Prolactin-Releasing Peptide Differentially Regulates Gene Transcriptomic Profiles in Mouse Bone Marrow-Derived Macrophages

Total Page:16

File Type:pdf, Size:1020Kb

Prolactin-Releasing Peptide Differentially Regulates Gene Transcriptomic Profiles in Mouse Bone Marrow-Derived Macrophages International Journal of Molecular Sciences Article Prolactin-Releasing Peptide Differentially Regulates Gene Transcriptomic Profiles in Mouse Bone Marrow-Derived Macrophages Yulong Sun 1,2,* , Zhuo Zuo 1,2 and Yuanyuan Kuang 1,2 1 School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; [email protected] (Z.Z.); [email protected] (Y.K.) 2 Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China * Correspondence: [email protected]; Tel.: +86-29-8846-0332 Abstract: Prolactin-releasing Peptide (PrRP) is a neuropeptide whose receptor is GPR10. Recently, the regulatory role of PrRP in the neuroendocrine field has attracted increasing attention. However, the influence of PrRP on macrophages, the critical housekeeper in the neuroendocrine field, has not yet been fully elucidated. Here, we investigated the effect of PrRP on the transcriptome of mouse bone marrow-derived macrophages (BMDMs) with RNA sequencing, bioinformatics, and molecular simulation. BMDMs were exposed to PrRP (18 h) and were subjected to RNA sequencing. Differentially expressed genes (DEGs) were acquired, followed by GO, KEGG, and PPI analysis. Eight qPCR-validated DEGs were chosen as hub genes. Next, the three-dimensional structures of the proteins encoded by these hub genes were modeled by Rosetta and Modeller, followed by molecular dynamics simulation by the Gromacs program. Finally, the binding modes between PrRP Citation: Sun, Y.; Zuo, Z.; Kuang, Y. and hub proteins were investigated with the Rosetta program. PrRP showed no noticeable effect on Prolactin-Releasing Peptide the morphology of macrophages. A total of 410 DEGs were acquired, and PrRP regulated multiple Differentially Regulates Gene BMDM-mediated functional pathways. Besides, the possible docking modes between PrRP and hub Transcriptomic Profiles in Mouse proteins were investigated. Moreover, GPR10 was expressed on the cell membrane of BMDMs, which Bone Marrow-Derived Macrophages. Int. J. Mol. Sci. 2021, 22, 4456. increased after PrRP exposure. Collectively, PrRP significantly changed the transcriptome profile https://doi.org/10.3390/ijms22094456 of BMDMs, implying that PrRP may be involved in various physiological activities mastered by macrophages. Academic Editor: Sarath Chandra Janga Keywords: prolactin-releasing peptide; GPR10; bone marrow-derived macrophage; RNA sequencing; bioinformatics; transcriptomic profiles Received: 2 March 2021 Accepted: 20 April 2021 Published: 24 April 2021 1. Introduction Publisher’s Note: MDPI stays neutral Prolactin-releasing peptide (PrRP) is a neuropeptide originally extracted from the with regard to jurisdictional claims in bovine hypothalamus [1,2]. PrRP has two biologically active isoforms, PrRP20 and PrRP31, published maps and institutional affil- which share identical C-terminal Arg-Phe-amide sequences [3,4]. GPR10 (G-protein cou- iations. pled receptor 10, GPCR 10) is considered as the endogenous receptor for PrRP [2,5]. Both isoforms PrRP20 and PrRP31 bind to GPR10 with high affinity [6]. PrRP belongs to a family named RF-amide, which includes neuropeptide FF (NPFF), gonadotropin-inhibitory hormone (GnIH), kisspeptin, and pyroglutamylated RFamide (QRFP) [7]. Copyright: © 2021 by the authors. The original biological function of PrRP is to promote the release of prolactin from cul- Licensee MDPI, Basel, Switzerland. tured pituitary cells [2]. Then, follow-up research results show that PrRP has an important This article is an open access article role in the neuroendocrine system, including reducing food intake in fasting and free- distributed under the terms and eating rat models [8], regulating energy homeostasis and increasing energy expenditure [9], conditions of the Creative Commons mediating the anorexia effect of nerves [10], protecting neuron on several rodent neurode- Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ generative disorder models [11], and participating in stress response [12]. However, the 4.0/). effect of PrRP on macrophages has not been reported yet. Int. J. Mol. Sci. 2021, 22, 4456. https://doi.org/10.3390/ijms22094456 https://www.mdpi.com/journal/ijms Int.Int. J.J. Mol.Mol. Sci. 2021,, 22,, 4456x FOR PEER REVIEW 22 of of 4651 The regulatory effect of PrRPPrRP on leukocytes has been investigated. Romeroa and col- leagues findfind that PrRPPrRP mRNA isis expressed inin leukocytesleukocytes fromfrom thethe headhead kidneykidney andand bloodblood of Salmon salar.. Moreover, syntheticsynthetic PrRPPrRP promotespromotes thethe expressionexpression ofof pro-inflammatorypro-inflammatory cytokines (IL-12,(IL-12, IL-6,IL-6, IL-8,IL-8, and and IL-1 IL-1ββ),), suggesting suggesting that that PrRP PrRP may may be be a local a local neurotransmit- neurotrans- termitter of innate of innate immune immune processes processes in leukocytesin leukocytes from fromSalmon Salmon salar salar[13 [13].]. However, However, the the target tar- genesget genes by whichby which PrRP PrRP affects affects the leukocytesthe leukocytes have have not beennot been identified identified yet. yet. RNA-seq (RNA-sequencing)(RNA-sequencing) isis a a useful useful method method to to explore explore the the effect effect of theof the peptide peptide on theon genethe gene expression expression profile profile of macrophages of macropha fromges the from transcriptome the transcriptome level [14 –level16]. Hence, [14–16]. it wouldHence, beit would useful be to investigateuseful to investigate the PrRP-induced the PrRP-induced gene expression gene expression profile of profile macrophages of mac- byrophages using RNA-seq. by using RNA-seq. In the present In the study, present the stud effecty, of the PrRP effect on of the PrRP transcriptome on the transcriptome of BMDM wasof BMDM studied was by studied the following by the procedures:following procedures: (a)(a) PrRP31-triggeredPrRP31-triggered differentially expressed genes (DEGs) were acquired from murinemurine bonebone marrow-derived marrow-derived macrophages (BMDMs). Cells treated with 1 nM PrRP31 (18 h) werewere detected by RNA-seq. A A total of 410410 DEGsDEGs werewere obtained.obtained. In addition,addition, thethe influenceinfluence of of PrRP PrRP on on the the morphology morphology of of cells cells was was observed observed with with optical optical microscopy. microscopy. (b)(b) DEGsDEGs were were analyzed by a series of bioinf bioinformaticsormatics approaches, includingincluding GOGO analysis,analysis, functionalfunctional enrichment, enrichment, and protein–protein interaction (PPI)(PPI) studies.studies. Next,Next, eighteight hubhub genesgenes were were finally finally acquired for subsequent study. (c) The three-dimensional structures of hub proteins were studied. By using homology- (c) The three-dimensional structures of hub proteins were studied. By using homology- modeling, the structure of proteins encoded by hub genes (hub proteins) was built. modeling, the structure of proteins encoded by hub genes (hub proteins) was built. Subsequently, molecular dynamics simulations (at least 300 ns) were performed to Subsequently, molecular dynamics simulations (at least 300 ns) were performed to capture the trajectory of hub proteins. Finally, molecular dynamics-optimized protein capture the trajectory of hub proteins. Finally, molecular dynamics-optimized structures of hub proteins were obtained. protein structures of hub proteins were obtained. (d) The docking models of PrRP and hub proteins were predicted with the peptide-protein (d) The docking models of PrRP and hub proteins were predicted with the peptide- docking module of the Rosetta program. protein docking module of the Rosetta program. By studying the influence of PrRP on the gene expression of BMDMs at the tran- By studying the influence of PrRP on the gene expression of BMDMs at the transcrip- scriptome level, we provide clues for exploring the gene expression network of PrRP on tome level, we provide clues for exploring the gene expression network of PrRP on mac- macrophages, which will be helpful to investigate the immune-regulating function of PrRP inrophages, the future which (Figure will1 ).be helpful to investigate the immune-regulating function of PrRP in the future (Figure 1). Figure 1. Schematic diagram of this study. Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 3 of 51 2. Results Int. J. Mol. Sci. 2021, 22, 4456 2.1. PrRP Demonstrated No Significant Effect on the Shape of BMDMs 3 of 46 As displayed in Figure 2A, the cell morphology of BMDMs was detected by electron microscopy. In addition, the purity of BMDMs was evaluated using flow cytometry with anti-CD11b and anti-F4/80 (Figure 2B). The results of flow cytometry showed that the dou- 2. Results ble-positive rate of the BMDMs control group (no antibody was added) was 0.14% (the 2.1. PrRP Demonstrated No Significant Effect on the Shape of BMDMs left side of Figure 2B), whereas the double-positive rate of BMDMs (incubated with anti- F4/80As and displayed anti-CD11b) in Figure 96.7%2A, (right the cell side morphology of Figure 2B). of BMDMs Hence, these was detected data hinted by electron that the microscopy.purity of BMDMs In addition, was acceptable. the purity of BMDMs was evaluated using flow cytometry with anti-CD11bNext, the and morphological anti-F4/80 (Figure characters2B). Theof BMDMs results before of flow and cytometry after PrRP showed exposure that were the double-positive rate of the BMDMs control
Recommended publications
  • A Comparative Survey of the RF-Amide Peptide Superfamily
    EDITORIAL published: 10 August 2015 doi: 10.3389/fendo.2015.00120 Editorial: A comparative survey of the RF-amide peptide superfamily Karine Rousseau 1*, Sylvie Dufour 1 and Hubert Vaudry 2 1 Laboratory of Biology of Aquatic Organisms and Ecosystems (BOREA), Muséum National d’Histoire Naturelle, CNRS 7208, IRD 207, Université Pierre and Marie Curie, UCBN, Paris, France, 2 Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, INSERM U982, International Associated Laboratory Samuel de Champlain, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen, Mont-Saint-Aignan, France Keywords: RF-amide peptides, receptors, evolution, functions, deuterostomes, protostomes The first member of the RF-amide peptide superfamily to be characterized, in 1977, was the cardioexcitatory peptide, FMRFamide, isolated from the ganglia of the clam Macrocallista nimbosa (1). Since then, a large number of such peptides, designated after their C-terminal arginine (R) and amidated phenylalanine (F) residues, have been identified in representative species of all major phyla. The discovery, 12 years ago, that the RF-amide peptide kisspeptin, acting via GPR54, was essential for the onset of puberty and reproduction, has been a major breakthrough in reproductive physiology (2–4). It has also put in front of the spotlights RF-amide peptides and has invigo- rated research on this superfamily of regulatory neuropeptides. The present Research Topic aims at illustrating major advances achieved, through comparative studies in (mammalian and non- mammalian) vertebrates and invertebrates, in the knowledge of RF-amide peptides in terms of evolutionary history and physiological significance. Since 2006, by means of phylogenetic analyses, the superfamily of RFamide peptides has been divided into five families/groups in vertebrates (5, 6): kisspeptin, 26RFa/QRFP, GnIH (including LPXRFa and RFRP), NPFF, and PrRP.
    [Show full text]
  • Program Nr: 1 from the 2004 ASHG Annual Meeting Mutations in A
    Program Nr: 1 from the 2004 ASHG Annual Meeting Mutations in a novel member of the chromodomain gene family cause CHARGE syndrome. L.E.L.M. Vissers1, C.M.A. van Ravenswaaij1, R. Admiraal2, J.A. Hurst3, B.B.A. de Vries1, I.M. Janssen1, W.A. van der Vliet1, E.H.L.P.G. Huys1, P.J. de Jong4, B.C.J. Hamel1, E.F.P.M. Schoenmakers1, H.G. Brunner1, A. Geurts van Kessel1, J.A. Veltman1. 1) Dept Human Genetics, UMC Nijmegen, Nijmegen, Netherlands; 2) Dept Otorhinolaryngology, UMC Nijmegen, Nijmegen, Netherlands; 3) Dept Clinical Genetics, The Churchill Hospital, Oxford, United Kingdom; 4) Children's Hospital Oakland Research Institute, BACPAC Resources, Oakland, CA. CHARGE association denotes the non-random occurrence of ocular coloboma, heart defects, choanal atresia, retarded growth and development, genital hypoplasia, ear anomalies and deafness (OMIM #214800). Almost all patients with CHARGE association are sporadic and its cause was unknown. We and others hypothesized that CHARGE association is due to a genomic microdeletion or to a mutation in a gene affecting early embryonic development. In this study array- based comparative genomic hybridization (array CGH) was used to screen patients with CHARGE association for submicroscopic DNA copy number alterations. De novo overlapping microdeletions in 8q12 were identified in two patients on a genome-wide 1 Mb resolution BAC array. A 2.3 Mb region of deletion overlap was defined using a tiling resolution chromosome 8 microarray. Sequence analysis of genes residing within this critical region revealed mutations in the CHD7 gene in 10 of the 17 CHARGE patients without microdeletions, including 7 heterozygous stop-codon mutations.
    [Show full text]
  • Searching for Novel Peptide Hormones in the Human Genome Olivier Mirabeau
    Searching for novel peptide hormones in the human genome Olivier Mirabeau To cite this version: Olivier Mirabeau. Searching for novel peptide hormones in the human genome. Life Sciences [q-bio]. Université Montpellier II - Sciences et Techniques du Languedoc, 2008. English. tel-00340710 HAL Id: tel-00340710 https://tel.archives-ouvertes.fr/tel-00340710 Submitted on 21 Nov 2008 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITE MONTPELLIER II SCIENCES ET TECHNIQUES DU LANGUEDOC THESE pour obtenir le grade de DOCTEUR DE L'UNIVERSITE MONTPELLIER II Discipline : Biologie Informatique Ecole Doctorale : Sciences chimiques et biologiques pour la santé Formation doctorale : Biologie-Santé Recherche de nouvelles hormones peptidiques codées par le génome humain par Olivier Mirabeau présentée et soutenue publiquement le 30 janvier 2008 JURY M. Hubert Vaudry Rapporteur M. Jean-Philippe Vert Rapporteur Mme Nadia Rosenthal Examinatrice M. Jean Martinez Président M. Olivier Gascuel Directeur M. Cornelius Gross Examinateur Résumé Résumé Cette thèse porte sur la découverte de gènes humains non caractérisés codant pour des précurseurs à hormones peptidiques. Les hormones peptidiques (PH) ont un rôle important dans la plupart des processus physiologiques du corps humain.
    [Show full text]
  • Secretion and LPS-Induced Endotoxin Shock Α Lipopolysaccharide
    IFIT2 Is an Effector Protein of Type I IFN− Mediated Amplification of Lipopolysaccharide (LPS)-Induced TNF- α Secretion and LPS-Induced Endotoxin Shock This information is current as of September 27, 2021. Alexandra Siegfried, Susanne Berchtold, Birgit Manncke, Eva Deuschle, Julia Reber, Thomas Ott, Michaela Weber, Ulrich Kalinke, Markus J. Hofer, Bastian Hatesuer, Klaus Schughart, Valérie Gailus-Durner, Helmut Fuchs, Martin Hrabe de Angelis, Friedemann Weber, Mathias W. Hornef, Ingo B. Autenrieth and Erwin Bohn Downloaded from J Immunol published online 6 September 2013 http://www.jimmunol.org/content/early/2013/09/06/jimmun ol.1203305 http://www.jimmunol.org/ Supplementary http://www.jimmunol.org/content/suppl/2013/09/06/jimmunol.120330 Material 5.DC1 Why The JI? Submit online. by guest on September 27, 2021 • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published September 6, 2013, doi:10.4049/jimmunol.1203305 The Journal of Immunology IFIT2 Is an Effector Protein of Type I IFN–Mediated Amplification of Lipopolysaccharide (LPS)-Induced TNF-a Secretion and LPS-Induced Endotoxin Shock Alexandra Siegfried,*,1 Susanne Berchtold,*,1 Birgit Manncke,* Eva Deuschle,* Julia Reber,* Thomas Ott,† Michaela Weber,‡ Ulrich Kalinke,x Markus J.
    [Show full text]
  • Small Nucleolar Rnas Determine Resistance to Doxorubicin in Human Osteosarcoma
    International Journal of Molecular Sciences Article Small Nucleolar RNAs Determine Resistance to Doxorubicin in Human Osteosarcoma Martina Godel 1, Deborah Morena 1, Preeta Ananthanarayanan 1, Ilaria Buondonno 1, Giulio Ferrero 2,3 , Claudia M. Hattinger 4, Federica Di Nicolantonio 1,5 , Massimo Serra 4 , 1 2 1, , 1, , Riccardo Taulli , Francesca Cordero , Chiara Riganti * y and Joanna Kopecka * y 1 Department of Oncology, University of Torino, 1026 Torino, Italy; [email protected] (M.G.); [email protected] (D.M.); [email protected] (P.A.); [email protected] (I.B.); [email protected] (F.D.N.); [email protected] (R.T.) 2 Department of Computer Science, University of Torino, 10149 Torino, Italy; [email protected] (G.F.); [email protected] (F.C.) 3 Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Italy 4 Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; [email protected] (C.M.H.); [email protected] (M.S.) 5 Candiolo Cancer Institute, FPO–IRCCS, 10060 Candiolo, Italy * Correspondence: [email protected] (C.R.); [email protected] (J.K.); Tel.: +39-0116705857 (C.R.); +39-0116705849 (J.K.) These authors equally contributed to this work. y Received: 31 May 2020; Accepted: 21 June 2020; Published: 24 June 2020 Abstract: Doxorubicin (Dox) is one of the most important first-line drugs used in osteosarcoma therapy. Multiple and not fully clarified mechanisms, however, determine resistance to Dox. With the aim of identifying new markers associated with Dox-resistance, we found a global up-regulation of small nucleolar RNAs (snoRNAs) in human Dox-resistant osteosarcoma cells.
    [Show full text]
  • Entinostat Augments NK Cell Functions Via Epigenetic Upregulation of IFIT1-STING-STAT4 Pathway
    www.oncotarget.com Oncotarget, 2020, Vol. 11, (No. 20), pp: 1799-1815 Research Paper Entinostat augments NK cell functions via epigenetic upregulation of IFIT1-STING-STAT4 pathway John M. Idso1, Shunhua Lao1, Nathan J. Schloemer1,2, Jeffrey Knipstein2, Robert Burns3, Monica S. Thakar1,2,* and Subramaniam Malarkannan1,2,4,5,* 1Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, USA 2Division of Pediatric Hematology-Oncology-BMT, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA 3Bioinformatics Core, Blood Research Institute, Versiti, Milwaukee, WI, USA 4Divson of Hematology-Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA 5Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA *Co-senior authors Correspondence to: Monica S. Thakar, email: [email protected] Subramaniam Malarkannan, email: [email protected] Keywords: NK cells; histone deacetylase inhibitor; Ewing sarcoma; rhabdomyosarcoma; immunotherapy Received: September 10, 2019 Accepted: March 03, 2020 Published: May 19, 2020 Copyright: Idso et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Histone deacetylase inhibitors (HDACi) are an emerging cancer therapy; however, their effect on natural killer (NK) cell-mediated anti-tumor responses remain unknown. Here, we evaluated the impact of a benzamide HDACi, entinostat, on human primary NK cells as well as tumor cell lines. Entinostat significantly upregulated the expression of NKG2D, an essential NK cell activating receptor. Independently, entinostat augmented the expression of ULBP1, HLA, and MICA/B on both rhabdomyosarcoma and Ewing sarcoma cell lines.
    [Show full text]
  • Microarray Analysis of Novel Genes Involved in HSV- 2 Infection
    Microarray analysis of novel genes involved in HSV- 2 infection Hao Zhang Nanjing University of Chinese Medicine Tao Liu ( [email protected] ) Nanjing University of Chinese Medicine https://orcid.org/0000-0002-7654-2995 Research Article Keywords: HSV-2 infection,Microarray analysis,Histospecic gene expression Posted Date: May 12th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-517057/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/19 Abstract Background: Herpes simplex virus type 2 infects the body and becomes an incurable and recurring disease. The pathogenesis of HSV-2 infection is not completely clear. Methods: We analyze the GSE18527 dataset in the GEO database in this paper to obtain distinctively displayed genes(DDGs)in the total sequential RNA of the biopsies of normal and lesioned skin groups, healed skin and lesioned skin groups of genital herpes patients, respectively.The related data of 3 cases of normal skin group, 4 cases of lesioned group and 6 cases of healed group were analyzed.The histospecic gene analysis , functional enrichment and protein interaction network analysis of the differential genes were also performed, and the critical components were selected. Results: 40 up-regulated genes and 43 down-regulated genes were isolated by differential performance assay. Histospecic gene analysis of DDGs suggested that the most abundant system for gene expression was the skin, immune system and the nervous system.Through the construction of core gene combinations, protein interaction network analysis and selection of histospecic distribution genes, 17 associated genes were selected CXCL10,MX1,ISG15,IFIT1,IFIT3,IFIT2,OASL,ISG20,RSAD2,GBP1,IFI44L,DDX58,USP18,CXCL11,GBP5,GBP4 and CXCL9.The above genes are mainly located in the skin, immune system, nervous system and reproductive system.
    [Show full text]
  • A Mon Cher Papa Et Ma Chère Maman, a Mes Sœurs, Ghania, Dalila Et Kaissa, a Mes Frères Smaïl Et Khaled, a Ma Tante Marie-Jo Et Mon Oncle Mohand, Qui Me Sont Chers…
    A mon cher Papa et ma chère Maman, A mes sœurs, Ghania, Dalila et Kaissa, A mes frères Smaïl et Khaled, A ma tante Marie-Jo et mon oncle Mohand, Qui me sont chers… Ce travail a été réalisé au Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine (DC2N), Inserm 1239, dirigé par le Docteur Youssef Anouar sous la direction du Docteur Jérôme Leprince. Je tiens à remercier la Région Normandie pour l’aide financière qui m’a été octroyée durant la préparation de ma thèse de doctorat, ce qui m'a permis de l’effectuer dans les meilleures conditions. Ce travail n’aurait pas pu être conduit à son terme sans l’aide généreuse de plusieurs organismes : - L’institut National de la Santé et de la Recherche Médicale (INSERM) - L’Université de Rouen-Normandie - L’Institut de Recherche et de l’’Innovation Biomédicale (IRIB) - La Plate-Forme Régionale de Recherche en Imagerie Cellulaire de Normandie (PRIMACEN) Monsieur le Dr Frédéric Bihel, Chargé de Recherche CNRS, me fait l’honneur d’être Rapporteur de ce travail. Mesurant pleinement la faveur qu’il m’accorde, je tiens à lui témoigner l’expression de mon profond respect. Monsieur le Dr Xavier Iturrioz, Chargé de Recherche INSERM, a accepté la charge d’être Rapporteur de ce mémoire. Je tiens à le remercier très sincèrement de l’intérêt qu’il témoigne ainsi à nos recherches. Monsieur le Dr Nicolas Chartrel, Directeur de Recherche INSERM, a accepté de participer à ce jury. Je le remercie très sincèrement de l’intérêt qu’il manifeste pour ces travaux.
    [Show full text]
  • Genome-Wide Analysis of DNA Methylation, Copy Number Variation, and Gene Expression in Monozygotic Twins Discordant for Primary Biliary Cirrhosis
    UC Davis UC Davis Previously Published Works Title Genome-wide analysis of DNA methylation, copy number variation, and gene expression in monozygotic twins discordant for primary biliary cirrhosis. Permalink https://escholarship.org/uc/item/34d4m5nk Journal Frontiers in immunology, 5(MAR) ISSN 1664-3224 Authors Selmi, Carlo Cavaciocchi, Francesca Lleo, Ana et al. Publication Date 2014 DOI 10.3389/fimmu.2014.00128 Peer reviewed eScholarship.org Powered by the California Digital Library University of California ORIGINAL RESEARCH ARTICLE published: 28 March 2014 doi: 10.3389/fimmu.2014.00128 Genome-wide analysis of DNA methylation, copy number variation, and gene expression in monozygotic twins discordant for primary biliary cirrhosis Carlo Selmi 1,2*, Francesca Cavaciocchi 1,3, Ana Lleo4, Cristina Cheroni 5, Raffaele De Francesco5, Simone A. Lombardi 1, Maria De Santis 1,3, Francesca Meda1, Maria Gabriella Raimondo1, Chiara Crotti 1, Marco Folci 1, Luca Zammataro1, Marlyn J. Mayo6, Nancy Bach7, Shinji Shimoda8, Stuart C. Gordon9, Monica Miozzo10,11, Pietro Invernizzi 4, Mauro Podda1, Rossana Scavelli 5, Michelle R. Martin12, Michael F. Seldin13,14, Janine M. LaSalle 12 and M. Eric Gershwin2 1 Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center, Milan, Italy 2 Division of Rheumatology, Allergy, and Clinical Immunology, University of California at Davis, Davis, CA, USA 3 BIOMETRA Department, University of Milan, Milan, Italy 4 Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Milan, Italy 5 National Institute of Molecular Genetics (INGM), Milan, Italy 6 University of Texas Southwestern, Dallas, TX, USA 7 Mt. Sinai University, NewYork, NY, USA 8 Clinical Research Center, National Nagasaki Medical Center, Nagasaki, Japan 9 Henry Ford Hospital, Detroit, MI, USA 10 Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy 11 Division of Pathology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy 12 Genome Center and M.I.N.D.
    [Show full text]
  • Genetics of Azoospermia
    International Journal of Molecular Sciences Review Genetics of Azoospermia Francesca Cioppi , Viktoria Rosta and Csilla Krausz * Department of Biochemical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; francesca.cioppi@unifi.it (F.C.); viktoria.rosta@unifi.it (V.R.) * Correspondence: csilla.krausz@unifi.it Abstract: Azoospermia affects 1% of men, and it can be due to: (i) hypothalamic-pituitary dysfunction, (ii) primary quantitative spermatogenic disturbances, (iii) urogenital duct obstruction. Known genetic factors contribute to all these categories, and genetic testing is part of the routine diagnostic workup of azoospermic men. The diagnostic yield of genetic tests in azoospermia is different in the different etiological categories, with the highest in Congenital Bilateral Absence of Vas Deferens (90%) and the lowest in Non-Obstructive Azoospermia (NOA) due to primary testicular failure (~30%). Whole- Exome Sequencing allowed the discovery of an increasing number of monogenic defects of NOA with a current list of 38 candidate genes. These genes are of potential clinical relevance for future gene panel-based screening. We classified these genes according to the associated-testicular histology underlying the NOA phenotype. The validation and the discovery of novel NOA genes will radically improve patient management. Interestingly, approximately 37% of candidate genes are shared in human male and female gonadal failure, implying that genetic counselling should be extended also to female family members of NOA patients. Keywords: azoospermia; infertility; genetics; exome; NGS; NOA; Klinefelter syndrome; Y chromosome microdeletions; CBAVD; congenital hypogonadotropic hypogonadism Citation: Cioppi, F.; Rosta, V.; Krausz, C. Genetics of Azoospermia. 1. Introduction Int. J. Mol. Sci.
    [Show full text]
  • Different Mechanisms of Calcitonin, Calcitonin Gene-Related Peptide
    Henry Ford Hospital Medical Journal Volume 35 Number 2 Second International Workshop on Article 20 MEN-2 6-1987 Different Mechanisms of Calcitonin, Calcitonin Gene-Related Peptide, and Somatostatin Regulation by Glucocorticoids in a Cell Culture of Human Medullary Thyroid Carcinoma Gilbert J. Cote Robert F. Gagel Follow this and additional works at: https://scholarlycommons.henryford.com/hfhmedjournal Part of the Life Sciences Commons, Medical Specialties Commons, and the Public Health Commons Recommended Citation Cote, Gilbert J. and Gagel, Robert F. (1987) "Different Mechanisms of Calcitonin, Calcitonin Gene-Related Peptide, and Somatostatin Regulation by Glucocorticoids in a Cell Culture of Human Medullary Thyroid Carcinoma," Henry Ford Hospital Medical Journal : Vol. 35 : No. 2 , 149-152. Available at: https://scholarlycommons.henryford.com/hfhmedjournal/vol35/iss2/20 This Article is brought to you for free and open access by Henry Ford Health System Scholarly Commons. It has been accepted for inclusion in Henry Ford Hospital Medical Journal by an authorized editor of Henry Ford Health System Scholarly Commons. Different Mechanisms of Calcitonin, Calcitonin Gene-Related Peptide, and Somatostatin Regulation by Glucocorticoids in a Cell Culture of Human Medullary Thyroid Carcinoma Gilbert J. Cote, and Robert F. Gagel* We have employed the TT cell line, a model for the human medullary thyroid carcinoma cell, lo study the regulation of peptide hormone production by glucocorticoids. Complementary DNA probes were used to measure the calcitonin (CT), CT gene-related peptide (CGRP), and somatostatin (SRIF) mRNA levels. Dose-response experiments in serum-free medium showed that dexamethasone (six-day treatment) lowered somatostatin (to 1% of basal) and CGRP mRNA (to 50% of basal) and stimulated CT mRNA (threefold to thirteenfold) with a half-maximal effective concentration of 10 " M.
    [Show full text]
  • Mechanisms of Hormone Action: Peptide Hormones
    Frontiers in Reproductive Endocrinology Serono Symposia International Mechanisms of Hormone Action: Peptide Hormones Kelly Mayo Northwestern University Mechanisms of Cell Communication Endocrine Signaling Paracrine Signaling Autocrine Juxtacrine Signaling Signaling Endocrine Signaling 1 Emergence of Key Concepts in Hormone Action Berthold, 1849 Starling, 1905 Castrated cockerels and Stimulation of pancreatic restored male sex enzyme secretion by characteristics by replacing humoral factor (secretin) testes in the abdomen from intestinal extracts “Endocrinology” “Hormone” Langley, 1906 Sutherland, 1962 Action of nicotine and Glycogen metabolism and curare on the ‘receptive hormonal activation of substance’ of the liver phosphorylase neuromuscular junction enzyme by cAMP “Receptor” “Second Messenger” Structural Diversity in Reproductive Hormonal Signaling Molecules pyroGlu His Trp Ser HOOC OH Tyr Gly OH Leu N O Arg HO H Pro O OH Gly GlyNH2 FSH GnRH Estradiol PGF2a Nitric Oxide Protein Peptide Steroid Eicosanoid Gas 203 aa 10 aa MW 272 MW 330 MW 30 2 Measuring Receptor-Ligand Interaction ka R (receptor) + H (hormone)! ! RH (complex) Total Binding kd Specific Binding Ka = [RL] Kd = [R][L] ! [R][L] ! [RL] (units are moles -1) (units are moles) Nonspecific Binding Fractional Binding Total R, RT= [R] + [RL], so: Kd = [RT-RL][L] [Hormone] [RL] Rearrange to: [L] = [RL](Kd + [L] [RT] ~Kd Fraction of receptor [RL] = [L] = 1 ocupied by ligand: [RT] Kd + [L] 1 + Kd ! ! ! ! [L] Fractional Binding At 50% occupancy (1/2), Kd = [L] log [Hormone] General
    [Show full text]