Food Intake in Birds: Hypothalamic Mechanisms Betty R. Mcconn

Total Page:16

File Type:pdf, Size:1020Kb

Food Intake in Birds: Hypothalamic Mechanisms Betty R. Mcconn Food intake in birds: hypothalamic mechanisms Betty R. McConn Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy In Animal and Poultry Sciences Mark A. Cline, Chair Elizabeth R. Gilbert Paul B. Siegel D. Michael Denbow Wayne J. Kuenzel April 16, 2018 Blacksburg, VA Keywords: hypothalamus, food intake, chicken, Japanese quail Copyright 2018, Betty R. McConn Food intake in birds: hypothalamic mechanisms Betty R. McConn ABSTRACT (Academic) Feeding behavior is a complex trait that is regulated by various hypothalamic neuropeptides and neuronal populations (nuclei). Understanding the physiological regulation of food intake is important for improving nutrient utilization efficiency in agricultural species and for understanding and treating eating disorders. Knowledge about appetite in birds has agricultural and biomedical relevance and provides evolutionary perspective. I thus investigated hypothalamic molecular mechanisms associated with appetite in broilers, layers, chicken lines selected for low (LWS) or high (HWS) body weight, and Japanese quail, which provide a unique perspective to understanding appetite. Broiler-type chicks have been genetically selected for rapid growth and consume much more feed than do layer-type chicks which have been selected for egg production. Long-term selection has caused the LWS chicks to have different severities of anorexia while the HWS chicks become obese, thus making these lines a valuable model for metabolic disorders. Lastly, the Japanese quail have not undergone as extensive artificial selection as the chicken, thus this model may provide insights on how human intervention has changed the mechanisms that regulate feeding behavior in birds. This research involved applying a variety of different treatments including fasting and refeeding, diets differing in macronutrient composition, and/or central administration of neuropeptide Y, xenopsin, neuropeptide K, oxytocin, mesotocin, gonadotropin-inhibitory hormone, and prolactin-releasing peptide, after which I measured feeding behavior and various aspects of hypothalamic physiology. I measured nuclei activation in hypothalamic appetite-associated regions including the lateral hypothalamus, paraventricular nucleus, ventromedial hypothalamus, dorsomedial nucleus, and arcuate nucleus and I measured gene expression of various appetite-associated factors in the whole hypothalamus and individual nuclei. These data provided information about the regions of the brain involved in mediating effects on appetite and the molecular pathways involved in the effect on appetite. There were differences in dose threshold sensitivity to various injected factors in the different stocks, differential responses to fasting and refeeding, and differences in nuclei and genes that were activated in response to the various treatments. These data provide valuable insights on the molecular mechanisms that are associated with the short-term regulation of feeding behavior and pathways that may be genetically stock-dependent. Food intake in birds: hypothalamic mechanisms Betty R. McConn ABSTRACT (public) Poultry production and welfare may be enhanced by regulating food intake of chickens during specific stages of growth, resulting in improved nutrient utilization efficiency. For example, broiler breeders are feed restricted to achieve target weights in order to prevent obesity and other disorders and improve performance. To affect the appetite of chickens, an understanding of the neural mechanisms mediating food intake is needed but there is a lack of information in this area. Thus, the purpose of this dissertation was to elucidate some of these mechanisms that control appetite regulation in poultry using chickens and quail as models. Several neuropeptide- associated pathways were studied and appetite-related molecular mechanisms were elucidated for neuropeptides K and Y, oxytocin, mesotocin, gonadotropin-inhibitory hormone, prolactin- releasing peptide, xenopsin, different macronutrient composition diets, and fasting and refeeding. Table of Contents Abstract (academic)-------------------------------------------------------------------------------------------ii Abstract (public)----------------------------------------------------------------------------------------------iv List of tables-------------------------------------------------------------------------------------------------xxi List of figures----------------------------------------------------------------------------------------------xxiii Chapter 1. Literature review---------------------------------------------------------------------------------1 Introduction-------------------------------------------------------------------------------------------1 Appetite regulation-----------------------------------------------------------------------------------3 Neuroendocrine regulation after fasting-----------------------------------------------------------6 Dietary macronutrient effects-----------------------------------------------------------------------7 Neuropeptide Y---------------------------------------------------------------------------------------8 Xenopsin---------------------------------------------------------------------------------------------10 Neuropeptide K-------------------------------------------------------------------------------------10 Oxytocin and Mesotocin---------------------------------------------------------------------------11 Gonadotropin-inhibitory hormone----------------------------------------------------------------12 Prolactin-releasing peptide------------------------------------------------------------------------12 References-------------------------------------------------------------------------------------------13 Chapter 2. Fed, fasted, and refed Japanese quail have differential hypothalamic appetite- associated factor mRNA profiles--------------------------------------------------------------------------30 Abstract----------------------------------------------------------------------------------------------30 Introduction------------------------------------------------------------------------------------------30 Materials and methods-----------------------------------------------------------------------------32 Animals-------------------------------------------------------------------------------------32 v Experiment 1: food intake in ad libitum fed quail during the light and dark cycle-----------------------------------------------------------------------------------------33 Experiment 2: food intake in fasted quail during the light cycle--------------------33 Experiment 3: Hypothalamic mRNA abundance in fasted, fed and refed quail------------------------------------------------------------------------------------------33 Results------------------------------------------------------------------------------------------------36 Experiment 1: food intake in ad libitum fed quail during the light and dark cycle-----------------------------------------------------------------------------------------36 Experiment 2: food intake in 6 h-fasted quail during the light cycle---------------39 Experiment 3: Hypothalamic mRNA abundance in fed, fasted and refed quail------------------------------------------------------------------------------------------42 Discussion-------------------------------------------------------------------------------------------44 References-------------------------------------------------------------------------------------------50 Chapter 3. Dietary macronutrient composition affects hypothalamic appetite regulation in chicks ---------------------------------------------------------------------------------------------------------59 Abstract----------------------------------------------------------------------------------------------59 Introduction------------------------------------------------------------------------------------------59 Materials and methods-----------------------------------------------------------------------------62 Animals-------------------------------------------------------------------------------------62 Experiment 1: food intake and body weights------------------------------------------64 Experiment 2: food intake and hypothalamic mRNA after fasting and refeeding------------------------------------------------------------------------------------65 Total RNA isolation, reverse transcription and real-time PCR----------------------66 vi Results------------------------------------------------------------------------------------------------68 Food intake and body weights-----------------------------------------------------------68 Food intake and hypothalamic mRNA after fasting and refeeding-----------------69 Discussion-------------------------------------------------------------------------------------------73 Effects of the high fat diets on growth and food intake-------------------------------73 Effects of the high protein diet on growth and food intake--------------------------75 Hypothalamic molecular mechanisms underlying dietary effects on food intake and growth----------------------------------------------------------------------------------76 Conclusions and implications---------------------------------------------------------------------82 References-------------------------------------------------------------------------------------------82 Chapter 4. Dietary macronutrient composition and central neuropeptide
Recommended publications
  • Amylase Release from Rat Parotid Gland Slices C.L
    Br. J. P!harmnic. (1981) 73, 517-523 THE EFFECTS OF SUBSTANCE P AND RELATED PEPTIDES ON a- AMYLASE RELEASE FROM RAT PAROTID GLAND SLICES C.L. BROWN & M.R. HANLEY MRC Neurochemical Pharmacology Unit, Medical Research Council Centre, Medical School, Hills Road, Cambridge CB2 2QH 1 The effects of substance P and related peptides on amylase release from rat parotid gland slices have been investigated. 2 Supramaximal concentrations (1 F.M) of substance P caused enhancement of amylase release over the basal level within 1 min; this lasted for at least 40 min at 30°C. 3 Substance P-stimulated amylase release was partially dependent on extracellular calcium and could be inhibited by 50% upon removal of extracellular calcium. 4 Substance P stimulated amylase release in a dose-dependent manner with an ED50 of 18 nm. 5 All C-terminal fragments of substance P were less potent than substance P in stimulating amylase release. The C-terminal hexapeptide of substance P was the minimum structure for potent activity in this system, having 1/3 to 1/8 the potency of substance P. There was a dramatic drop in potency for the C-terminal pentapeptide of substance P or substance P free acid. Physalaemin was more potent than substance P (ED50 = 7 nM), eledoisin was about equipotent with substance P (ED5o = 17 nM), and kassinin less potent than substance P (ED50 = 150 nM). 6 The structure-activity profile observed is very similar to that for stimulation of salivation in vivo, indicating that the same receptors are involved in mediating these responses.
    [Show full text]
  • Identification of a Novel Vasodilatory Octapeptide from the Skin Secretion
    molecules Article Identification of a Novel Vasodilatory Octapeptide from the Skin Secretion of the African Hyperoliid Frog, Kassina senegalensis Qiang Du 1,†, Hui Wang 1,*,†, Chengbang Ma 2, Yue Wu 2, Xinping Xi 2,*, Mei Zhou 2 ID , Tianbao Chen 2 ID , Chris Shaw 2 and Lei Wang 2 1 School of Pharmacy, China Medical University, Shenyang 110001, Liaoning, China; [email protected] 2 Natural Drug Discovery Group, School of Pharmacy, Queen’s University, Belfast BT9 7BL, Northern Ireland, UK; [email protected] (C.M.); [email protected] (Y.W.); [email protected] (M.Z.); [email protected] (T.C.); [email protected] (C.S.); [email protected] (L.W.) * Correspondence: [email protected] (H.W.); [email protected] (X.X.); Tel.: +86-24-2325-6666 (H.W.); +44-28-9097-2200 (X.X.); Fax: +86-2325-5471 (H.W.); +44-28-9094-7794 (X.X.) † These authors contributed equally to this work. Received: 5 July 2017; Accepted: 19 July 2017; Published: 19 July 2017 Abstract: The defensive skin secretions of amphibians continue to be an excellent source of novel biologically-active peptides. Here we report the identification and pharmacological activity of a novel C-terminally amided myotropic octapeptide from the skin secretion of the African hyperoliid frog, Kassina senegalensis. The 8-amino acid peptide has the following primary structure: WMSLGWSL-amide and has a molecular mass of 978 Da. The primary structure and organisation of the biosynthetic precursor of WL-8 amide was successfully deduced from cloned skin secretion-derived cDNA.
    [Show full text]
  • A Comparative Survey of the RF-Amide Peptide Superfamily
    EDITORIAL published: 10 August 2015 doi: 10.3389/fendo.2015.00120 Editorial: A comparative survey of the RF-amide peptide superfamily Karine Rousseau 1*, Sylvie Dufour 1 and Hubert Vaudry 2 1 Laboratory of Biology of Aquatic Organisms and Ecosystems (BOREA), Muséum National d’Histoire Naturelle, CNRS 7208, IRD 207, Université Pierre and Marie Curie, UCBN, Paris, France, 2 Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, INSERM U982, International Associated Laboratory Samuel de Champlain, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen, Mont-Saint-Aignan, France Keywords: RF-amide peptides, receptors, evolution, functions, deuterostomes, protostomes The first member of the RF-amide peptide superfamily to be characterized, in 1977, was the cardioexcitatory peptide, FMRFamide, isolated from the ganglia of the clam Macrocallista nimbosa (1). Since then, a large number of such peptides, designated after their C-terminal arginine (R) and amidated phenylalanine (F) residues, have been identified in representative species of all major phyla. The discovery, 12 years ago, that the RF-amide peptide kisspeptin, acting via GPR54, was essential for the onset of puberty and reproduction, has been a major breakthrough in reproductive physiology (2–4). It has also put in front of the spotlights RF-amide peptides and has invigo- rated research on this superfamily of regulatory neuropeptides. The present Research Topic aims at illustrating major advances achieved, through comparative studies in (mammalian and non- mammalian) vertebrates and invertebrates, in the knowledge of RF-amide peptides in terms of evolutionary history and physiological significance. Since 2006, by means of phylogenetic analyses, the superfamily of RFamide peptides has been divided into five families/groups in vertebrates (5, 6): kisspeptin, 26RFa/QRFP, GnIH (including LPXRFa and RFRP), NPFF, and PrRP.
    [Show full text]
  • Searching for Novel Peptide Hormones in the Human Genome Olivier Mirabeau
    Searching for novel peptide hormones in the human genome Olivier Mirabeau To cite this version: Olivier Mirabeau. Searching for novel peptide hormones in the human genome. Life Sciences [q-bio]. Université Montpellier II - Sciences et Techniques du Languedoc, 2008. English. tel-00340710 HAL Id: tel-00340710 https://tel.archives-ouvertes.fr/tel-00340710 Submitted on 21 Nov 2008 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITE MONTPELLIER II SCIENCES ET TECHNIQUES DU LANGUEDOC THESE pour obtenir le grade de DOCTEUR DE L'UNIVERSITE MONTPELLIER II Discipline : Biologie Informatique Ecole Doctorale : Sciences chimiques et biologiques pour la santé Formation doctorale : Biologie-Santé Recherche de nouvelles hormones peptidiques codées par le génome humain par Olivier Mirabeau présentée et soutenue publiquement le 30 janvier 2008 JURY M. Hubert Vaudry Rapporteur M. Jean-Philippe Vert Rapporteur Mme Nadia Rosenthal Examinatrice M. Jean Martinez Président M. Olivier Gascuel Directeur M. Cornelius Gross Examinateur Résumé Résumé Cette thèse porte sur la découverte de gènes humains non caractérisés codant pour des précurseurs à hormones peptidiques. Les hormones peptidiques (PH) ont un rôle important dans la plupart des processus physiologiques du corps humain.
    [Show full text]
  • Peptide Chemistry up to Its Present State
    Appendix In this Appendix biographical sketches are compiled of many scientists who have made notable contributions to the development of peptide chemistry up to its present state. We have tried to consider names mainly connected with important events during the earlier periods of peptide history, but could not include all authors mentioned in the text of this book. This is particularly true for the more recent decades when the number of peptide chemists and biologists increased to such an extent that their enumeration would have gone beyond the scope of this Appendix. 250 Appendix Plate 8. Emil Abderhalden (1877-1950), Photo Plate 9. S. Akabori Leopoldina, Halle J Plate 10. Ernst Bayer Plate 11. Karel Blaha (1926-1988) Appendix 251 Plate 12. Max Brenner Plate 13. Hans Brockmann (1903-1988) Plate 14. Victor Bruckner (1900- 1980) Plate 15. Pehr V. Edman (1916- 1977) 252 Appendix Plate 16. Lyman C. Craig (1906-1974) Plate 17. Vittorio Erspamer Plate 18. Joseph S. Fruton, Biochemist and Historian Appendix 253 Plate 19. Rolf Geiger (1923-1988) Plate 20. Wolfgang Konig Plate 21. Dorothy Hodgkins Plate. 22. Franz Hofmeister (1850-1922), (Fischer, biograph. Lexikon) 254 Appendix Plate 23. The picture shows the late Professor 1.E. Jorpes (r.j and Professor V. Mutt during their favorite pastime in the archipelago on the Baltic near Stockholm Plate 24. Ephraim Katchalski (Katzir) Plate 25. Abraham Patchornik Appendix 255 Plate 26. P.G. Katsoyannis Plate 27. George W. Kenner (1922-1978) Plate 28. Edger Lederer (1908- 1988) Plate 29. Hennann Leuchs (1879-1945) 256 Appendix Plate 30. Choh Hao Li (1913-1987) Plate 31.
    [Show full text]
  • Neuropeptide Proctolin (H-Arg-Tyr-Leu-Pro-Thr-OH)
    Proc. NatL Acad. Sci. USA Vol. 78, No. 9, pp. 5899-5902, September 1981 Neurobiology Neuropeptide proctolin (H-Arg-Tyr-Leu-Pro-Thr-OH): Immunological detection and neuronal localization in insect central nervous system (peptide neurotransmitter/identified neurons) CYNTHIA A. BISHOP, MICHAEL O'SHEA*, AND RICHARD J. MILLER The Department of Pharmacological and Physiological Sciences, The University of Chicago, 947 E. 58th Street, Chicago, Illinois 60637 Communicated by Solomon H. Snyder, June 19, 1981 ABSTRACT Proctolin (H-Arg-Tyr-Leu-Pro-Thr-OH) is a pen- vestigation ofneuropeptide action in a relatively simple nervous tapeptide first extracted from cockroaches. It is known to have system. many neurohormonal effects and has been associated with spe- cific, identified cockroach neurons. We have produced proctolin MATERIALS AND METHODS antisera and report here on their application in detecting proc- tolin-like immunoreactivity (PLI) in the cockroach central nervous Adult specimens, both male and female, of the large American system. Radioimmunoassay, capable ofdetecting 50 fmol ofproc- cockroach (Periplaneta americana; Carolina Biological Supply, tolin, was used to quantify the distribution of PLI. Highest con- Burlington, NC) were used. Authentic proctolin for immuni- centrations were detected in the genital ganglia and lowest in the zation was obtained from Sigma. Enkephalins were.a gift of S. cerebral ganglia. Immunohistochemistry on the cockroach central Wilkinson, Wellcome Research Laboratories (Beckenham, nervous system demonstrated that PLI is localized to neurons. Kent, England). Gut bombesin was a gift of J. Rivier, Salk In- Neurons stained by using immunohistochemistry were widespread stitute (La Jolla, CA). Other peptides were obtained from in the ganglia.
    [Show full text]
  • A 0.70% E 0.80% Is 0.90%
    US 20080317666A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2008/0317666 A1 Fattal et al. (43) Pub. Date: Dec. 25, 2008 (54) COLONIC DELIVERY OF ACTIVE AGENTS Publication Classification (51) Int. Cl. (76) Inventors: Elias Fattal, Paris (FR); Antoine A6IR 9/00 (2006.01) Andremont, Malakoff (FR); A61R 49/00 (2006.01) Patrick Couvreur, A6II 5L/12 (2006.01) Villebon-sur-Yvette (FR); Sandrine A6IPI/00 (2006.01) Bourgeois, Lyon (FR) (52) U.S. Cl. .......................... 424/1.11; 424/423; 424/9.1 (57) ABSTRACT Correspondence Address: Drug delivery devices that are orally administered, and that David S. Bradlin release active ingredients in the colon, are disclosed. In one Womble Carlyle Sandridge & Rice embodiment, the active ingredients are those that inactivate P.O.BOX 7037 antibiotics, such as macrollides, quinolones and beta-lactam Atlanta, GA 30359-0037 (US) containing antibiotics. One example of a Suitable active agent is an enzyme Such as beta-lactamases. In another embodi ment, the active agents are those that specifically treat colonic (21) Appl. No.: 11/628,832 disorders, such as Chrohn's Disease, irritable bowel syn drome, ulcerative colitis, colorectal cancer or constipation. (22) PCT Filed: Feb. 9, 2006 The drug delivery devices are in the form of beads of pectin, crosslinked with calcium and reticulated with polyethylene imine. The high crosslink density of the polyethyleneimine is (86). PCT No.: PCT/GBO6/OO448 believed to stabilize the pectin beads for a sufficient amount of time such that a Substantial amount of the active ingredi S371 (c)(1), ents can be administered directly to the colon.
    [Show full text]
  • 251-Bolton-Hunter- Labeled Substance P Binding Sites in Rat Spinal Cord’
    0270.6474/65/0505-1293$02.00/O The Journal of Neuroscience Copyright 0 Society for Neuroscience Vol. 5, No. 5, pp. 1293-1299 Printed in U.S.A. May 1985 Characterization and Segmental Distribution of ‘251-Bolton-Hunter- labeled Substance P Binding Sites in Rat Spinal Cord’ CLIVEL G. CHARLTON’ AND CINDA J. HELKE Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814 Abstract al., 1982) are two sources for SP in the ventral horn. The nucleus interfascicularis hypoglossi also supplies SP-containing nerve termi- Substance P (SP) is widely distributed in the spinal cord nals to the IML cells of origin for autonomic preganglion fibers (Helke and has been implicated as a neurotransmitter in several et al., 1982). spinal cord neuronal systems. To investigate SP receptors in Functional studies support the concept of a neurotransmOitter role the spinal cord, 1251-Bolton-Hunter-SP (‘*‘I-BH-SP) was used for SP in the spinal cord. Nociception (Piercey et al., 1981; Akerman to identify and characterize spinal cord binding sites for the et al., 1982; Fasmer and Post, 1983) motor control (Otsuka and peptide. The binding of ‘*%BH-SP had the following charac- Konishi, 1977; Yanagisawa et al., 1982) and certain autonomic teristics: high affinity; time, temperature, and membrane con- functions (Loewy and Sawyer, 1982; Keeler and Helke, 1984) are centration dependent; reversible; and saturable. The KS0 of modulated by spinal cord SP. In addition, SP receptors in the spinal SP in whole spinal cord was 0.46 nM as compared with 0.95, cord have been demonstrated by iontophoretic studies in which SP 60, and 150 nM for physalaemin, eledoisin, and kassinin.
    [Show full text]
  • A Mon Cher Papa Et Ma Chère Maman, a Mes Sœurs, Ghania, Dalila Et Kaissa, a Mes Frères Smaïl Et Khaled, a Ma Tante Marie-Jo Et Mon Oncle Mohand, Qui Me Sont Chers…
    A mon cher Papa et ma chère Maman, A mes sœurs, Ghania, Dalila et Kaissa, A mes frères Smaïl et Khaled, A ma tante Marie-Jo et mon oncle Mohand, Qui me sont chers… Ce travail a été réalisé au Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine (DC2N), Inserm 1239, dirigé par le Docteur Youssef Anouar sous la direction du Docteur Jérôme Leprince. Je tiens à remercier la Région Normandie pour l’aide financière qui m’a été octroyée durant la préparation de ma thèse de doctorat, ce qui m'a permis de l’effectuer dans les meilleures conditions. Ce travail n’aurait pas pu être conduit à son terme sans l’aide généreuse de plusieurs organismes : - L’institut National de la Santé et de la Recherche Médicale (INSERM) - L’Université de Rouen-Normandie - L’Institut de Recherche et de l’’Innovation Biomédicale (IRIB) - La Plate-Forme Régionale de Recherche en Imagerie Cellulaire de Normandie (PRIMACEN) Monsieur le Dr Frédéric Bihel, Chargé de Recherche CNRS, me fait l’honneur d’être Rapporteur de ce travail. Mesurant pleinement la faveur qu’il m’accorde, je tiens à lui témoigner l’expression de mon profond respect. Monsieur le Dr Xavier Iturrioz, Chargé de Recherche INSERM, a accepté la charge d’être Rapporteur de ce mémoire. Je tiens à le remercier très sincèrement de l’intérêt qu’il témoigne ainsi à nos recherches. Monsieur le Dr Nicolas Chartrel, Directeur de Recherche INSERM, a accepté de participer à ce jury. Je le remercie très sincèrement de l’intérêt qu’il manifeste pour ces travaux.
    [Show full text]
  • Topography of a Binding Site for Small Amnestic Peptides Deduced from Structure-Activity Studies: Relation to Amnestic Effect of Amyloid F8 Protein JAMES F
    Proc. Natl. Acad. Sci. USA Vol. 91, pp. 380-384, January 1994 Neurobiology Topography of a binding site for small amnestic peptides deduced from structure-activity studies: Relation to amnestic effect of amyloid f8 protein JAMES F. FLOOD*, EUGENE ROBERTStt, MARK A. SHERMAN§, BRUCE E. KAPLAN§, AND JOHN E. MORLEY* Geriatric Research Education and Clinical Center (GRECC), Veterans Administration Medical Center, St. Louis, MO 63106, and St. Louis University School of Medicine, Division of Geriatric Medicine, St. Louis, MO 63104; and tDepartment of Neurobiochemistry and §Biology Division, Beckman Research Institute of the City of Hope, Duarte, CA 91010 Contributed by Eugene Roberts, September 7, 1993 ABSTRACT Four peptides homologous to amyloid (B pro- With the exception of commercially purchased peptides tein containng the Val-Phe-Phe (VFF) sequence administered VF and FV, all peptides used in these studies were synthe- intracerebroventricularly after training caused amnesia for sized and analyzed to establish purity by standard methods. footshock active avoidance training in mice. Results with VFF Prior to neutralization and appropriate dilution with saline, and other peptides containing VFF or portions thereof were peptides were dissolved in (i) saline, (ii) dimethyl sulfoxide, used to generate a topographic map for a hypothetical binding (iii) glacial acetic acid, or (iv) NaOH. Upon testing for surface for amnestic peptides, termed Z. Effects on retention of retention of FAAT, groups receiving posttraining icv admin- footshock active avoidance training were rationalized in terms istration of2 1d ofappropriate dilutions ofthe above vehicles of flt to Z, making possible design of potential memory- showed no significant differences among them (ANOVA, F modulating peptidic and nonpeptidic substances.
    [Show full text]
  • Rfamide Peptides: Structure, Function, Mechanisms and Pharmaceutical Potential
    Pharmaceuticals 2011, 4, 1248-1280; doi:10.3390/ph4091248 OPEN ACCESS Pharmaceuticals ISSN 1424-8247 www.mdpi.com/journal/pharmaceuticals Review RFamide Peptides: Structure, Function, Mechanisms and Pharmaceutical Potential Maria Findeisen †, Daniel Rathmann † and Annette G. Beck-Sickinger * Institute of Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany; E-Mails: [email protected] (M.F.); [email protected] (D.R.) † These authors contributed equally to this work. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +49-341-9736900; Fax: +49-341-9736909. Received: 29 August 2011; in revised form: 9 September 2011 / Accepted: 15 September 2011 / Published: 21 September 2011 Abstract: Different neuropeptides, all containing a common carboxy-terminal RFamide sequence, have been characterized as ligands of the RFamide peptide receptor family. Currently, five subgroups have been characterized with respect to their N-terminal sequence and hence cover a wide pattern of biological functions, like important neuroendocrine, behavioral, sensory and automatic functions. The RFamide peptide receptor family represents a multiligand/multireceptor system, as many ligands are recognized by several GPCR subtypes within one family. Multireceptor systems are often susceptible to cross-reactions, as their numerous ligands are frequently closely related. In this review we focus on recent results in the field of structure-activity studies as well as mutational exploration of crucial positions within this GPCR system. The review summarizes the reported peptide analogs and recently developed small molecule ligands (agonists and antagonists) to highlight the current understanding of the pharmacophoric elements, required for affinity and activity at the receptor family.
    [Show full text]
  • Tachykinins in Endocrine Tumors and the Carcinoid Syndrome
    European Journal of Endocrinology (2008) 159 275–282 ISSN 0804-4643 CLINICAL STUDY Tachykinins in endocrine tumors and the carcinoid syndrome Janet L Cunningham1, Eva T Janson1, Smriti Agarwal1, Lars Grimelius2 and Mats Stridsberg1 Departments of 1Medical Sciences and 2Genetics and Pathology, University Hospital, SE 751 85 Uppsala, Sweden (Correspondence should be addressed to J Cunningham who is now at Section of Endocrine Oncology, Department of Medical Sciences, Lab 14, Research Department 2, Uppsala University Hospital, Uppsala University, SE 751 85 Uppsala, Sweden; Email: [email protected]) Abstract Objective: A new antibody, active against the common tachykinin (TK) C-terminal, was used to study TK expression in patients with endocrine tumors and a possible association between plasma-TK levels and symptoms of diarrhea and flush in patients with metastasizing ileocecal serotonin-producing carcinoid tumors (MSPCs). Method: TK, serotonin and chromogranin A (CgA) immunoreactivity (IR) was studied by immunohistochemistry in tissue samples from 33 midgut carcinoids and 72 other endocrine tumors. Circulating TK (P-TK) and urinary-5 hydroxyindoleacetic acid (U-5HIAA) concentrations were measured in 42 patients with MSPCs before treatment and related to symptoms in patients with the carcinoid syndrome. Circulating CgA concentrations were also measured in 39 out of the 42 patients. Results: All MSPCs displayed serotonin and strong TK expression. TK-IR was also seen in all serotonin- producing lung and appendix carcinoids. None of the other tumors examined contained TK-IR cells. Concentrations of P-TK, P-CgA, and U-5HIAA were elevated in patients experiencing daily episodes of either flush or diarrhea, when compared with patients experiencing occasional or none of these symptoms.
    [Show full text]