 GOES-8 image, 234, 235f internal scattering, 22 graupel, 32 intertropical convergence zone gravity waves, 281, 308 (ITCZ), 372 Green’s function, 69, 72, 74, 77, 84 inverse methods, inverse problems group velocity dispersion (GVD), 424 algorithms for, 120, 192, 405 GTE. See Global Tropospheric base functions, 123 Experiment ill-posed, 121, 122, 128 GVD. See group velocity dispersion influence matrix, 127 iteration and, 96–98 haze, 27 multiple scattering and, 91–100 HCl. See hydrogen chloride random search and, 96 heliports, 183–185 regularization of, 121 heterodyne-detection , 337, 338f variable windows, 123 Hg. See mercury window, 123 high spectral resolution lidar (HSRL), 14, iodine (I2) absorption cells, 150, 151 39, 90, 108, 143–164, 274, 361 iron (Fe), 308, 319, 363 aerosols and, 113 isosbestic point, 145–147, 252f backscattering and, 46 ITCZ. See intertropical convergence zone basic principle of, 145–147 component descriptions, 153t K. See potassium Fabry-Perot systems, 147–149, 148f kernel efficiencies, 120 implementations, 147–151 kernel functions, 65, 120 polarization and, 39 kernel matrix, 127 remote operation, 151–157 Kerr effect, 17, 414–416, 415f temperature measurements, 275t Klett method, 46, 93, 97, 112, 116, 133, UW Arctic HSRL, 151 145, 169, 405 H2O. See water vapor hollow-core fibers, 163 Lagrange multiplier, 126 homogeneous scattering, 404, 407f Large Aperture Scanning Airborne Lidar HSRL. See high spectral resolution lidar (LASAL), 374, 378f hurricanes, 234 LASA. See Lidar Atmospheric Sounder hybrid particle shapes, 24 and Altimeter 450 INDEX

LASAL. See Large Aperture Scanning line-of-sight velocity, 327, 401 Airborne Lidar line shape, 215 LASE. See Lidar Atmospheric Sensing line strength, 215 Experiment linear depolarization, 20, 21, 30, 33 Laser Atmospheric Sensing Experiment liquid water content, 99 (LASE), 234, 235f, 366 LITE. See Lidar In Space Technology Laser Atmospheric Wind Sounder Experiment (LAWS), 359 lithium (Li), 308, 315, 315t Laser Doppler Velocimetry (LDV), local optical oscillator, 336 330–331 logarithmic-normal distribution, 117 laser guide star, 321 Lorenz-Mie theory, 23, 24, 28, 432–435 laser-induced breakdown (LIB), 435f LTV. See laser time-of-flight velocimetry laser time-of-flight velocimetry (LTV), 330 Mars Orbiting Laser Altimeter latent heat flux, 233 (MOLA), 380 LAWS. See Laser Atmospheric Wind maximum-entropy principle, 126 Sounder mass concentration, 181, 190 LDV. See Laser Doppler Velocimetry Maxwell-Boltzmann distribution. See Leonid shower, 363 Boltzmann distribution Li. See lithium Maxwell equations, 59, 417 LIB. See laser-induced breakdown mean free path, 57, 83, 87 Lidar Atmospheric Sensing Experiment melting region, 32 (LASE), 358, 366 mercury (Hg), 187, 196, 197 Lidar Atmospheric Sounder and mesopause region, 17, 274, 308–319, 358 Altimeter (LASA), 358, 359, 366, mesosphere, 275t, 281, 301f, 321 391 metallic layers, 315–316 lidar bright band, 32 meteorological optical range (MOR), lidar dark band, 32, 37 167, 176, 178f lidar equation, 221 methane (CH4), 203, 206, 242, 363 backscatter and, 44. See also MFOV lidar. See multiple-field-of-view backscatter lidar broadening and, 402–403 micropulse lidar, 209 common form of, 11 microwave radar, 20, 21 extinction coefficient and, 10 Mie scattering, 13–14, 29, 49, 118, 130 four factors, 6–11 miniaturized lidar, 183–185 general, 219–221 minimization concept, 124 geometric factor, 8 minimum discrepancy principle, 126, 127 inversion of, 403–405. See inversion minimum distance method, 124 methods minimum range resolution, 189 monochromatic form, 219 mixed-phase clouds, 31 ratio in, 110, 132f, 147, 242, 282, 292 mode radius, 171 rotational Raman, 284 MODIS system, 390 systems factor, 6 MOLA. See Mars Orbiting Laser transmission term, 10 Altimeter Lidar In Space Technology Experiment molecular absorption filters, 149–151 (LITE), 57, 58f, 100, 355, 366, 370, molecular extinction, 192 370f, 371f, 373f, 374f, 389 molecular lidar ratio, 110 lidar ratio, 110 molecular scattering, 26–33. See also limit of detection, 189 specific types Lindenberg Aerosol Characterization Monte Carlo simulations, 60–65, 68, 81, Experiment, 107 88, 96 INDEX 451

MOR. See meteorological optical range Neumann series, 78 MPEF. See multiphoton-excited NEXLASER system, 200 fluorescence NH3. See ammonia MPI. See multiphoton ionization dioxide (NO2), 187, 196–197, Mueller matrix, 60 201–202, 207, 209 multi-dimensional search, 96 nitrogen monoxide (NO), 201 multiangle lidar technique, 108 nitrogen (N2), 216, 242, 245t, 251t, multiphoton-excited fluorescence 282, 283 (MPEF), 432 NO. See nitrogen monoxide multiphoton ionization (MPI), 227f, 228, NO2. See nitrogen dioxide 416, 432 NOAA. See National Oceanic and multiple-field-of-view (MFOV) lidar, 54, Atmospheric Administration 54f, 95, 97, 99, 100 normal visual range, 167 multiple scattering, 14, 26, 29, 48f null profile, 201 bulk properties, 99–100 correction factor, 51 defined, 43 O2. See depolarization, 51–56 O3. See ozone diffusion limit, 84–88, 99–100 O branch, 245 effective values, 91 off-axis lidar, 86 equation for, 96 off-beam effects, 86, 100 field-of-view and, 98 OPAL. See Ozone Profiling Atmospheric inverse problem, 91–100 Lidar lidar and, 43–103 OPO. See optical parametric oscillator models of, 58–89 optical depth, 44, 50, 144, 162f MUSCLE and, 64, 79, 83 optical displays, 36 polarization and, 49 optical , 326–328 pulse stretching, 54, 56, 57 optical parameters, 109–117. See specific radiative transfer, 58–60 types scattering and, 43. See also scattering optical parametric oscillator (OPO), 197, visibility, 173–174 203, 209 Multiple Scattering Lidar Experiments optical reciprocity principle, 70 (MUSCLE), 64, 79, 83 optical thickness, 144, 292 multiwavelength lidar, 119, 131 overlap function, 5, 8, 9f MUSCLE. See Multiple Scattering Lidar oxygen (O2), 203, 214, 216, 217, 236, Experiments 242, 244, 245t, 251t, 252t, 283, 429 ozone (O3), 187, 191–202, 206–208, 262–266, 290, 357, 360, 364, 390 N2. See nitrogen Ozone Profiling Atmospheric Lidar Na. See sodium (OPAL), 197–199 NASA. See National Aeronautics & Space Administration NASDA. See National Space PARASOL system, 390 Development Agency of Japan Parry arc, 36, 37f National Aeronautics & Space Parseval equality, 73, 74 Administration (NASA), 107 particles, 105–141, 161f National Oceanic and Atmospheric ACE and, 134 Administration (NOAA), 343–344 backscatter and, 116, 158f, 161f. See National Space Development Agency of also backscatter Japan (NASDA), 107 bioaerosol detection, 437–439 Network for the Detection of concentration of, 181f Stratospheric Change (NDSC) 266 correction factor, 194f 452 INDEX particles (Continued) plate crystals, 31 effective radius, 117 polar clouds, 27, 282, 360, 362 effective scattering efficiency, 129 polar mesospheric clouds, 357, 363 extinction profiles, 200f, 242 PSCs. Polar Stratospheric Clouds. See graupel, 32 stratospheric clouds inhomogeneous, 24 polarization, 14, 247, 248 inversion methods, 192 backscatter and, 23. See also mean radius, 117 backscatter MPEF and, 432 circular, 19 MPI and, 416, 432 diversity, 39 nonlinear interactions, 430 elliptical, 19 nonspherical, 56 Glan prism and, 19, 22 optical parameters, 109–117 perturbations by, 192 lidar and, 19–42 photons and, 156, 432 linear, 19 pollution and, 187–212. See also multiple scattering and, 49 pollution polarizability, 246, 250 properties of, 106t, 171t refraction and, 19 Raman lidar and. See Raman lidar rotational Raman. See rotational scattering and, 10, 27, 27. See Raman lidar scattering Polarization Diversity Lidar (PDL), 33 shape of, 14 pollution, 187–212, 365. See specific size of, 91, 95–99, 117, 436–437 types, parameters spherical, 26, 432–437 potassium (K), 308, 319 stratospheric, 108, 120–132, 266. See precipitation scattering, 31–33 also stratosphere pressure shift, 216 surface-area concentration, 117 principle-component analysis, 131 tropospheric, 108, 119 projection techniques, 122 types of, 27, 105–106, 112t propane (C3H8), 203, 206 visibility and, 166, 170–173 PRRS. See pure rotational Raman volume concentration, 117 spectrum See also specific types, parameters, pulse length, effective, 7 systems pulse stretching, 54, 56–57, 66 pattern correlation, 329 PDL. See Polarization Diversity Lidar pulsed Doppler lidar, 321–322 penalty function, 124, 125 pump-probe measurements, 436–437 persistent elevated pollution episodes pupil area, 75 (PEPE), 365 pure rotational Raman spectrum (PRRS), phase function, 173f 283–289, 285f phenomenological methods, 64–68 photocycles, 400 photons crystal fibers and, 163 Q branch, 245 fluorescence and, 432 quarter-wave plate, 22 incident, 156 quasi-small-angle (QSA) approximation, ionization and, 227f, 228, 416, 432 68–84 mean free path, 85 analytic solutions and, 79–82 transport length, 87 Neumann series and, 78–79 Pinatubo, 30, 129–130 radiative transfer and, 68–78 Placzek theory, 246 small-angle approximation, 71 plasma generation, 416 two-stream model, 82 INDEX 453 radar bright band, 32 receiver field of view (RFOV), 254 radiance, 59 receiver footprint, 58 conservation and, 59 , 18, 19, 25, 118, 127, 128 conservation of, 59 regularization, 93, 121, 124, 126, 127 definition for, 59 relative , 267, 300 effective, 75, 77 resonance fluorescence lidar, 197, 274, equation for, 59, 71, 78, 84 275t, 276, 307, 309f, 317–320, 363 multiple scattering, 58–60 resonance scattering lidar. See resonance QSA approximation, 68–84 fluorescence lidar radiant intensity, 85 retrieval algorithms, 90–91 radio acoustic sounding system return signals equation, 109–112 (RASS), 233 RFOV. See receiver field of view Radio Science Center for Space and Riccati equation, 45 Atmosphere (RASC), 297, 298f, rotational distortion constant 283, 285t 299f, 302f rotational Raman quantum number, rain, 32, 37, 39 250, 283 Raman lidar, 108, 113, 129, rotational Raman methods, 287f, 296f 241–271, 281 bandwidth and, 294–297 aerosol properties, 112, 112t calibration and, 286, 288 backscatter and, 90, 247–248, 249, center wavelengths, 294–297, 295f 274, 290. See also backscatter cross-section for, 247, 248 calibration, 258 depolarization and, 284 DIAL and, 262–265. See differential extinction, 300 absorption lidar leakage error, 293f equation for, 256 line splitting, 286 Mie scattering and, 12 polarization and, 284 overview of, 242, 243t pressure broadening, 286 ozone and, 262–265, 266 spectrum, 283, 285f rotational. See rotational Raman systems technical implementation, 297–300 scattering and, 12, 13, 26, 47, temperature lidar, 274, 275t, 281, 301f 144–147, 156, 242, 243, 249, 283 troposphere and, 303 simulation, 242 See also specific systems, parameters stratospheric, 266 runway visual range (RVR), 168 temperature and, 15, 275, 281 water vapor and, 256–261, 264, 266 Raman scattering, 4, 15, 191, 242–244, S branch, 245 251, 283–289, 363–364. See also safety, lidar and, 33, 348 scattering SAGE Ozone Loss and Validation random walk, 65 Experiment (SOLVE), 363 randomized-minimization method, 121 SAGE. See Stratospheric Aerosol and range resolution, 189 Gas Experiment RASC. See Radio Science Center for SAM II. See Stratospheric Aerosol Space and Atmosphere Measurement RASS. See radio acoustic sounding Samoilova model, 67 system satellite lidar systems. See spaceborne Rayleigh band, 274 lidar ray-tracing, 24, 29 scaling laws, 90 Rayleigh-Gans theory, 24 scan techniques, 332, 338 Rayleigh lidar, 12, 13, 109, 113, 144, scanning interferometer, 147–148 242, 249–250, 275t, 277–282 scanning lidar technique, 108 454 INDEX scattering standardization methods, 352 aerosol particles, 10 stimulated Raman scattering (SRS), 191 geometrical optics and, 24, 96–98 stochastic methods, 64–68. See also homogeneous, 404 Monte Carlo methods inelastic. See Raman scattering Stokes parameters, 22, 40, 60, 247, 250 inhomogeneous, 404 Stokes vibration-rotation lines, 243, 247, mean free path, 83 250, 283 Mie. See Mie scattering storms, 39 multiple scattering, 43. See multiple stratiform clouds, 88 scattering stratopause region, 282 phase function, 49, 59 Stratospheric Aerosol and Gas Raman. See Raman scattering Experiment (SAGE), 356–357, small-angle, 57, 80, 71. See also QSA 361, 363 approximation stratospheric aerosol, 107 Schrödinger equation, 417–418 stratospheric aerosol model, 130 sea-salt particles, 105 Stratospheric Aerosol Measurement-II self-calibration, 188 (SAM II), 356–357, 361 self-focusing, 414 stratospheric clouds, 27, 129–132, 266, self-guided propagation, 416 274, 275t, 282, 357–362 self-phase modulation (SPM), 319, 419 sulfur dioxide (SO2), 187, 191, 193, 196, single-scattering albedo, 106t, 122, 197, 202, 207, 208, 242 134, 134f sulfuric acid, 130 size parameter, 24 sun photometer, 118 slant optical range (SOR), 168, 177, supercontinuum, 419, 428, 431 177f, 178f surface-area concentration, 117 slant visual range (SVR), 168 surface tension, 32 small-angle scattering, 57, 80, 71. See SVR. See slant visual range also QSA approximation smoothing, 125, 126f T-matrix approach, 24, 25 smoothness, 135 TARFOX. See Tropospheric Aerosol snowflakes, 32 Radiative Forcing Observational SO2. See sulphur dioxide Experiment sodium (Na), 308–315, 311f, 312f, 314t, temperature measurements, 236–238, 315t, 317, 319, 319f 273–305, 399, 429 SOLVE-2. See SAGE Ozone Loss and Boltzmann distribution, 284, 319, Validation Experiment 363, 429 soot, 105, 106 integration technique, 274, 277, 301f SOR. See slant optical range mesopause, 275t, 317–320 Space Laser Applications and mesosphere, 275t, 277, 301f Technology (SPLAT), 358 Raman lidar and, 15, 274, 275t Space Shuttle, 2 rotational Raman and, 274, spaceborne lidar, 358–360, 368–391 281–297, 295f spectral impurity, 223. See also amplifued stratosphere, 275t, 277, 301f spontaneous emission (ASE) troposphere, 275t, 281, 301f specular reflection, 26 temporal focusing, 424 spherical particles, 53, 432–439 Teramobile system, 421–430, 432f SPLAT. See Space Laser Applications terawatt measurements, 423–430 and Technology thermosphere, 274, 276 SPM. See self-phase modulation, 319 thunderstorms, 33 sporadic layers, 314f trichloroethane, 204 SRS. See stimulated Raman scattering trichloroethylene, 204 INDEX 455 triethylphosphate, 204 wake vortices, 347–348, 347f troposhpere, 119–129, 266, 275t, 282 water vapor (H2O), 204, 207, 217, 231f, Tropospheric Aerosol Radiative Forcing 235f, 242, 251, 252t, 357, 360, 365, Observational Experiment 399, 407, 429 (TARFOX), 362, 366 airborne profiling, 234–236 truncated singular value clouds and, 28–29, 264 decomposition, 126 DIAL and, 213, 227f, 234, 357, 358, turbulence, 83, 226, 230–233, 342 365, 391 two-flux model, 82 droplets in, 32 two-laser system, 201 ice, 29–31 integrated, 228, 229f unscattered radiance, 79 measurement of, 256–261 urban areas, 193 mixing ratio, 257 UW HSRL, 151, 157 pressure, 216 probability distribution, 232t rain, 32 VAD. See velocity-azimuth display Raman lidar and, 252, 261f, 266 variance spectrum, 62, 227, 227f rotational Raman methods, 300 velocity-azimuth display (VAD), 339, variance spectrum, 227f 339f, 340f weather forecasting, 352 vertical optical range (VOR), 167 weather modification, 31 vibration-rotation Raman backscattering, weight factors, 124 247, 248, 275t Weinman model, 78–79 virga, 31, 36 white-light lidar, 16, 414–430 virtual experiments, 63–64. See Monte wide-field camera, 385 Carlo methods Wind Infrared Doppler (WIND) system, virtual instrument, 350 344, 346f visibility wind lidar aerosol distributions and, 166, airborne systems, 344–347 170–173 crosswind determination, 329 cloud lidar and, 165–186 Doppler systems, 325–354 multiple scattering and, 173–174 double-edge technique, 335 visual range, 166–167 scan techniques, 332 Voigt function, 215, 217 WIND system, 344, 346f volcanic eruptions, 2, 135, 361 wind power stations, 349 volume concentrations, 30, 117, 130, 135–138 VOR. See vertical optical range York University model, 52 Springer Series in OPTICAL SCIENCES

94 Photonic Crystals Physics, Fabrication and Applications By K. Inoue, K. Ohtaka (Eds.), 2004,209 figs., XV, 320 pages 95 Ultrafast Optics IV Selected Contributions to the 4th International Conference on Ultrafast Optics, Vienna, Austria By F. Krausz, G. Korn, P. Corkum, I.A. Walmsley (Eds.), 2004,281 figs., XIV, 506 pages 96 Progress in Nano-Electro Optics 111 Industrial Applications and Dynamics of the Nano-Optical System By M. Ohtsu (Ed.), 2004,186 figs., 8 tabs., XIV, 224 pages 97 Microoptics From Technology to Applications By J. Jahns, K.-H. Brenner, 2004,303 figs., XI, 335 pages 98 X-Ray Optics High-Energy-Resolution Applications By Y. Shvyd'ko, 2004,181 figs., XIV, 404 pages gy Few-Cycle Photonics and Optical Scanning Tunneling Microscopy Route to Femtosecond Angstrom Technology By M. Yamashita, H. Shigekawa, R. Morita (Eds.) 2005,241 figs., XX, 393 pages loo Quantum Interference and Coherence Theory and Experiments By 2. Ficek and S. Swain, 2005,178 figs., approx. 432 pages

101 Polarization Optics in Telecommunications By J. Damask, 2005,110 figs, XVI, 528 pages ioz Lidar Range-Resolved Optical of the Atmosphere By C. Weitkamp (Ed.), 161 figs., approx. 416 pages 103 Optical Fiber Fusion Splicing By A. D. Yablon, 2005, loo figs., approx. 300 pages 104 Optoelectronics of Molecules and Polymers By A. Moliton, 2005,200 figs., approx 460 pages 105 Solid-State Random By M. Noginov, 2005,149 figs., approx. 380 pages 106 Coherent Sources of XUV Radiation Soft X-Ray Lasers and High-Order Harmonic Generation By P. JaeglC, 2005,150 figs., approx. 264 pages 107 Optical Frequency-Modulated Continuous-Wave (FMCW) Interferometry By J. Zheng, 2005,137 figs., approx. 250 pages 108 Laser Resonators and Beam Propagation Fundamentals, Advanced Concepts and Applications By N. Hodgson and H. Weber, 2005,497 figs., approx. 790 pages