A Unified Format for Language Documents

Total Page:16

File Type:pdf, Size:1020Kb

A Unified Format for Language Documents A Unified Format for Language Documents Vadim Zaytsev and Ralf L¨ammel Software Languages Team Universit¨atKoblenz-Landau Universit¨atsstraße 1 56072 Koblenz Germany Abstract. We have analyzed a substantial number of language doc- umentation artifacts, including language standards, language specifica- tions, language reference manuals, as well as internal documents of stan- dardization bodies. We have reverse-engineered their intended internal structure, and compared the results. The Language Document Format (LDF), was developed to specifically support the documentation domain. We have also integrated LDF into an engineering discipline for language documents including tool support, for example, for rendering language documents, extracting grammars and samples, and migrating existing documents into LDF. The definition of LDF, tool support for LDF, and LDF applications are freely available through SourceForge. Keywords: language documentation, language document engineering, grammar engineering, software language engineering 1 Introduction Language documents form an important basis for software language engineering activities because they are primary references for the development of grammar- based tools. These documents are often viewed as static, read-only artifacts. We contend that this view is outdated. Language documents contain formalized elements of knowledge such as grammars and code examples. These elements should be checked and made available for the development of grammarware. Also, language documents may contain other formal statements, e.g., assertions about backward compatibility or the applicability of parsing technology. Again, such assertions should be validated in an automated fashion. Furthermore, the maintenance of language documents should be supported by designated tools for the benefit of improved consistency and traceability. In an earlier publication, a note for ISO [KZ05], we have explained why a language standardization body needs grammar engineering (or document engineering). This paper presents a data model (say, metamodel or grammar) for develop- ing language documents. Upon analyzing and reverse-engineering a wide range of language documents, which included international ISO-approved standards and vendor-specific 4GL manuals, we have designed a general format for lan- guage documents, the Language Document Format (LDF), which supports the 2 Vadim Zaytsev and Ralf L¨ammel documentation of languages in a domain-specific manner. We have integrated LDF with a formalism for syntax definition that we designed and successfully utilized in previous work [LZ09,LZ10,Zay10b]. We have integrated LDF also with existing tools and methods for grammar engineering from our previous work; see the grammar life cycle at the top of Figure 1 for an illustration. Furthermore, we have added LDF-specific tools, and begun working towards a discipline of language document engineering. There is support for creating, rendering, testing, and transforming language documents; see the document life cycle at the bottom of Figure 1 for an illustration. Given the new format LDF, it is particularly important that there are document extractors so that one can construct consistent LDF documents from existing language documents. In this paper, we will be mainly interested in LDF as the format for language documents, and the survey that supports the synthesis of the LDF format. The broader discussion of language document engineering is only sketched here. For instance, most aspects of rich tool support are deferred to substantial future work efforts. LDF can be seen as an application of literate programming [Knu84] ideology to the domain of language documentation: we aim to have one artifact that is both readable and executable. By \readable" we mean its readability, under- standability and information retrievability qualities. By \executable" we assume a proper environment such as a compiler compiler (for parser definitions) or a web browser (for hyperlinked grammars). LDF provides us with a data model narrowly tailored to the domain; it allows us to focus on one baseline artifact which is meant for both understanding and formal specification. Other artifacts such as grammars, test sets, web pages, language manuals and change documents are considered secondary in that they are to be generated or programmed. The full realization of this approach relies on a transformation language for language documents that we will briefly discuss. Summary of contributions { We have analyzed a substantial number of language documentation artifacts, including language standards, specifications and manuals of languages such as BNF dialects, C, C++, C#, Cobol dialects, Fortran, 4GLs, Haskell, Jovial, Python, SDF, XML, and other data modeling languages. Company-specific internal documents and software engineering books that document a software language (e.g., [GHJV95] with the well-known design patterns) were also researched. The objective of the analysis was to identify domain concepts and structuring principles of language documentation. { We have designed the Language Document Format (LDF) to specifically sup- port the documentation domain, and to make available language documents to language document engineering. A Unified Format for Language Documents 3 Grammar focus evolution restructuring XML Schema Prolog abstraction mapping correction specialization XML (W3C, Ecore, ...) HTML XSLT XSLT XBGF TXL TXL + XSLT XSLT BNF Extracted Transformed XBGF robust grammar grammar XSLT parser (BGF) (BGF) BNF in HTML XSLT? SDF ASF SDF ? ... ... Document focus evolution improvement ... HTML XML Schema Prolog XSLT mapping XLDF TeX XSLT W3C XML XSLT Extracted Transformed LaTeX XLDF robust parser document document (LDF) (LDF) PDF HTML XSLT DocBook XSLT? ... DocBook ... Fig. 1. Megamodels related to language document engineering. At the top, we see the life cycle of grammar extraction, recovery, and deployment. Grammars are extracted from existing software artifacts on the left, and represented in the unified format BGF. Grammars may then be subject to transformation using the XBGF trans- formation language. Parsers, browsable grammars, and other \executable" artifacts are delivered on the right. Such grammar engineering feeds into language document engi- neering. At the bottom, we see the life cycle of language document extraction, language (document) evolution, generation of end-user documents, extraction of grammars and test suites. Non-LDF documents can be converted to LDF through the extraction shown on the left. Document transformation may be needed for very different reasons, e.g., structure recovery or language evolution; see the reference to XLDF, which is the transformation language for LDF. 4 Vadim Zaytsev and Ralf L¨ammel Validation We have applied LDF to a number of language documentation problems, but a detailed discussion of such problems is not feasible in this paper for space reasons. For instance, we have applied language document engineering system- atically to the documentation of XBGF|the transformation language for BGF grammars which is used extensively in our work on grammar convergence; the outcome of this case study is available online [Zay09]. In the current paper, we briefly consider mapping W3C XML to LDF, specifically W3C's XPath stan- dard; this case study is available online, too [W3C]. In the former case, we rely on a document extractor that processes XSD schemata in a specific manner. In the latter case, the extractor maps W3C's XML Spec Schema to LDF. More generally, the SourceForge project \Software Processing Language Suite" (SLPS)1 hosts the abovementioned two case studies, the LDF definition, tool support for LDF, other LDF applications, and all other grammars and tools mentioned in this paper and our referenced, previous work. For instance, we refer to the SLPS Zoo2, which contains a collection of grammars that we ex- tracted from diverse language documents. The next step would be to properly LDF-enable all these documents. Road-map The rest of the paper is organized as follows. x2 discusses the state of the art in language documentation as far as it affects our focus on a format for language documents and its role in language document engineering. x3 identifies the con- cepts of language documentation as they are to be supported by a unified format for language documents, and as they can be inferred, to some extent, from exist- ing language documents. x4 describes the Language Document Format (LDF) in terms of the definitional grammar for LDF. It also provides a small scenario for language document transformation. x5 discusses related work (beyond the state of the art section). x6 concludes the paper. 2 State of the art in language documentation As a means of motivation for our research on a unified format for language documents, let us study the state of the art in this area. The bottom line of this discussion is that real-world language documents are engineered at a relatively low level of support for the language documentation domain. 2.1 Background on language standardization In practice, all mainstream languages are somehow standardized; the standard of a mainstream language would need to be considered the primary language doc- ument. For instance, the typical standard for a programming language entails 1 SLPS project, slps.sf.net. 2 SLPS Zoo, slps.sf.net/zoo. A Unified Format for Language Documents 5 grammar knowledge and substantial textual parts for the benefit of understand- ing the language. Let us provide some background on language standardization.
Recommended publications
  • Why ODF?” - the Importance of Opendocument Format for Governments
    “Why ODF?” - The Importance of OpenDocument Format for Governments Documents are the life blood of modern governments and their citizens. Governments use documents to capture knowledge, store critical information, coordinate activities, measure results, and communicate across departments and with businesses and citizens. Increasingly documents are moving from paper to electronic form. To adapt to ever-changing technology and business processes, governments need assurance that they can access, retrieve and use critical records, now and in the future. OpenDocument Format (ODF) addresses these issues by standardizing file formats to give governments true control over their documents. Governments using applications that support ODF gain increased efficiencies, more flexibility and greater technology choice, leading to enhanced capability to communicate with and serve the public. ODF is the ISO Approved International Open Standard for File Formats ODF is the only open standard for office applications, and it is completely vendor neutral. Developed through a transparent, multi-vendor/multi-stakeholder process at OASIS (Organization for the Advancement of Structured Information Standards), it is an open, XML- based document file format for displaying, storing and editing office documents, such as spreadsheets, charts, and presentations. It is available for implementation and use free from any licensing, royalty payments, or other restrictions. In May 2006, it was approved unanimously as an International Organization for Standardization (ISO) and International Electrotechnical Commission (IEC) standard. Governments and Businesses are Embracing ODF The promotion and usage of ODF is growing rapidly, demonstrating the global need for control and choice in document applications. For example, many enlightened governments across the globe are making policy decisions to move to ODF.
    [Show full text]
  • Circular Economy and Standardization
    G7 WORKSHOP, 20-21 MARCH 2019 TOOLS MAKING VALUE CHAINS MORE CIRCULAR AND RESOURCE EFFICIENT STANDARDIZATION STANDARDIZATION A FRAMEWORK FOR PROGRESS FOR ALL Olivier Peyrat ISO Board member Past ISO VP Finance AFNOR CEO SUCCESS STORIES OF STANDARDIZATION LIFE CYCLE ASSESSMENT 100 million mobile phones Forgotten in cupboards and drawers in France* € 124 million in gold lost due for failing to recycle 27,000 tons printed circuit boards in France in 2012* 3 YEARS average interval for replacing for mobile phones in Europe* ISO 14040 : Life Cycle Assessment the purpose of LCA is to identify ways of reducing environmental impact at each ones of these stages. It is important to decision-makers in the industry: • preservation of resources • energy choices • production modes Tool for implementing the Paris Agreement, LCA reveals that 70% of environmental impact is determined at the raw material stage. * Rapport n°850 du Sénat, 27 septembre 2016 Référence document Page 2 INTERNATIONAL ORGANIZATIONS International standards: volontary implementation International UIT ISO IEC level National level National standardization body (AFNOR, BSI, DIN, SAC, ANSI…) European ETSI CEN CENELEC level European standards: mandatory implementation Référence document Page 3 STANDARDIZATION STRATEGY ON CIRCULAR ECONOMY Climate change Resources New principles New paradigms Standards: Compilations of good practices New business models circular economy in standardization documents Page 4 STANDARDIZATION STRATEGY ON CIRCULAR ECONOMY What are the expected benefits of standards
    [Show full text]
  • National and International Standardization of Radiation Dosimetry
    National and International Standardization of Radiation Dosimetry PROCEEDINGS OF A SYMPOSIUM ATLANTA 5 -9 DECEMBER 1977 V tTj? INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA, 1978 >*___¿I? NATIONAL AND INTERNATIONAL STANDARDIZATION OF RADIATION DOSIMETRY VOL.II The following States are Members of the International Atomic Energy Agency: AFGHANISTAN HOLY SEE PHILIPPINES ALBANIA HUNGARY POLAND ALGERIA ICELAND PORTUGAL ARGENTINA INDIA QATAR AUSTRALIA INDONESIA ROMANIA AUSTRIA IRAN SAUDI ARABIA BANGLADESH IRAQ SENEGAL BELGIUM IRELAND SIERRA LEONE BOLIVIA ISRAEL SINGAPORE BRAZIL ITALY SOUTH AFRICA BULGARIA IVORY COAST SPAIN BURMA JAMAICA SRI LANKA BYELORUSSIAN SOVIET JAPAN SUDAN SOCIALIST REPUBLIC JORDAN SWEDEN CANADA KENYA SWITZERLAND CHILE KOREA, REPUBLIC OF SYRIAN ARAB REPUBLIC COLOMBIA KUWAIT THAILAND COSTA RICA LEBANON TUNISIA CUBA LIBERIA TURKEY CYPRUS LIBYAN ARAB JAMAHIRIYA UGANDA CZECHOSLOVAKIA LIECHTENSTEIN UKRAINIAN SOVIET SOCIALIST DEMOCRATIC KAMPUCHEA LUXEMBOURG REPUBLIC DEMOCRATIC PEOPLE’S MADAGASCAR UNION OF SOVIET SOCIALIST REPUBLIC OF KOREA MALAYSIA REPUBLICS DENMARK MALI UNITED ARAB EMIRATES DOMINICAN REPUBLIC MAURITIUS UNITED KINGDOM OF GREAT ECUADOR MEXICO BRITAIN AND NORTHERN EGYPT MONACO IRELAND EL SALVADOR MONGOLIA UNITED REPUBLIC OF ETHIOPIA MOROCCO CAMEROON FINLAND NETHERLANDS UNITED REPUBLIC OF FRANCE NEW ZEALAND TANZANIA GABON NICARAGUA UNITED STATES OF AMERICA GERMAN DEMOCRATIC REPUBLIC NIGER URUGUAY GERMANY, FEDERAL REPUBLIC OF NIGERIA VENEZUELA GHANA NORWAY VIET NAM GREECE PAKISTAN YUGOSLAVIA GUATEMALA PANAMA ZAIRE HAITI PARAGUAY ZAMBIA PERU The Agency’s Statute was approved on 23 October 1956 by the Conference on the Statute of the IAEA held at United Nations Headquarters, New York; it entered into force on 29 July 1957. The Headquarters of the Agency are situated in Vienna. Its principal objective is “ to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world” .
    [Show full text]
  • The Industrial Revolution in Services *
    The Industrial Revolution in Services * Chang-Tai Hsieh Esteban Rossi-Hansberg University of Chicago and NBER Princeton University and NBER May 12, 2021 Abstract The U.S. has experienced an industrial revolution in services. Firms in service in- dustries, those where output has to be supplied locally, increasingly operate in more markets. Employment, sales, and spending on fixed costs such as R&D and man- agerial employment have increased rapidly in these industries. These changes have favored top firms the most and have led to increasing national concentration in ser- vice industries. Top firms in service industries have grown entirely by expanding into new local markets that are predominantly small and mid-sized U.S. cities. Market concentration at the local level has decreased in all U.S. cities but by significantly more in cities that were initially small. These facts are consistent with the availability of a new menu of fixed-cost-intensive technologies in service sectors that enable adopters to produce at lower marginal costs in any markets. The entry of top service firms into new local markets has led to substantial unmeasured productivity growth, particularly in small markets. *We thank Adarsh Kumar, Feng Lin, Harry Li, and Jihoon Sung for extraordinary research assistance. We also thank Rodrigo Adao, Dan Adelman, Audre Bagnall, Jill Golder, Bob Hall, Pete Klenow, Hugo Hopenhayn, Danial Lashkari, Raghuram Rajan, Richard Rogerson, and Chad Syverson for helpful discussions. The data from the US Census has been reviewed by the U.S. Census Bureau to ensure no confidential information is disclosed. 2 HSIEH AND ROSSI-HANSBERG 1.
    [Show full text]
  • Understanding Ict Standardization: Principles and Practice
    UNDERSTANDING ICT STANDARDIZATION: PRINCIPLES AND PRACTICE Dr. habil. Nizar Abdelkafi Prof. Raffaele Bolla Cees J.M. Lanting Dr. Alejandro Rodriguez-Ascaso Marina Thuns Dr. Michelle Wetterwald UNDERSTANDING ICT STANDARDIZATION: PRINCIPLES AND PRACTICE Dr. habil. Nizar Abdelkafi Prof. Raffaele Bolla Cees J.M. Lanting Dr. Alejandro Rodriguez-Ascaso Marina Thuns Dr. Michelle Wetterwald UNDERSTANDING ICT STANDARDIZATION: PRINCIPLES AND PRACTICE This publication does not constitute an official or agreed position of ETSI, nor of its Members. The views expressed are entirely those of the authors. ETSI declines all responsibility for any errors and any loss or damage resulting from use of the contents of this publication. ETSI also declines responsibility for any infringement of any third party's Intellectual Property Rights (IPR), but will be pleased to acknowledge any IPR and correct any infringement of which it is advised. The European Commission support for the production of this publication does not constitute endorsement of the contents which reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein. © ETSI 2018. All rights reserved. Reuse and reproduction in whole is permitted for non-commercial purposes provided the copy is complete and unchanged with acknowledgement of the source (including this copyright statement). For any other purposes, ETSI's permission shall be required. The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners. ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no right to use or reproduce any trademark and/or tradename.
    [Show full text]
  • Nuclear Power Standardization
    NUCLEAR POWER STANDARDIZATION By Robert Zuppert INTRODUCTION America has not ordered a new nuclear power plant since the 1970s. France, by contrast, has built 58 plants in the same period. And today, France gets more than 78 percent of its electricity from safe, clean nuclear power.1 America’s production of nuclear power plants in the United States has been stagnant for nearly 30 years. On the forefront of the failure of the government and private sector to revitalize the nuclear power industry has been the lack of standardization within the licensing, construction and operation of nuclear power plants. The failure to standardize all facets of nuclear power prevented the industry from being able to continue its licensing process following the nuclear accident at Three Mile Island in 1979. “After Three Mile Island (TMI), plants already designed and built, or partially built, incurred additional costs and delays associated with changes resulting from TMI.”2 Throughout this research paper, I will analyze the history of nuclear power and how the lack of a formal standardization process significantly affected the licensing process of nuclear reactors by the Nuclear Regulatory Commission (NRC). From the early licensing process, I will present why standardization was needed in the nuclear power industry and how the NRC implemented their new standardized licensing process for all nuclear reactors. Following my analysis, I will offer recommendations to help improve the current status of standardization in 1 Bush, George W. “A Secure Energy Future for America.” Nuclear Plant Journal. Vol. 23, Iss. 3 (May/Jun 2005), 42. 2 Blankinship, Steve.
    [Show full text]
  • Standardization and Innovation
    innovationISO-CERN conference proceedings, 13-14 November 2014 Standardization and innovation Contents Foreword1 . ......................................................................................................................................1 Session 1 Creating and disseminating technologies, opening new markets .......9 Chair’s remarks . ......................................................................................................................................9 Speech 1.1 Using standards to go beyond the standard model ........................................................................11 Speech 1.2 Weaving the Web...............................................................................21 Speech 1.3 Clean care is safer care ............................................................29 Speech 1.4 Riding the media bits ..................................................................50 Speech 1.5 Technology projects and standards in the aviation sector ..................................................................58 Session 2 Innovation and business strategy ........63 Chair’s remarks . ..................................................................................................................................63 Speech 2.1 Bringing radical innovations to the marketplace .........................................................................65 Speech 2.2 Growth through partnerships and licensing technologies ................................................ 84 Speech 2.3 Standards, an innovation booster
    [Show full text]
  • IC18-005-002 Approved by IESS SMDC 18 December 2020
    African Standardization Strategy and Roadmap for the 4th Industrial Revolution Industry Connections Activity Initiation Document (ICAID) Version: 2.0, 11 November 2020 IC18-005-002 Approved by IESS SMDC 18 December 2020 Instructions Instructions on how to fill out this form are shown in red. It is recommended to leave the instructions in the final document and simply add the requested information where indicated. Shaded Text indicates a placeholder that should be replaced with information specific to this ICAID, and the shading removed. Completed forms, in Word format, or any questions should be sent to the IEEE Standards Association (IEEE SA) Industry Connections Committee (ICCom) Administrator at the following address: [email protected]. The version number above, along with the date, may be used by the submitter to distinguish successive updates of this document. A separate, unique Industry Connections (IC) Activity Number will be assigned when the document is submitted to the ICCom Administrator. 1. Contact Provide the name and contact information of the primary contact person for this IC activity. Affiliation is any entity that provides the person financial or other substantive support, for which the person may feel an obligation. If necessary, a second/alternate contact person’s information may also be provided. Name: Dr. Eve Gadzikwa Email Address: [email protected] Employer: Standards Association of Zimbabwe (SAZ) Affiliation: Standards Association of Zimbabwe IEEE collects personal data on this form, which is made publicly available, to allow communication by materially interested parties and with Activity Oversight Committee and Activity officers who are responsible for IEEE work items.
    [Show full text]
  • American National Standard Screw Threads
    CS25-30 Special Screw Threads U. S. DEPARTMENT OF COMMERCE BUREAU OF STANDARDS AMERICAN NATIONAL SPECIAL SCREW THREADS COMMERCIAL STANDARD CS25-30 ELIMINATION OF WASTE Through SIMPLIFIED COMMERCIAL PRACTICE Below are described some of the series of publications of the Department of Commerce which deal with various phases of waste elimination. Simplified Practice Recommendations. These present in detail the development of programs to eliminate unnecessary variety in sizes, dimensions, styles, and types of over 100 commodities. They also contain lists of associations and individuals who have indicated their intention to adhere to the recommendations. These simplified schedules, as formulated and approved by the industries, are indorsed by the Department of Commerce. Commercial Standards. These are developed by various industries under a procedure similar to that of simplified practice recom- mendations. They are, however, primarily concerned with considerations of grade, quality, and such other characteristics as are outside the scope of dimensional simplification. American Marine Standards. These are promulgated by the American Marine Standards Committee, which is controlled by the marine industry and administered as a unit of the division of simplified practice. Their object is to promote economy in construction, equipment, maintenance, and operation of ships. In general, they provide for simplification and improvement of design, interchangeability of parts, and minimum requisites of quality for efficient and safe operation. Lists of the publications in each of the above series can be obtained by. applying to the Division of Trade Standards, Bureau of Standards, Washington, D. C. U. S. DEPARTMENT OF COMMERCE R. P, LAMONT, Secretary BUREAU OF STANDARDS GEORGE K.
    [Show full text]
  • The Impact of the Fourth Industrial Revolution: a Cross-Country/Region Comparison
    ISSN 1980-5411 (On-line version) Production, 28, e20180061, 2018 DOI: 10.1590/0103-6513.20180061 The impact of the fourth industrial revolution: a cross-country/region comparison Yongxin Liaoa*, Eduardo Rocha Louresa, Fernando Deschampsa, Guilherme Brezinskia, André Venâncioa aPontifícia Universidade Católica do Paraná, Curitiba, PR, Brazil *[email protected] Abstract The fourth industrial revolution stimulates the advances of science and technology, in which the Internet of Things (IoT) and its supporting technologies serve as backbones for Cyber-Physical Systems (CPS) and smart machines are used as the promoters to optimize production chains. Such advancement goes beyond the organizational and territorial boundaries, comprising agility, intelligence, and networking. This scenario triggers governmental efforts that aim at defining guidelines and standards. The speed and complexity of the transition to the new digitalization era in a globalized environment, however, does not yet allow a common and coordinated understanding of the impacts of the actions undertaken in different countries and regions. The aim of this paper, therefore, is to bridge this gap through a systematic literature review that identifies the most influential public policies and evaluates their existing differences. This cross-country/region comparison provides a worldwide panorama of public policies’ durations, main objectives, available funding, areas for action, focused manufacturing sectors, and prioritized technologies. Findings of this review can be used as the basis to analyse the position of a country against the existing challenges imposed towards its own industrial infrastructure and also to coordinate its public policies. Keywords The fourth industrial revolution. Cross-country/region comparison. Systematic literature review. Qualitative analysis.
    [Show full text]
  • The 'Standardization of Catastrophe': Nuclear Disarmament, the Humanitarian Initiative and the Politics of the Unthinkable
    This is a repository copy of The ‘standardization of catastrophe’: Nuclear disarmament, the Humanitarian Initiative and the politics of the unthinkable. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/103407/ Version: Accepted Version Article: Considine, L orcid.org/0000-0002-6265-3168 (2017) The ‘standardization of catastrophe’: Nuclear disarmament, the Humanitarian Initiative and the politics of the unthinkable. European Journal of International Relations, 23 (3). pp. 681-702. ISSN 1354-0661 https://doi.org/10.1177/1354066116666332 © The Author(s) 2016. This is an author produced version of a paper accepted for publication in European Journal of International Relations. Uploaded in accordance with the publisher's self-archiving policy. Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ The ‘standardization of catastrophe’: Nuclear disarmament, the Humanitarian Initiative and the politics of the unthinkable Abstract This article reviews the recent Humanitarian Initiative in the nuclear disarmament movement and the associated non-proliferation and disarmament literature.
    [Show full text]
  • Standardization in History: a Review Essay with an Eye to the Future
    Standardization in History: A Review Essay with an Eye to the Future ANDREW L. RUSSELL Department of the History of Science and Technology, The Johns Hopkins University Abstract: This article presents an overview of recent work by historians on standards and standardization. Historical research can be useful for informing policymakers and strategists about specific aspects of the standards process; it may also provoke reflections on long-term trends or neglected aspects of standardization. In the first section, the historical literature is analyzed under five themes: politics, business & economics, science & technology, labor, and culture & ideas. These five themes provide structure for speculations in the second section about some of the salient issues that will face both the engineers who create future generations of standards as well as the future historians who will analyze their efforts. Introduction History is the witness that testifies to the passing of time; it illuminates reality, vitalizes memory, provides guidance in daily life, and brings us tidings of antiquity. - Marcus Tullius Cicero The recent surge of academic interest in standardization is not limited to students of business, economics, and engineering. Over the past fifteen years, a steady increase in research by historians examines standardization for examples of cooperation and competition in human affairs. In a broad sense, standardization is the process of articulating and implementing technical knowledge. Standards can emerge as the consequence of consensus, the imposition of authority, or a combination of both. Since this process contains many different facets, historians have found that standardization provides plenty of material to address some major historical issues. This article—necessarily illustrative instead of comprehensive—is organized around two questions.
    [Show full text]