Chemistry of Pancreatic Polypeptide Hormone with Official Preparation

Total Page:16

File Type:pdf, Size:1020Kb

Chemistry of Pancreatic Polypeptide Hormone with Official Preparation wjpmr, 2020,6(9), 102-114 SJIF Impact Factor: 5.922 WORLD JOURNAL OF PHARMACEUTICAL Review Article Arpan et al. World Journal of Pharmaceutical and Medical Research AND MEDICAL RESEARCH ISSN 2455-3301 www.wjpmr.com Wjpmr CHEMISTRY OF PANCREATIC POLYPEPTIDE HORMONE WITH OFFICIAL PREPARATION Arpan Chanda*1, Arunava Chandra Chandra2, Dr. Dhrubo Jyoti Sen2 and Dr. Dhananjoy Saha3 1Department of Pharmaceutical Chemistry, Netaji Subhas Chandra Bose Institute of Pharmacy, Roypara, Chakdaha Dist–Nadia, Pin‒741222, West Bengal, India. 2Department of Pharmaceutical Chemistry, School of Pharmacy, Techno India University, Salt‒Lake City, Sector‒V, EM‒4, Kolkata‒700091, West Bengal, India. 3Deputy Director of Technical Education, Directorate of Technical Education, Bikash Bhavan, Salt Lake City, Kolkata‒700091, West Bengal, India. *Corresponding Author: Arpan Chanda Department of Pharmaceutical Chemistry, Netaji Subhas Chandra Bose Institute of Pharmacy, Roypara, Chakdaha Dist–Nadia, Pin‒741222, West Bengal, India. Article Received on 05/07/2020 Article Revised on 26/07/2020 Article Accepted on 16/08/2020 ABSTRACT Insulin which is a peptide hormone is produced by β‒cells of the pancreatic islets and it is considered to be the main anabolic hormone of the body. It further regulates the metabolism of carbohydrates, fats and protein by promoting the absorption of glucose from the blood into liver, fat and skeletal muscle cells. In these tissues the absorbed glucose from the blood is thus converted into either glycogen via glycogenesis or fats (triglycerides) via lipogenesis, or, in the case of the liver both glycogenesis and lipogenesis. Glucose production and secretion by the liver is strongly supported by high concentrations of insulin in the blood. Circulating insulin on the other hand also affects the synthesis of proteins in a wide variety of tissues. It is thus an anabolic hormone which promotes the conversion of small molecules in the circulating blood into large molecules inside the cells. Conversely low insulin levels in the blood have the opposite effect that promotes widespread catabolism, especially of reserve body fat. β‒cells of the pancreatic islets are specifically sensitive to blood sugar levels thus they secrete insulin into the circulating blood in response to high level of glucose; and conversely inhibits the secretion of insulin when blood glucose levels are low. Insulin is responsible for glucose uptake and metabolism in the cells, therefore reducing the blood sugar level. The α‒ cells which are present near the β‒cells of the pancreatic islets, takes their cues from the β‒cells and secretes glucagon into the blood in just the opposite manner i.e. increased glucagon secretion when blood glucose is low, and decreased glucagon secretion when glucose concentrations are high. Glucagon thus increases blood glucose level by stimulating glycogenolysis and gluconeogenesis in the liver. The secretion of insulin and glucagon into the circulating blood in respective response to the glucose concentrations in the blood is termed as glucose homeostasis. Insulin was the first peptide hormone discovered. Frederick Banting and Charles Herbert Best, working in the laboratory of J.J.R. Macleod at the University of Toronto, were the first to isolate insulin from dog pancreas in 1921. Frederick Sanger sequenced the amino acid structure in 1951, which made insulin the first protein to be fully sequenced. The crystal structure of insulin in the solid state was determined by Dorothy Hodgkin in 1969. Insulin is also the first protein to be chemically synthesized and produced by DNA recombinant technology. It is on the WHO Model List of Essential Medicines, the most important medications needed in a basic health system. KEYWORDS: α-cells, β-cells, Islets of Langerhans, Insulin, Glucagon, Polypeptide, Disulfide bonds, Lente Insulin, Semi Lente Insulin, Glucogenesis, Glycogenesis, Type-1 diabetes, Type-2 diabetes. INTRODUCTION These two are the basis of administration of two different types of commercially available insulins. The main Physiological insulin consists of two constituents they objective of insulin therapy in diabetes is to accomplish are: permanent blood glucose management by simulating 1. Basal (a relatively constant background level of normal insulin secretion from the pancreas. insulin during the fasting and post absorptive period) and Long‒acting insulins supply basal insulin, on the other 2. Bolus (prandial spikes of insulin after eating) hand short‒acting ones provide postprandial requirements. Elevation of postprandial blood glucose www.wjpmr.com 102 Arpan et al. World Journal of Pharmaceutical and Medical Research level results to notably elevation of glycated hemoglobin measured in milligrams per deciliter (mg/dL). Normal (HbA1C) values and resulting long term complications results for the two‒hour postprandial test based on age of diabetes. Therefore, postprandial regulation of blood are: For those who do not have diabetes: less than 140 glucose is indispensable for optimum diabetes disease mg/dL. For those who have diabetes: less than 180 management. Test results vary by age and are usually mg/dL.[1] Figure‒1: Frederick Sanger (Nobel Laureate), Frederick Banting (Nobel Laureate) and Charles Best (Medical Scientist); the scientists in Insulin discovery. In 1921, insulin was first given to a diabetic dog, and crystalline insulin. Insulin preparations consist of the thus was paving the way for human insulin therapy. All amino acid sequence of human insulin or variations insulin preparations are currently generated by thereof (insulin analogues). Eli Lilly and Sanofi used a recombinant DNA technology. Doses and concentration non‒pathogenic strain of Escherichia coli to synthesize levels of insulin preparations used in clinics are indicated insulin; whereas Novo Nordisk uses Saccharomyces by international units. Indeed, one international unit of cerevisiae, or bakers’ yeast.[2] insulin is defined as the bioequivalent of 34.7μg of Figure‒2: Insulin I.P. Official Preparation: The human insulin protein is clear solutions at neutral pH and have minor amounts of made up of 51 amino acids, with a molecular mass of zinc (for greater stability and shelf life). The insulin 5808 Da. It is a heterodimer of two chains i.e. an molecules usually exist as dimers which joins together to A‒chain and a B‒chain, which are linked together by form hexamers. Thus, when two zinc ions are present in disulfide bonds. Insulin's structure varies slightly the formulation and the formed hexamers further between different species of animals. Insulin from typically exhibit elevated stability in the presence of animal sources differs somewhat in effectiveness (in phenolic compounds such as phenol and meta‒cresol. carbohydrate metabolism effects) from human insulin because of these variations. Porcine insulin is especially Pharmacokinetic properties of different types of somewhat close to the human version, and was widely short‒acting insulins are summarized in Table‒1. used to treat type‒1 diabetic before human insulin could Various clinical studies have indicated that the right time be produced in large quantities by recombinant DNA for pre‒prandial administration of regular human insulin technologies. and rapid‒acting insulin are 45 and 15 min before food, respectively. In general, the quick onset of action is Short‒acting Insulin Preparations: The regular human considered ideal as the patient can begin his food insulin and the rapidly acting insulin analogues are immediately after administering the dose.[3] For healthy considered as short‒acting formulations. Usually they are adults, normal pre‒prandial glucose levels are 70‒99 www.wjpmr.com 103 Arpan et al. World Journal of Pharmaceutical and Medical Research mg/dl. A pre‒prandial glucose reading of 100‒125 mg/dl The storage condition of the short‒acting insulin indicates prediabetes. preparations are given in Table‒2. Figure‒3: Slow and Rapid action of Insulin. Long‒acting Insulin Preparation NPH: NPH is an shaking of the insulin should be avoided because this equivalent mixture of protamine with native insulin in results in formation of foam, which disrupts the accurate water for injection adjusted to pH 7.1‒7.4 with measurement of the dose. To prevent clogging at the tip phosphate buffer. It is an opaque suspension consisting of the needle, NPH should be injected rapidly (<5sec) of rod‒shaped insulin crystals with particle size <30µm. subcutaneous.[4] Thawing refrigerated insulin to room The preparation should be free of large aggregates temperature prior to use will decrease irritation at the followed by moderate shaking for consistent absorption. injection site. The storage condition of the long‒acting The expiry date of the formulation should not be more insulin preparations are given in Table‒2. than 24‒36months from the date of manufacturing. In general, the absorption of NPH insulin is quick from Unopened vials of suspensions and prefilled syringes abdominal fat, relatively slow from posterior upper arms should be refrigerated between 2‒8°C and should not be and lateral thigh area, and slowest from superior buttocks subjected to freezing (<2°C) or exposed to heat (>30°C) area. Patients should be cautious for initial signs of or sunlight. Pharmacokinetic properties of long‒acting frosting or clumping of this insulin, as it shows a insulins are summarized in Table‒1. Pharmacokinetic noticeable loss of potency. This form of insulin must not properties of different insulin preparations are be administered through intravenous route. Since the summarized in the following Table. There is great active ingredient of this insulin is in the precipitate state, variability in the time of onset of action, peak effect, and vial should be gently agitated and mixed thoroughly to duration of action of insulin amongst individuals and assure a uniform mixture for accurate measurement of even with repeated doses in the same individual each dose. This is usually done by slowly swirling or depending on the dose size, the injection site, the carefully shaking or inverting the vial several times exercise, the desire of circulating anti‒insulin before withdrawal of each insulin dose.
Recommended publications
  • Different Mechanisms of Calcitonin, Calcitonin Gene-Related Peptide
    Henry Ford Hospital Medical Journal Volume 35 Number 2 Second International Workshop on Article 20 MEN-2 6-1987 Different Mechanisms of Calcitonin, Calcitonin Gene-Related Peptide, and Somatostatin Regulation by Glucocorticoids in a Cell Culture of Human Medullary Thyroid Carcinoma Gilbert J. Cote Robert F. Gagel Follow this and additional works at: https://scholarlycommons.henryford.com/hfhmedjournal Part of the Life Sciences Commons, Medical Specialties Commons, and the Public Health Commons Recommended Citation Cote, Gilbert J. and Gagel, Robert F. (1987) "Different Mechanisms of Calcitonin, Calcitonin Gene-Related Peptide, and Somatostatin Regulation by Glucocorticoids in a Cell Culture of Human Medullary Thyroid Carcinoma," Henry Ford Hospital Medical Journal : Vol. 35 : No. 2 , 149-152. Available at: https://scholarlycommons.henryford.com/hfhmedjournal/vol35/iss2/20 This Article is brought to you for free and open access by Henry Ford Health System Scholarly Commons. It has been accepted for inclusion in Henry Ford Hospital Medical Journal by an authorized editor of Henry Ford Health System Scholarly Commons. Different Mechanisms of Calcitonin, Calcitonin Gene-Related Peptide, and Somatostatin Regulation by Glucocorticoids in a Cell Culture of Human Medullary Thyroid Carcinoma Gilbert J. Cote, and Robert F. Gagel* We have employed the TT cell line, a model for the human medullary thyroid carcinoma cell, lo study the regulation of peptide hormone production by glucocorticoids. Complementary DNA probes were used to measure the calcitonin (CT), CT gene-related peptide (CGRP), and somatostatin (SRIF) mRNA levels. Dose-response experiments in serum-free medium showed that dexamethasone (six-day treatment) lowered somatostatin (to 1% of basal) and CGRP mRNA (to 50% of basal) and stimulated CT mRNA (threefold to thirteenfold) with a half-maximal effective concentration of 10 " M.
    [Show full text]
  • Mechanisms of Hormone Action: Peptide Hormones
    Frontiers in Reproductive Endocrinology Serono Symposia International Mechanisms of Hormone Action: Peptide Hormones Kelly Mayo Northwestern University Mechanisms of Cell Communication Endocrine Signaling Paracrine Signaling Autocrine Juxtacrine Signaling Signaling Endocrine Signaling 1 Emergence of Key Concepts in Hormone Action Berthold, 1849 Starling, 1905 Castrated cockerels and Stimulation of pancreatic restored male sex enzyme secretion by characteristics by replacing humoral factor (secretin) testes in the abdomen from intestinal extracts “Endocrinology” “Hormone” Langley, 1906 Sutherland, 1962 Action of nicotine and Glycogen metabolism and curare on the ‘receptive hormonal activation of substance’ of the liver phosphorylase neuromuscular junction enzyme by cAMP “Receptor” “Second Messenger” Structural Diversity in Reproductive Hormonal Signaling Molecules pyroGlu His Trp Ser HOOC OH Tyr Gly OH Leu N O Arg HO H Pro O OH Gly GlyNH2 FSH GnRH Estradiol PGF2a Nitric Oxide Protein Peptide Steroid Eicosanoid Gas 203 aa 10 aa MW 272 MW 330 MW 30 2 Measuring Receptor-Ligand Interaction ka R (receptor) + H (hormone)! ! RH (complex) Total Binding kd Specific Binding Ka = [RL] Kd = [R][L] ! [R][L] ! [RL] (units are moles -1) (units are moles) Nonspecific Binding Fractional Binding Total R, RT= [R] + [RL], so: Kd = [RT-RL][L] [Hormone] [RL] Rearrange to: [L] = [RL](Kd + [L] [RT] ~Kd Fraction of receptor [RL] = [L] = 1 ocupied by ligand: [RT] Kd + [L] 1 + Kd ! ! ! ! [L] Fractional Binding At 50% occupancy (1/2), Kd = [L] log [Hormone] General
    [Show full text]
  • Pancreatic Polypeptide — a Postulated New Hormone
    Diabetologia 12, 211-226 (1976) Diabetologia by Springer-Verlag 1976 Pancreatic Polypeptide - A Postulated New Hormone: Identification of Its Cellular Storage Site by Light and Electron Microscopic Immunocytochemistry* L.-I. Larsson, F. Sundler and R. H~ikanson Departments of Histology and Pharmacology, University of Lund, Lund, Sweden Summary. A peptide, referred to as pancreatic Key words: Pancreatic hormones, "pancreatic polypeptide (PP), has recently been isolated from the polypeptide", islet cells, gastrointestinal hormones, pancreas of chicken and of several mammals. PP is immunocytochemistry, fluorescence histochemistry. thought to be a pancreatic hormone. By the use of specific antisera we have demonstrated PP im- munoreactivity in the pancreas of a number of mam- mals. The immunoreactivity was localized to a popula- tion of endocrine cells, distinct from the A, B and D While purifying chicken insulin Kimmel and co- cells. In most species the PP cells occurred in islets as workers detected a straight chain peptide of 36 amino well as in exocrine parenchyma; they often predomi- acids which they named avian pancreatic polypeptide nated in the pancreatic portion adjacent to the (APP) [1, 2]. By radioimmunoassay APP was de- duodenum. In opossum and dog, PP cells were found tected in pancreatic extracts from a number of birds also in the gastric mucosa. In opossum, the PP cells and reptiles, and was found to circulate in plasma displayed formaldehyde- induced fluorescence typical where its level varied with the prandial state [3]. From of dopamine, whereas no formaldehyde-induced mammalian pancreas Chance and colleagues isolated fluorescence was detected in the PP cells of mouse, rat peptides that were very similar to APP [see 4].
    [Show full text]
  • Metals Influence C-Peptide Hormone Related to Insulin 17 May 2019, by Andy Fell
    Metals influence C-peptide hormone related to insulin 17 May 2019, by Andy Fell in the body. "A metal is an ingredient—what you do with it is what makes the difference," Heffern said. Her laboratory at UC Davis is using new techniques to understand how metals are distributed inside and outside cells, how they bind to proteins and other molecules and the subtle influences they have on those molecules. The new study looked at C-peptide, or connecting peptide, a short chain of amino acids. C-peptide is being investigated for potential in treating kidney disease and nerve damage in diabetes, so any better understanding of how it behaves in different conditions could be useful in drug development. UC Davis chemist Marie Heffern is pioneering a new field, metalloendocrinology, exploring how metals such Influencing shape and uptake by cells as iron, zinc and copper influence hormones. Credit: Gregory Urquiaga/UC Davis When the pancreas makes insulin, C-peptide connects two chains of insulin in a preliminary step. C-peptide is then cut out, stored along with insulin and released at the same time. C-peptide used to Metals such as zinc, copper and chromium bind to be considered a byproduct of insulin production but and influence a peptide involved in insulin now scientists know that it acts as a hormone in its production, according to new work from chemists own right. at the University of California, Davis. The research is part of a new field of "metalloendocrinology" that The researchers measured how readily zinc, takes a detailed look at the role of metals in copper and chromium bound to C-peptide in test biological processes in the body.
    [Show full text]
  • Insulin and Leptin As Adiposity Signals
    Insulin and Leptin as Adiposity Signals STEPHEN C. BENOIT,DEBORAH J. CLEGG,RANDY J. SEELEY, AND STEPHEN C. WOODS Department of Psychiatry, University of Cincinnati Medical Center, Cincinnati, Ohio 45267 ABSTRACT There is now considerable consensus that the adipocyte hormone leptin and the pancreatic hormone insulin are important regulators of food intake and energy balance. Leptin and insulin fulfill many of the requirements to be putative adiposity signals to the brain. Plasma leptin and insulin levels are positively correlated with body weight and with adipose mass in particular. Furthermore, both leptin and insulin enter the brain from the plasma. The brain expresses both insulin and leptin receptors in areas important in the control of food intake and energy balance. Consistent with their roles as adiposity signals, exogenous leptin and insulin both reduce food intake when administered locally into the brain in a number of species under different experimental paradigms. Additionally, central administration of insulin antibodies increases food intake and body weight. Recent studies have demonstrated that both insulin and leptin have additive effects when administered simulta- neously. Finally, we recently have demonstrated that leptin and insulin share downstream neuropep- tide signaling pathways. Hence, insulin and leptin provide important negative feedback signals to the central nervous system, proportional to peripheral energy stores and coupled with catabolic circuits. I. Overview When maintained on an ad libitum diet, most animals — including humans — are able to precisely match caloric intake with caloric expenditure, resulting in relatively stable energy stores as adipose tissue (Kennedy, 1953; Keesey, 1986). Growing emphasis has been placed on the role of the central nervous system (CNS) in controlling this precision of energy homeostasis.
    [Show full text]
  • Prolactin-Releasing Peptide: Physiological and Pharmacological Properties
    International Journal of Molecular Sciences Review Prolactin-Releasing Peptide: Physiological and Pharmacological Properties Veronika Pražienková 1, Andrea Popelová 1, Jaroslav Kuneš 1,2 and Lenka Maletínská 1,* 1 Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences 16610 Prague, Czech Republic; [email protected] (V.P.); [email protected] (A.P.); [email protected] (J.K.) 2 Experimental Hypertension, Institute of Physiology of the Czech Academy of Sciences, 14200 Prague, Czech Republic * Correspondence: [email protected]; Tel.: +420-220-183-567 Received: 2 October 2019; Accepted: 23 October 2019; Published: 24 October 2019 Abstract: Prolactin-releasing peptide (PrRP) belongs to the large RF-amide neuropeptide family with a conserved Arg-Phe-amide motif at the C-terminus. PrRP plays a main role in the regulation of food intake and energy expenditure. This review focuses not only on the physiological functions of PrRP, but also on its pharmacological properties and the actions of its G-protein coupled receptor, GPR10. Special attention is paid to structure-activity relationship studies on PrRP and its analogs as well as to their effect on different physiological functions, mainly their anorexigenic and neuroprotective features and the regulation of the cardiovascular system, pain, and stress. Additionally, the therapeutic potential of this peptide and its analogs is explored. Keywords: prolactin-releasing peptide; GPR10; RF-amide peptides; food intake regulation; energy expenditure; neuroprotection; signaling 1. Introduction There is no doubt that the function of prolactin-releasing peptide (PrRP) in organisms is quite important as its structure is well conserved within different animal species.
    [Show full text]
  • The Peptide Hormone Cholecystokinin Links Obesity To
    Published OnlineFirst May 1, 2020; DOI: 10.1158/2159-8290.CD-RW2020-065 RESEARCH WATCH Pancreatic Cancer Major Finding: Beta-cell cholecystokinin Concept: Early weight loss in this Impact: This study mechanistically expression in obese mice promoted pan- mouse model suppressed tumorigene- links obesity to PDAC and suggests creatic ductal adenocarcinoma (PDAC) . sis, but later-stage weight loss did not . when intervention may be effective . THE PEPTIDE HORMONE CHOLECYSTOKININ LINKS OBESITY TO PANCREATIC CANCER Obesity is a contributor to pancreatic ductal ade- tions in the fi broinfl ammatory microenvironment nocarcinoma (PDAC), but the mechanisms under- were not causative in PDAC development could not lying this phenomenon are not fully established. be ruled out. Interestingly, although pancreatic islets Furthermore, it is unclear whether or at what point showed evidence of obesity-induced adaptation, during PDAC development weight-loss interven- increased insulin levels or insulin signaling did not tions may be benefi cial. To investigate this, Chung, appear to be to blame for the increase in tumorigen- Singh, Lawres, Dorans, and colleagues developed esis in obese mice. Instead, upregulation of the pep- an autochthonous mouse model of Kras-mutant, tide hormone cholecystokinin (CCK) by beta cells genetically obesity-driven PDAC. These mice exhibited early- in obese mice was observed to promote PDAC development, onset ob esity due to leptin defi ciency and had more rapid PDAC and increased obesity in humans without known malignancy progression
    [Show full text]
  • And Insulin Receptor-Encoding Mrnas in Rainbow Trout
    REGULATION OF INSULIN-AND INSULIN RECEPTOR-ENCODING mRNAS IN RAINBOW TROUT, Oncorhynchus mykiss A Dissertation Submitted to the Graduate Faculty of the North Dakota State University of Agriculture and Applied Science By Michael Alexander Caruso In Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Program: Cellular and Molecular Biology July 2011 Fargo, North Dakota North Dakota State University Graduate School Title REGULATION OF INSULIN-AND INSULIN RECEPTOR-ENCODING mRNAS IN RAINBOW TROUT, Oncorhynchus mykiss By Michael A. Caruso The Supervisory Committee certifies that this disquisition complies with North Dakota State University’s regulations and meets the accepted standards for the degree of DOCTOR OF PHILOSOPHY SUPERVISORY COMMITTEE: Dr. Mark Sheridan Chair Dr. Peggy Biga Dr. Wendy Reed Dr. Jane Schuh Approved: 7/29/2011 Dr. Wendy Reed Date Department Chair ABSTRACT In this work, rainbow trout were used as a model system to examine the regulation of insulin (INS)- and insulin receptor (IR)-encoding mRNA expression profiles. INS- and IR-encoding mRNAs were isolated, cloned, and sequenced; and shown to be differentially expressed within and among multiple tissue types. Regulation was examined through various nutritional and hormonal treatments (in vivo and in vitro). A real-time quantitative- PCR assay was developed to measure the respective levels of mRNA expression. Fasting, growth hormone (GH), and somatostatin (SS) differentially regulated INS and IR mRNAs within selected tissues, in vivo. Glucose, GH, SS, and insulin-like growth factor-1 (IGF-I) differentially regulated INS and IR mRNAs within selected tissues, in vitro. The results of this dissertation research display the identification and differential regulation of multiple INS- and IR-encoding mRNAs and suggest that independent mechanisms may serve to regulate the various isoforms in a tissue-specific manner.
    [Show full text]
  • 60 YEARS of POMC: POMC: the Consummate Peptide Hormone
    56:4 A J L CLARK and P LOWRY 60 years of POMC 56:4 E1–E2 Editorial 60 YEARS OF POMC POMC: the consummate peptide hormone precursor Correspondence Adrian J L Clark1 and Philip Lowry2 should be addressed to A J L Clark or P Lowry 1Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, Email London, UK [email protected] or 2Emeritus Professor School of Biological Sciences, The University of Reading, Reading, UK [email protected] Proopiomelanocortin (POMC) has been at the forefront peptidylglycine α-amidating monooxygenase enzymes of molecular endocrinology for the past 60 years, and the whose far wider role continues to be an active area of concepts derived from POMC research have led the way research and is reviewed by Dhivya Kumar and colleagues in understanding a wide range of endocrine systems. In (Kumar et al. 2016). The subsequent trafficking, sorting, this issue, we celebrate this enormous body of work with and storage of POMC products before secretion has also contributions from an outstanding faculty of contributors, contributed significantly to our knowledge of the broader many of whom have led these discoveries. The story aspects of this process and is reviewed by Peng Loh and begins approximately 60 years ago when Li and colleagues colleagues (Cawley et al. 2016). reported purifying and sequencing ACTH (Li et al. 1955, Cloning of the POMC gene confirmed the Dixon & Li 1956). They and others subsequently reported highly tissue-specific nature of its expression and purification ofα - and β-MSH; however, it was with the simultaneously revealed the nature of its promoter.
    [Show full text]
  • Identification, Characterization and Application of Autoantigens in Type 1 Diabetes Mellitus
    IDENTIFICATION, CHARACTERIZATION AND APPLICATION OF AUTOANTIGENS IN TYPE 1 DIABETES MELLITUS Henk-Jan Aanstoot IDENTIFICATION, CHARACTERIZATION AND APPLICATION OF AUTOANTIGENS IN TYPE 1 DIABETES MELLITUS IDENTIFICATIE, KARAKTERISERING EN TOEPASSINGEN VAN AUTOANTIGENEN BIJ TYPE 1 DIABETES MELLITUS PROEFSCHRIFT TER VERKRIJGING VAN DE GRAAD VAN DOCTOR AAN DE ERASMUS UNIVERSITEIT ROTTERDAM OP GEZAG VAN DE RECTOR MAGNIFICUS Prof. Dr. P.WC. AKKERMANS M.Lit EN VOLGENS BESLUIT VAN HET COLLEGE VAN DEKANEN. DE OPENBARE VERDEDIGING ZAL PLAATSVINDEN OP VRIJDAG 5 NOVEMBER 1993 OM 16.00 UUR DOOR HENDRIK-JAN AANSTOOT GEBOREN TE DEVENTER OFFSETDRUKKEA!J HAVEKA BV, ALBL.ASSERDAM PROMOTIECOMMISSIE PROMOTORES: Prof. Dr. H.K.A. Visser Prof. Dr. H. Galjaard CO-PROMOTOR: Dr. G.J. Bruining OVERIGE LEDEN: Prof. Dr. S.W.J. Lamberts Prof Dr. R. Benner The work presented in this thesis was generously supported by grants from the "Ter Meulen Fonds" (Koninklijke Nederlandse Academie van Wetenschappen), the "Albert Renold Fellowship" of the European Association for the Study of Diabetes (EASD), the Sophia Foundation for Medical Research (SSWO), the Child Health and Wellbeing Fund, Rotterdam and Novo-Nordisk A/S, Denmark. Additional generous support was given by the Rotterdam Council of Clinical Genetics (Stichting Klinische Genetica Rotterdam). Printing of this thesis was possible with generous support form Novo-Nordisk, Nederland B. V. 'Door de vreugde van de ontdekking verblind, zullen wij niet uit het oog verliezen, dat het insuline nog s/echts een eerste schrede is op den weg eener oorzakelijke behandeling der suikerziekte' A.A. Hijmans van den Berg, 1925, Utrecht , Voordrachten over suikerziekte, 278. opgedragen aan de grate mensen van morgen 7 CONTENTS OUTLINE AND AIMS OF THIS THESIS 11 Chapter 1 GENERAL INTRODUCTION 13 1 .1 Diabetes Mellitus.
    [Show full text]
  • A Peptide-Hormone-Inactivating Endopeptidase in Xenopus Laevis Skin Secretion
    Proc. Nati. Acad. Sci. USA Vol. 89, pp. 84-88, January 1992 Biochemistry A peptide-hormone-inactivating endopeptidase in Xenopus laevis skin secretion (metailoendopeptidase/neutral endopeptidase/thermolysin) KRISHNAMURTI DE MORAIS CARVALHO*, CARINE JOUDIOU, HAMADI BOUSSETTA, ANNE-MARIE LESENEY, AND PAUL COHEN Groupe de Neurobiochimie Cellulaire et Moldculaire de l'Universitd Pierre et Marie Curie, Unit6 de Recherche Associ6e 554 au Centre National de la Recherche Scientifique, % Boulevard Raspail, 75006 Paris, France Communicated by I. Robert Lehman, September 16, 1991 ABSTRACT An endopeptidase was isolated from Xenopus Indeed the Ser-Phe dipeptide, or a related motif such as laevis skin secretions. This enzyme, which has an apparent Phe-Phe, Ala-Phe, or His-Phe, is often present near the molecular mass of 100 kDa, performs a selective cleavage at the carboxyl terminus of substances from the bombesin and Xaa-Phe, Xaa-Leu, or Xaa-Ile bond (Xaa = Ser, Phe, Tyr, His, tachykinin families (1). Xaa-Phe, Xaa-Leu, or Xaa-Ile was or Gly) of a number of peptide hormones, including atrial also found frequently at a similar position in other peptide natriuretic factor, substance P, angiotensin H, bradykinin, hormone sequences of higher organisms, notably in atrial somatostatin, neuromedins B and C, and litorin. The peptidase natriuretic factor (ANF). exhibited optimal activity at pH 7.5 and aKm in the micromolar We have purified this enzyme 2029-fold and demonstrate range. No cleavage was produced in vasopressin, ocytocin, that it inactivates ANF by exclusive cleavage of the Ser25- minigastrin I, and [Leu5Jenkephalin, which include in their Phe26 bond and similarly inactivates a number of important sequence an Xaa-Phe, Xaa-Leu, or Xaa-Ile motif.
    [Show full text]
  • Vagal, Cholinergic Regulation of Pancreatic Polypeptide Secretion
    Vagal, Cholinergic Regulation of Pancreatic Polypeptide Secretion T. W. Schwartz, … , O. B. Schaffalitzky de Muckadell, F. Stadil J Clin Invest. 1978;61(3):781-789. https://doi.org/10.1172/JCI108992. Research Article The effect of efferent, parasympathetic stimulation upon pancreatic polypeptide (PP) secretion was studied in three ways: (a) Plasma PP concentrations increased in response to insulin-induced hypoglycemia in both normal subjects, from 11 pM (9.5-12.5) to 136 pM (118-147), n = 8 (median and interquartile range) and in duodenal ulcer patients, from 33 pM (21- 52) to 213 pM (157-233), n = 7. The PP response to hypoglycemia was diminished by atropine in normal subjects P( < 0.005) and completely abolished by vagotomy in the duodenal ulcer patients. (b) Electrical stimulation, 8 Hz, of the vagal nerves in anesthetized pigs induced an increase in portal PP concentrations within 30 s from 32 pM (28-39) to 285 pM (248-294), n = 12. Minimal stimulatory frequency was 0.5 Hz and maximal stimulatory frequency 8-12 Hz. Atropine inhibited the PP response to electrical stimulation. Median inhibition with 0.5 mg of atropine/kg body wt was 74%, range 31-90%, n = 6. The response was eliminated by hexamethonium. Adrenergic alpha and beta blockade did not influence the release of PP in response to vagal stimulation. (c) Acetylcholine stimulated, in a dose-dependent manner, the secretion of PP from the isolated perfused porcine pancreas, half-maximal effective dose being 0.19 μM; maximal PP output in response to 5 min stimulation was 228 pmol, range 140-342 pmol, n = 5.
    [Show full text]