Design of a Direct-Detection Wind and Aerosol Lidar for Mars Orbit
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Toward Non-Invasive Measurement of Atmospheric Temperature Using Vibro-Rotational Raman Spectra of Diatomic Gases
remote sensing Article Toward Non-Invasive Measurement of Atmospheric Temperature Using Vibro-Rotational Raman Spectra of Diatomic Gases Tyler Capek 1,*,† , Jacek Borysow 1,† , Claudio Mazzoleni 1,† and Massimo Moraldi 2,† 1 Department of Physics, Michigan Technological University, Houghton, MI 49931, USA; [email protected] (J.B.); [email protected] (C.M.) 2 Dipartimento di Fisica e Astronomia, Universita’ degli Studi di Firenze, via Sansone 1, I-50019 Sesto Fiorentino, Italy; massimo.moraldi@fi.infn.it * Correspondence: [email protected] † These authors contributed equally to this work. Received: 8 October 2020; Accepted: 15 December 2020; Published: 17 December 2020 Abstract: We demonstrate precise determination of atmospheric temperature using vibro-rotational Raman (VRR) spectra of molecular nitrogen and oxygen in the range of 292–293 K. We used a continuous wave fiber laser operating at 10 W near 532 nm as an excitation source in conjunction with a multi-pass cell. First, we show that the approximation that nitrogen and oxygen molecules behave like rigid rotors leads to erroneous derivations of temperature values from VRR spectra. Then, we account for molecular non-rigidity and compare four different methods for the determination of air temperature. Each method requires no temperature calibration. The first method involves fitting the intensity of individual lines within the same branch to their respective transition energies. We also infer temperature by taking ratios of two isolated VRR lines; first from two lines of the same branch, and then one line from the S-branch and one from the O-branch. Finally, we take ratios of groups of lines. -
CHAPTER CONTENTS Page CHAPTER 5
CHAPTER CONTENTS Page CHAPTER 5. SPECIAL PROFILING TECHNIQUES FOR THE BOUNDARY LAYER AND THE TROPOSPHERE .............................................................. 640 5.1 General ................................................................... 640 5.2 Surface-based remote-sensing techniques ..................................... 640 5.2.1 Acoustic sounders (sodars) ........................................... 640 5.2.2 Wind profiler radars ................................................. 641 5.2.3 Radio acoustic sounding systems ...................................... 643 5.2.4 Microwave radiometers .............................................. 644 5.2.5 Laser radars (lidars) .................................................. 645 5.2.6 Global Navigation Satellite System ..................................... 646 5.2.6.1 Description of the Global Navigation Satellite System ............. 647 5.2.6.2 Tropospheric Global Navigation Satellite System signal ........... 648 5.2.6.3 Integrated water vapour. 648 5.2.6.4 Measurement uncertainties. 649 5.3 In situ measurements ....................................................... 649 5.3.1 Balloon tracking ..................................................... 649 5.3.2 Boundary layer radiosondes .......................................... 649 5.3.3 Instrumented towers and masts ....................................... 650 5.3.4 Instrumented tethered balloons ....................................... 651 ANNEX. GROUND-BASED REMOTE-SENSING OF WIND BY HETERODYNE PULSED DOPPLER LIDAR ................................................................ -
Martian Crater Morphology
ANALYSIS OF THE DEPTH-DIAMETER RELATIONSHIP OF MARTIAN CRATERS A Capstone Experience Thesis Presented by Jared Howenstine Completion Date: May 2006 Approved By: Professor M. Darby Dyar, Astronomy Professor Christopher Condit, Geology Professor Judith Young, Astronomy Abstract Title: Analysis of the Depth-Diameter Relationship of Martian Craters Author: Jared Howenstine, Astronomy Approved By: Judith Young, Astronomy Approved By: M. Darby Dyar, Astronomy Approved By: Christopher Condit, Geology CE Type: Departmental Honors Project Using a gridded version of maritan topography with the computer program Gridview, this project studied the depth-diameter relationship of martian impact craters. The work encompasses 361 profiles of impacts with diameters larger than 15 kilometers and is a continuation of work that was started at the Lunar and Planetary Institute in Houston, Texas under the guidance of Dr. Walter S. Keifer. Using the most ‘pristine,’ or deepest craters in the data a depth-diameter relationship was determined: d = 0.610D 0.327 , where d is the depth of the crater and D is the diameter of the crater, both in kilometers. This relationship can then be used to estimate the theoretical depth of any impact radius, and therefore can be used to estimate the pristine shape of the crater. With a depth-diameter ratio for a particular crater, the measured depth can then be compared to this theoretical value and an estimate of the amount of material within the crater, or fill, can then be calculated. The data includes 140 named impact craters, 3 basins, and 218 other impacts. The named data encompasses all named impact structures of greater than 100 kilometers in diameter. -
Fraunhofer Lidar Prototype in the Green Spectral Region for Atmospheric Boundary Layer Observations
Remote Sens. 2013, 5, 6079-6095; doi:10.3390/rs5116079 OPEN ACCESS Remote Sensing ISSN 2072-4292 www.mdpi.com/journal/remotesensing Article Fraunhofer Lidar Prototype in the Green Spectral Region for Atmospheric Boundary Layer Observations Songhua Wu *, Xiaoquan Song and Bingyi Liu Ocean Remote Sensing Institute, Ocean University of China, 238 Songling Road, Qingdao 266100, China; E-Mails: [email protected] (X.S.); [email protected] (B.L.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +86-532-6678-2573. Received: 8 October 2013; in revised form: 27 October 2013 / Accepted: 13 November 2013 / Published: 18 November 2013 Abstract: A lidar detects atmospheric parameters by transmitting laser pulse to the atmosphere and receiving the backscattering signals from molecules and aerosol particles. Because of the small backscattering cross section, a lidar usually uses the high sensitive photomultiplier and avalanche photodiode as detector and uses photon counting technology for collection of weak backscatter signals. Photon Counting enables the capturing of extremely weak lidar return from long distance, throughout dark background, by a long time accumulation. Because of the strong solar background, the signal-to-noise ratio of lidar during daytime could be greatly restricted, especially for the lidar operating at visible wavelengths where solar background is prominent. Narrow band-pass filters must therefore be installed in order to isolate solar background noise at wavelengths close to that of the lidar receiving channel, whereas the background light in superposition with signal spectrum, limits an effective margin for signal-to-noise ratio (SNR) improvement. This work describes a lidar prototype operating at the Fraunhofer lines, the invisible band of solar spectrum, to achieve photon counting under intense solar background. -
Pro.Ffress D &Dentsdc Raddo
Pro.ffress d_ &dentSdc Raddo FIFTEENTH GENERAL ASSEMBLY OF THE INTERNATIONAL SCIENTIFIC RADIO UNION September 5-15, 1966 Munich, Germany REPORT OF THE U.S.A. NATIONAL COMMITTEE OF THE INTERNATIONAL SCIENTIFIC RADIO UNION Publication 1468 NATIONAL ACADEMY OF SCIENCES NATIONAL RESEARCH COUNCIL Washington, D.C. 1966 Library of Congress Catalog Card No. 55-31605 Available from Printing and Publishing Office National Academy of Sciences 2101 Constitution Avenue Washington, D.C. 20418 Price: $10.00 October28,1966 Dear Dr. Seitz: I ampleasedto transmitherewitha full report to the NationalAcademy of Sciences--NationalResearchCouncil,onthe 15thGeneralAssemblyof URSIwhichwasheldin Munich,September5-15, 1966. TheUnitedStatesNationalCommitteeof URSIhasparticipatedin the affairs of the Unionfor forty-five years. It hashadmuchinfluenceonthe Unionas,.for example,in therecent creationof a Commissiononthe Mag- netosphere.ThisnewCommission,whichis nowvery strong,demonstrates the ability of theUnion,oneof ICSU'sthree oldest,to respondto the changingneedsof its field. AlthoughtheUnitedStatessendsthelargest delegationsof anycountry to the GeneralAssembliesof URSI,theyare neverthelessrelatively small becauseof thestrict mannerin whichURSIcontrolsthe size of its Assem- blies. This is donein order to preventineffectivenessthroughuncontrolled participationbyvery largenumbersof delegates.Accordingly,our delega- tions are carefully selected,andcomprisepeoplequalifiedto prepareand presentour NationalReportto the Assembly.Thepre-Assemblyreport is a report of progressin -
Observations of Atmospheric Aerosol and Cloud Using a Polarized Micropulse Lidar in Xi’An, China
atmosphere Article Observations of Atmospheric Aerosol and Cloud Using a Polarized Micropulse Lidar in Xi’an, China Chao Chen 1,2,3,4, Xiaoquan Song 1,* , Zhangjun Wang 1,2,3,4,*, Wenyan Wang 5, Xiufen Wang 2,3,4, Quanfeng Zhuang 2,3,4, Xiaoyan Liu 1,2,3,4 , Hui Li 2,3,4, Kuntai Ma 1, Xianxin Li 2,3,4, Xin Pan 2,3,4, Feng Zhang 2,3,4, Boyang Xue 2,3,4 and Yang Yu 2,3,4 1 College of Information Science and Engineering, Ocean University of China, Qingdao 266100, China; [email protected] (C.C.); [email protected] (X.L.); [email protected] (K.M.) 2 Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao 266100, China; [email protected] (X.W.); [email protected] (Q.Z.); [email protected] (H.L.); [email protected] (X.L.); [email protected] (X.P.); [email protected] (F.Z.); [email protected] (B.X.); [email protected] (Y.Y.) 3 Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, Qingdao 266100, China 4 National Engineering and Technological Research Center of Marine Monitoring Equipment, Qingdao 266100, China 5 Xi’an Meteorological Bureau of Shanxi Province, Xi’an 710016, China; [email protected] * Correspondence: [email protected] (X.S.); [email protected] (Z.W.) Abstract: A polarized micropulse lidar (P-MPL) employing a pulsed laser at 532 nm was developed by the Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy Citation: Chen, C.; Song, X.; Wang, of Sciences). -
Mighty Eagle: the Development and Flight Testing of an Autonomous Robotic Lander Test Bed
Mighty Eagle: The Development and Flight Testing of an Autonomous Robotic Lander Test Bed Timothy G. McGee, David A. Artis, Timothy J. Cole, Douglas A. Eng, Cheryl L. B. Reed, Michael R. Hannan, D. Greg Chavers, Logan D. Kennedy, Joshua M. Moore, and Cynthia D. Stemple PL and the Marshall Space Flight Center have been work- ing together since 2005 to develop technologies and mission concepts for a new generation of small, versa- tile robotic landers to land on airless bodies, including the moon and asteroids, in our solar system. As part of this larger effort, APL and the Marshall Space Flight Center worked with the Von Braun Center for Science and Innovation to construct a prototype monopropellant-fueled robotic lander that has been given the name Mighty Eagle. This article provides an overview of the lander’s architecture; describes the guidance, navi- gation, and control system that was developed at APL; and summarizes the flight test program of this autonomous vehicle. INTRODUCTION/PROJECT BACKGROUND APL and the Marshall Space Flight Center (MSFC) technology risk-reduction efforts, illustrated in Fig. 1, have been working together since 2005 to develop have been performed to explore technologies to enable technologies and mission concepts for a new genera- low-cost missions. tion of small, autonomous robotic landers to land on As part of this larger effort, MSFC and APL also airless bodies, including the moon and asteroids, in our worked with the Von Braun Center for Science and solar system.1–9 This risk-reduction effort is part of the Innovation (VCSI) and several subcontractors to con- Robotic Lunar Lander Development Project (RLLDP) struct the Mighty Eagle, a prototype monopropellant- that is directed by NASA’s Planetary Science Division, fueled robotic lander. -
Heart Land Damian Elwes Damian Elwes Heart Land
Cover: Blue Wind (detail), 2011 mixed media on canvas 107 x 168 cm First published in 2011 by Agent Morton Ltd www.agentmorton.com All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electrical, mechanical or otherwise, without first seeking the permission of the copyright owners and the publishers. All images in this catalogue are protected by copyright and should not be reproduced without permission of the copyright holder. Details of the copyright holder to be obtained from Agent Morton Ltd. Tel: +44 207 409 1395 Copyright 2011 Agent Morton Ltd 32 Dover Street, W1S 4NE Designed and produced in the UK by Footprint. www.fpiltd.com www.agentmorton.com HEART LAND DAMIAN ELWES DAMIAN ELWES HEART LAND 20 June - 29 July 2011 Tel: +44 207 409 1395 32 Dover Street, W1S 4NE www.agentmorton.com HEART LAND Unlike Gauguin, when Damian Elwes left ‘civilization’ to find his personal Garden of Eden and live in tropical, colour-saturated, visceral nature, he took his wife with him. At their home on a little coffee farm on the edge of the Colombian rainforest, Elwes painted dioramas of the forest in an attempt to express our deep connection to the natural world. He also made endless nude drawings of his wife. It was a response to seeing Lewanne so profoundly immersed in her environment, he says, a desire to record the naturalness and sense of freedom she exhibited by walking around naked. It began to occur to him that women are so fundamentally connected to nature, through their physiological and mythical relationship to the moon and in motherhood, that they more perfectly embody this connectivity than a tree or a mountain. -
Art-Related Archival Materials in the Chicago Area
ART-RELATED ARCHIVAL MATERIALS IN THE CHICAGO AREA Betty Blum Archives of American Art American Art-Portrait Gallery Building Smithsonian Institution 8th and G Streets, N.W. Washington, D.C. 20560 1991 TRUSTEES Chairman Emeritus Richard A. Manoogian Mrs. Otto L. Spaeth Mrs. Meyer P. Potamkin Mrs. Richard Roob President Mrs. John N. Rosekrans, Jr. Richard J. Schwartz Alan E. Schwartz A. Alfred Taubman Vice-Presidents John Wilmerding Mrs. Keith S. Wellin R. Frederick Woolworth Mrs. Robert F. Shapiro Max N. Berry HONORARY TRUSTEES Dr. Irving R. Burton Treasurer Howard W. Lipman Mrs. Abbott K. Schlain Russell Lynes Mrs. William L. Richards Secretary to the Board Mrs. Dana M. Raymond FOUNDING TRUSTEES Lawrence A. Fleischman honorary Officers Edgar P. Richardson (deceased) Mrs. Francis de Marneffe Mrs. Edsel B. Ford (deceased) Miss Julienne M. Michel EX-OFFICIO TRUSTEES Members Robert McCormick Adams Tom L. Freudenheim Charles Blitzer Marc J. Pachter Eli Broad Gerald E. Buck ARCHIVES STAFF Ms. Gabriella de Ferrari Gilbert S. Edelson Richard J. Wattenmaker, Director Mrs. Ahmet M. Ertegun Susan Hamilton, Deputy Director Mrs. Arthur A. Feder James B. Byers, Assistant Director for Miles Q. Fiterman Archival Programs Mrs. Daniel Fraad Elizabeth S. Kirwin, Southeast Regional Mrs. Eugenio Garza Laguera Collector Hugh Halff, Jr. Arthur J. Breton, Curator of Manuscripts John K. Howat Judith E. Throm, Reference Archivist Dr. Helen Jessup Robert F. Brown, New England Regional Mrs. Dwight M. Kendall Center Gilbert H. Kinney Judith A. Gustafson, Midwest -
Institute of Fine Arts Alumni Newsletter, Number 55, Fall 2020
Number 55 – Fall 2020 NEWSLETTERAlumni PatriciaEichtnbaumKaretzky andZhangEr Neoclasicos rnE'-RTISTREINVENTiD,1~1-1= THEME""'lLC.IIEllMNICOLUCTION MoMA Ano M. Franco .. ..H .. •... 1 .1 e-i =~-:.~ CALLi RESPONSE Nyu THE INSTITUTE Published by the Alumni Association of II IOF FINE ARTS 1 Contents Letter from the Director In Memoriam ................. .10 The Year in Pictures: New Challenges, Renewed Commitments, Alumni at the Institute ..........16 and the Spirit of Community ........ .3 Iris Love, Trailblazing Archaeologist 10 Faculty Updates ...............17 Conversations with Alumni ....... .4 Leatrice Mendelsohn, Alumni Updates ...............22 The Best Way to Get Things Done: Expert on Italian Renaissance An Interview with Suzanne Deal Booth 4 Art Theory 11 Doctors of Philosophy Conferred in 2019-2020 .................34 The IFA as a Launching Pad for Seventy Nadia Tscherny, Years of Art-Historical Discovery: Expert in British Art 11 Master of Arts and An Interview with Jack Wasserman 6 Master of Science Dual-Degrees Dora Wiebenson, Conferred in 2019-2020 .........34 Zainab Bahrani Elected to the American Innovative, Infuential, and Academy of Arts and Sciences .... .8 Prolifc Architectural Historian 14 Masters Degrees Conferred in 2019-2020 .................34 Carolyn C Wilson Newmark, Noted Scholar of Venetian Art 15 Donors to the Institute, 2019-2020 .36 Institute of Fine Arts Alumni Association Offcers: Alumni Board Members: Walter S. Cook Lecture Susan Galassi, Co-Chair President Martha Dunkelman [email protected] and William Ambler [email protected] Katherine A. Schwab, Co-Chair [email protected] Matthew Israel [email protected] [email protected] Yvonne Elet Vice President Gabriella Perez Derek Moore Kathryn Calley Galitz [email protected] Debra Pincus [email protected] Debra Pincus Gertje Utley Treasurer [email protected] Newsletter Lisa Schermerhorn Rebecca Rushfeld Reva Wolf, Editor Lisa.Schermerhorn@ [email protected] [email protected] kressfoundation.org Katherine A. -
Sea Surface Wind Speed Estimation from Space-Based Lidar Measurements Y
Sea surface wind speed estimation from space-based lidar measurements Y. Hu, K. Stamnes, M. Vaughan, Jacques Pelon, C. Weimer, D. Wu, M. Cisewski, W. Sun, P. Yang, B. Lin, et al. To cite this version: Y. Hu, K. Stamnes, M. Vaughan, Jacques Pelon, C. Weimer, et al.. Sea surface wind speed estimation from space-based lidar measurements. Atmospheric Chemistry and Physics, European Geosciences Union, 2008, 8, pp.3593-3601. hal-00328304v2 HAL Id: hal-00328304 https://hal.archives-ouvertes.fr/hal-00328304v2 Submitted on 20 May 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Atmos. Chem. Phys., 8, 3593–3601, 2008 www.atmos-chem-phys.net/8/3593/2008/ Atmospheric © Author(s) 2008. This work is distributed under Chemistry the Creative Commons Attribution 3.0 License. and Physics Sea surface wind speed estimation from space-based lidar measurements Y. Hu1, K. Stamnes2, M. Vaughan1, J. Pelon3, C. Weimer4, D. Wu5, M. Cisewski1, W. Sun1, P. Yang6, B. Lin1, A. Omar1, D. Flittner1, C. Hostetler1, C. Trepte1, D. Winker1, G. Gibson1, and M. Santa-Maria1 1Climate Science Branch, NASA Langley Research Center, Hampton, VA, USA 2Dept. -
PROJECT PENGUIN Robotic Lunar Crater Resource Prospecting VIRGINIA POLYTECHNIC INSTITUTE & STATE UNIVERSITY Kevin T
PROJECT PENGUIN Robotic Lunar Crater Resource Prospecting VIRGINIA POLYTECHNIC INSTITUTE & STATE UNIVERSITY Kevin T. Crofton Department of Aerospace & Ocean Engineering TEAM LEAD Allison Quinn STUDENT MEMBERS Ethan LeBoeuf Brian McLemore Peter Bradley Smith Amanda Swanson Michael Valosin III Vidya Vishwanathan FACULTY SUPERVISOR AIAA 2018 Undergraduate Spacecraft Design Dr. Kevin Shinpaugh Competition Submission i AIAA Member Numbers and Signatures Ethan LeBoeuf Brian McLemore Member Number: 918782 Member Number: 908372 Allison Quinn Peter Bradley Smith Member Number: 920552 Member Number: 530342 Amanda Swanson Michael Valosin III Member Number: 920793 Member Number: 908465 Vidya Vishwanathan Dr. Kevin Shinpaugh Member Number: 608701 Member Number: 25807 ii Table of Contents List of Figures ................................................................................................................................................................ v List of Tables ................................................................................................................................................................vi List of Symbols ........................................................................................................................................................... vii I. Team Structure ........................................................................................................................................................... 1 II. Introduction ..............................................................................................................................................................