CURRICULUM VITAE Bradley J
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Meteorites on Mars Observed with the Mars Exploration Rovers C
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113, E06S22, doi:10.1029/2007JE002990, 2008 Meteorites on Mars observed with the Mars Exploration Rovers C. Schro¨der,1 D. S. Rodionov,2,3 T. J. McCoy,4 B. L. Jolliff,5 R. Gellert,6 L. R. Nittler,7 W. H. Farrand,8 J. R. Johnson,9 S. W. Ruff,10 J. W. Ashley,10 D. W. Mittlefehldt,1 K. E. Herkenhoff,9 I. Fleischer,2 A. F. C. Haldemann,11 G. Klingelho¨fer,2 D. W. Ming,1 R. V. Morris,1 P. A. de Souza Jr.,12 S. W. Squyres,13 C. Weitz,14 A. S. Yen,15 J. Zipfel,16 and T. Economou17 Received 14 August 2007; revised 9 November 2007; accepted 21 December 2007; published 18 April 2008. [1] Reduced weathering rates due to the lack of liquid water and significantly greater typical surface ages should result in a higher density of meteorites on the surface of Mars compared to Earth. Several meteorites were identified among the rocks investigated during Opportunity’s traverse across the sandy Meridiani plains. Heat Shield Rock is a IAB iron meteorite and has been officially recognized as ‘‘Meridiani Planum.’’ Barberton is olivine-rich and contains metallic Fe in the form of kamacite, suggesting a meteoritic origin. It is chemically most consistent with a mesosiderite silicate clast. Santa Catarina is a brecciated rock with a chemical and mineralogical composition similar to Barberton. Barberton, Santa Catarina, and cobbles adjacent to Santa Catarina may be part of a strewn field. Spirit observed two probable iron meteorites from its Winter Haven location in the Columbia Hills in Gusev Crater. -
Performance and Contributions of the Green Industry to Utah's Economy
Utah State University DigitalCommons@USU All Graduate Plan B and other Reports Graduate Studies 5-2021 Performance and Contributions of the Green Industry to Utah's Economy Lara Gale Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/gradreports Part of the Regional Economics Commons Recommended Citation Gale, Lara, "Performance and Contributions of the Green Industry to Utah's Economy" (2021). All Graduate Plan B and other Reports. 1551. https://digitalcommons.usu.edu/gradreports/1551 This Report is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Plan B and other Reports by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. PERFORMANCE AND CONTRIBUTIONS OF THE GREEN INDUSTRY TO UTAH’S ECONOMY by Lara Gale A research paper submitted in the partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Applied Economics Approved: ____________________________ ______________________________ Man Keun Kim, Ph.D. Ruby Ward, Ph.D. Major Professor Committee Member ____________________________ Larry Rupp, Ph.D. Committee Member UTAH STATE UNIVERSITY Logan, Utah 2021 ii ABSTRACT PERFORMANCE AND CONTRIBUTIONS OF THE GREEN INDUSTRY TO UTAH’S ECONOMY by Lara Gale, MS in Applied Economics Utah State University, 2021 Major Professor: Dr. Man Keun Kim Department: Applied Economics Landscaping and nursery enterprises, commonly known as green industry enterprises, can be found everywhere in Utah, and are necessary to create both aesthetic appeal and human well-being in the built environment. In order to understand the impact that events such as economic shocks or policy changes may have on the green industry, the baseline performance and contribution of the industry must be specified for comparison following these shocks. -
“Mining” Water Ice on Mars an Assessment of ISRU Options in Support of Future Human Missions
National Aeronautics and Space Administration “Mining” Water Ice on Mars An Assessment of ISRU Options in Support of Future Human Missions Stephen Hoffman, Alida Andrews, Kevin Watts July 2016 Agenda • Introduction • What kind of water ice are we talking about • Options for accessing the water ice • Drilling Options • “Mining” Options • EMC scenario and requirements • Recommendations and future work Acknowledgement • The authors of this report learned much during the process of researching the technologies and operations associated with drilling into icy deposits and extract water from those deposits. We would like to acknowledge the support and advice provided by the following individuals and their organizations: – Brian Glass, PhD, NASA Ames Research Center – Robert Haehnel, PhD, U.S. Army Corps of Engineers/Cold Regions Research and Engineering Laboratory – Patrick Haggerty, National Science Foundation/Geosciences/Polar Programs – Jennifer Mercer, PhD, National Science Foundation/Geosciences/Polar Programs – Frank Rack, PhD, University of Nebraska-Lincoln – Jason Weale, U.S. Army Corps of Engineers/Cold Regions Research and Engineering Laboratory Mining Water Ice on Mars INTRODUCTION Background • Addendum to M-WIP study, addressing one of the areas not fully covered in this report: accessing and mining water ice if it is present in certain glacier-like forms – The M-WIP report is available at http://mepag.nasa.gov/reports.cfm • The First Landing Site/Exploration Zone Workshop for Human Missions to Mars (October 2015) set the target -
Mars Exploration Rovers: 4 Years on Mars
https://ntrs.nasa.gov/search.jsp?R=20080047431 2019-10-28T16:17:34+00:00Z Mars Exploration Rovers: 4 Years on Mars Geoffrey A. Landis This January, the Mars Exploration Rovers "Spirit" and "Opportunity" are starting their fifth year of exploring the surface of Mars, well over ten times their nominal 90-day design lifetime. This lecture discusses the Mars Exploration Rovers, presents the current mission status for the extended mission, some of the most results from the mission and how it is affecting our current view of Mars, and briefly presents the plans for the coming NASA missions to the surface of Mars and concepts for exploration with robots and humans into the next decade, and beyond. Four Years on Mars: the Mars Exploration Rovers Geoffrey A. Landis NASA John Glenn Research Center http://www.sff.net/people/geoffrey.landis Presentation at MIT Department of Aeronautics and Astronautics, January 18, 2008 Exploration - Landis Mars viewed from the Hubble Space Telescope Exploration - Landis Views of Mars in the early 20th century Lowell 1908 Sciaparelli 1888 Burroughs 1912 (cover painting by Frazetta) Tales of Outer Space ed. Donald A. Wollheim, Ace D-73, 1954 (From Winchell Chung's web page projectrho.com) Exploration - Landis Past Missions to Mars: first close up images of Mars from Mariner 4 Mariner 4 discovered Mars was a barren, moon-like desert Exploration - Landis Viking 1976 Signs of past water on Mars? orbiter Photo from orbit by the 1976 Viking orbiter Exploration - Landis Pathfinder and Sojourner Rover: a solar-powered mission -
Heart Land Damian Elwes Damian Elwes Heart Land
Cover: Blue Wind (detail), 2011 mixed media on canvas 107 x 168 cm First published in 2011 by Agent Morton Ltd www.agentmorton.com All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electrical, mechanical or otherwise, without first seeking the permission of the copyright owners and the publishers. All images in this catalogue are protected by copyright and should not be reproduced without permission of the copyright holder. Details of the copyright holder to be obtained from Agent Morton Ltd. Tel: +44 207 409 1395 Copyright 2011 Agent Morton Ltd 32 Dover Street, W1S 4NE Designed and produced in the UK by Footprint. www.fpiltd.com www.agentmorton.com HEART LAND DAMIAN ELWES DAMIAN ELWES HEART LAND 20 June - 29 July 2011 Tel: +44 207 409 1395 32 Dover Street, W1S 4NE www.agentmorton.com HEART LAND Unlike Gauguin, when Damian Elwes left ‘civilization’ to find his personal Garden of Eden and live in tropical, colour-saturated, visceral nature, he took his wife with him. At their home on a little coffee farm on the edge of the Colombian rainforest, Elwes painted dioramas of the forest in an attempt to express our deep connection to the natural world. He also made endless nude drawings of his wife. It was a response to seeing Lewanne so profoundly immersed in her environment, he says, a desire to record the naturalness and sense of freedom she exhibited by walking around naked. It began to occur to him that women are so fundamentally connected to nature, through their physiological and mythical relationship to the moon and in motherhood, that they more perfectly embody this connectivity than a tree or a mountain. -
Art-Related Archival Materials in the Chicago Area
ART-RELATED ARCHIVAL MATERIALS IN THE CHICAGO AREA Betty Blum Archives of American Art American Art-Portrait Gallery Building Smithsonian Institution 8th and G Streets, N.W. Washington, D.C. 20560 1991 TRUSTEES Chairman Emeritus Richard A. Manoogian Mrs. Otto L. Spaeth Mrs. Meyer P. Potamkin Mrs. Richard Roob President Mrs. John N. Rosekrans, Jr. Richard J. Schwartz Alan E. Schwartz A. Alfred Taubman Vice-Presidents John Wilmerding Mrs. Keith S. Wellin R. Frederick Woolworth Mrs. Robert F. Shapiro Max N. Berry HONORARY TRUSTEES Dr. Irving R. Burton Treasurer Howard W. Lipman Mrs. Abbott K. Schlain Russell Lynes Mrs. William L. Richards Secretary to the Board Mrs. Dana M. Raymond FOUNDING TRUSTEES Lawrence A. Fleischman honorary Officers Edgar P. Richardson (deceased) Mrs. Francis de Marneffe Mrs. Edsel B. Ford (deceased) Miss Julienne M. Michel EX-OFFICIO TRUSTEES Members Robert McCormick Adams Tom L. Freudenheim Charles Blitzer Marc J. Pachter Eli Broad Gerald E. Buck ARCHIVES STAFF Ms. Gabriella de Ferrari Gilbert S. Edelson Richard J. Wattenmaker, Director Mrs. Ahmet M. Ertegun Susan Hamilton, Deputy Director Mrs. Arthur A. Feder James B. Byers, Assistant Director for Miles Q. Fiterman Archival Programs Mrs. Daniel Fraad Elizabeth S. Kirwin, Southeast Regional Mrs. Eugenio Garza Laguera Collector Hugh Halff, Jr. Arthur J. Breton, Curator of Manuscripts John K. Howat Judith E. Throm, Reference Archivist Dr. Helen Jessup Robert F. Brown, New England Regional Mrs. Dwight M. Kendall Center Gilbert H. Kinney Judith A. Gustafson, Midwest -
Pacing Early Mars Fluvial Activity at Aeolis Dorsa: Implications for Mars
1 Pacing Early Mars fluvial activity at Aeolis Dorsa: Implications for Mars 2 Science Laboratory observations at Gale Crater and Aeolis Mons 3 4 Edwin S. Kitea ([email protected]), Antoine Lucasa, Caleb I. Fassettb 5 a Caltech, Division of Geological and Planetary Sciences, Pasadena, CA 91125 6 b Mount Holyoke College, Department of Astronomy, South Hadley, MA 01075 7 8 Abstract: The impactor flux early in Mars history was much higher than today, so sedimentary 9 sequences include many buried craters. In combination with models for the impactor flux, 10 observations of the number of buried craters can constrain sedimentation rates. Using the 11 frequency of crater-river interactions, we find net sedimentation rate ≲20-300 μm/yr at Aeolis 12 Dorsa. This sets a lower bound of 1-15 Myr on the total interval spanned by fluvial activity 13 around the Noachian-Hesperian transition. We predict that Gale Crater’s mound (Aeolis Mons) 14 took at least 10-100 Myr to accumulate, which is testable by the Mars Science Laboratory. 15 16 1. Introduction. 17 On Mars, many craters are embedded within sedimentary sequences, leading to the 18 recognition that the planet’s geological history is recorded in “cratered volumes”, rather than 19 just cratered surfaces (Edgett and Malin, 2002). For a given impact flux, the density of craters 20 interbedded within a geologic unit is inversely proportional to the deposition rate of that 21 geologic unit (Smith et al. 2008). To use embedded-crater statistics to constrain deposition 22 rate, it is necessary to distinguish the population of interbedded craters from a (usually much 23 more numerous) population of craters formed during and after exhumation. -
Institute of Fine Arts Alumni Newsletter, Number 55, Fall 2020
Number 55 – Fall 2020 NEWSLETTERAlumni PatriciaEichtnbaumKaretzky andZhangEr Neoclasicos rnE'-RTISTREINVENTiD,1~1-1= THEME""'lLC.IIEllMNICOLUCTION MoMA Ano M. Franco .. ..H .. •... 1 .1 e-i =~-:.~ CALLi RESPONSE Nyu THE INSTITUTE Published by the Alumni Association of II IOF FINE ARTS 1 Contents Letter from the Director In Memoriam ................. .10 The Year in Pictures: New Challenges, Renewed Commitments, Alumni at the Institute ..........16 and the Spirit of Community ........ .3 Iris Love, Trailblazing Archaeologist 10 Faculty Updates ...............17 Conversations with Alumni ....... .4 Leatrice Mendelsohn, Alumni Updates ...............22 The Best Way to Get Things Done: Expert on Italian Renaissance An Interview with Suzanne Deal Booth 4 Art Theory 11 Doctors of Philosophy Conferred in 2019-2020 .................34 The IFA as a Launching Pad for Seventy Nadia Tscherny, Years of Art-Historical Discovery: Expert in British Art 11 Master of Arts and An Interview with Jack Wasserman 6 Master of Science Dual-Degrees Dora Wiebenson, Conferred in 2019-2020 .........34 Zainab Bahrani Elected to the American Innovative, Infuential, and Academy of Arts and Sciences .... .8 Prolifc Architectural Historian 14 Masters Degrees Conferred in 2019-2020 .................34 Carolyn C Wilson Newmark, Noted Scholar of Venetian Art 15 Donors to the Institute, 2019-2020 .36 Institute of Fine Arts Alumni Association Offcers: Alumni Board Members: Walter S. Cook Lecture Susan Galassi, Co-Chair President Martha Dunkelman [email protected] and William Ambler [email protected] Katherine A. Schwab, Co-Chair [email protected] Matthew Israel [email protected] [email protected] Yvonne Elet Vice President Gabriella Perez Derek Moore Kathryn Calley Galitz [email protected] Debra Pincus [email protected] Debra Pincus Gertje Utley Treasurer [email protected] Newsletter Lisa Schermerhorn Rebecca Rushfeld Reva Wolf, Editor Lisa.Schermerhorn@ [email protected] [email protected] kressfoundation.org Katherine A. -
FROM WET PLANET to RED PLANET Current and Future Exploration Is Shaping Our Understanding of How the Climate of Mars Changed
FROM WET PLANET TO RED PLANET Current and future exploration is shaping our understanding of how the climate of Mars changed. Joel Davis deciphers the planet’s ancient, drying climate 14 DECEMBER 2020 | WWW.GEOLSOC.ORG.UK/GEOSCIENTIST WWW.GEOLSOC.ORG.UK/GEOSCIENTIST | DECEMBER 2020 | 15 FEATURE GEOSCIENTIST t has been an exciting year for Mars exploration. 2020 saw three spacecraft launches to the Red Planet, each by diff erent space agencies—NASA, the Chinese INational Space Administration, and the United Arab Emirates (UAE) Space Agency. NASA’s latest rover, Perseverance, is the fi rst step in a decade-long campaign for the eventual return of samples from Mars, which has the potential to truly transform our understanding of the still scientifi cally elusive Red Planet. On this side of the Atlantic, UK, European and Russian scientists are also getting ready for the launch of the European Space Agency (ESA) and Roscosmos Rosalind Franklin rover mission in 2022. The last 20 years have been a golden era for Mars exploration, with ever increasing amounts of data being returned from a variety of landed and orbital spacecraft. Such data help planetary geologists like me to unravel the complicated yet fascinating history of our celestial neighbour. As planetary geologists, we can apply our understanding of Earth to decipher the geological history of Mars, which is key to guiding future exploration. But why is planetary exploration so focused on Mars in particular? Until recently, the mantra of Mars exploration has been to follow the water, which has played an important role in shaping the surface of Mars. -
Isotope and Nuclear Chemistry Division Annual Report, FY 1990, October 1, 1989
LA12143-PR Progren Report Isotope dnd Nuclecqr Chemistry Division Ann vial Report FY 1990^ .. •• %-•-' V \ ? L«>Alaa^Natkif^'ljri>oratoryk operated by the UnhrcnUy of Colitbr^ Geologists inspect the Devil's Thumb Sinkhole, which is located in travertine at the base of the Mammoth Hot Springs Terraces, before injecting multiple tracers to determine flow paths, transit times, and chemical Water from Boiling River (Mammoth Hot reaction processes in a natural aquifer. Hot Springs) was sampled at many intervals during a water from pools on top of this terrace flows multicomponent tracer experiment. Analysis of over the orange travertine and down into the data from this major outflow of the Mammoth sinkhole. Inactive travertine is grey; the oldest system (-40°C and 27 f&ls flow rate) provides deposits support several types of trees. information about the flow path, transit titles, and chemical reaction processes of a natural aquifer. This information is used to test hypotheses and field approaches for characterizing geothermal, petroleum, and environmental reservoirs. A team of geologists collected more than 250 samples over an 18-hr period at Boiling River —one of many remote field sample processing sites—during the multicomponent tracer experiment. In this wilderness area, team members used the environmentally benign transport system (shown in red) to move equipment and samples. Closeup of the Devil's Thumb Sinkhole shows wet, actively depositing travertine in orange and old, degrading travertine in white. These moths caught in the hot springs were fossilized as hydrothermal solutions flowed across the ground surface at Mammoth Hot Springs in Yellowstone National Park. -
Downloaded for Personal Non-Commercial Research Or Study, Without Prior Permission Or Charge
MacArtney, Adrienne (2018) Atmosphere crust coupling and carbon sequestration on early Mars. PhD thesis. http://theses.gla.ac.uk/9006/ Copyright and moral rights for this work are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Enlighten:Theses http://theses.gla.ac.uk/ [email protected] ATMOSPHERE - CRUST COUPLING AND CARBON SEQUESTRATION ON EARLY MARS By Adrienne MacArtney B.Sc. (Honours) Geosciences, Open University, 2013. Submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy at the UNIVERSITY OF GLASGOW 2018 © Adrienne MacArtney All rights reserved. The author herby grants to the University of Glasgow permission to reproduce and redistribute publicly paper and electronic copies of this thesis document in whole or in any part in any medium now known or hereafter created. Signature of Author: 16th January 2018 Abstract Evidence exists for great volumes of water on early Mars. Liquid surface water requires a much denser atmosphere than modern Mars possesses, probably predominantly composed of CO2. Such significant volumes of CO2 and water in the presence of basalt should have produced vast concentrations of carbonate minerals, yet little carbonate has been discovered thus far. -
Initial Results from the Miniature Thermal Emission Spectrometer
S PIRIT AT G USEV C RATER S RESEARCH ARTICLE PECIAL Initial Results from the Mini-TES Experiment in S Gusev Crater from the Spirit Rover ECTION P. R. Christensen,1* S. W. Ruff,1 R. L. Fergason,1 A. T. Knudson,1 S. Anwar,1 R. E. Arvidson,2 J. L. Bandfield,1 D. L. Blaney,3 C. Budney,3 W. M. Calvin,4 T. D. Glotch,1 M. P. Golombek,3 N. Gorelick,1 T. G. Graff,1 V. E. Hamilton,5 A. Hayes,6 J. R. Johnson,7 H. Y. McSween Jr.,8 G. L. Mehall,1 L. K. Mehall,1 J. E. Moersch,8 R. V. Morris,9 A. D. Rogers,1 M. D. Smith,10 S. W. Squyres,6 M. J. Wolff,11 M. B. Wyatt1 The Miniature Thermal Emission Spectrometer (Mini-TES) on Spirit has studied Several targets have been observed with the the mineralogy and thermophysical properties at Gusev crater. Undisturbed soil use of 5ϫ spatial oversampling and spatial spectra show evidence for minor carbonates and bound water. Rocks are olivine- deconvolution techniques to improve spec- rich basalts with varying degrees of dust and other coatings. Dark-toned soils tral isolation (8), together with multiple observed on disturbed surfaces may be derived from rocks and have derived RAT brushings to clean larger areas. mineralogy (Ϯ5 to 10%) of 45% pyroxene (20% Ca-rich pyroxene and 25% Undisturbed surficial materials. Un- pigeonite), 40% sodic to intermediate plagioclase, and 15% olivine (forsterite disturbed surfaces in the vicinity of the 45% Ϯ5 to 10). Two spectrally distinct coatings are observed on rocks, a possible station are ϳ5% surface cover of clasts that indicator of the interaction of water, rock, and airfall dust.