Fall 2013 Body Only.Indd
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Self-Repair and Self-Cleaning of the Lepidopteran Proboscis
Clemson University TigerPrints All Dissertations Dissertations 8-2019 Self-Repair and Self-Cleaning of the Lepidopteran Proboscis Suellen Floyd Pometto Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations Recommended Citation Pometto, Suellen Floyd, "Self-Repair and Self-Cleaning of the Lepidopteran Proboscis" (2019). All Dissertations. 2452. https://tigerprints.clemson.edu/all_dissertations/2452 This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, please contact [email protected]. SELF-REPAIR AND SELF-CLEANING OF THE LEPIDOPTERAN PROBOSCIS A Dissertation Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy ENTOMOLOGY by Suellen Floyd Pometto August 2019 Accepted by: Dr. Peter H. Adler, Major Advisor and Committee Co-Chair Dr. Eric Benson, Committee Co-Chair Dr. Richard Blob Dr. Patrick Gerard i ABSTRACT The proboscis of butterflies and moths is a key innovation contributing to the high diversity of the order Lepidoptera. In addition to taking nectar from angiosperm sources, many species take up fluids from overripe or sound fruit, plant sap, animal dung, and moist soil. The proboscis is assembled after eclosion of the adult from the pupa by linking together two elongate galeae to form one tube with a single food canal. How do lepidopterans maintain the integrity and function of the proboscis while foraging from various substrates? The research questions included whether lepidopteran species are capable of total self- repair, how widespread the capability of self-repair is within the order, and whether the repaired proboscis is functional. -
Phylogeny and Evolution of Lepidoptera
EN62CH15-Mitter ARI 5 November 2016 12:1 I Review in Advance first posted online V E W E on November 16, 2016. (Changes may R S still occur before final publication online and in print.) I E N C N A D V A Phylogeny and Evolution of Lepidoptera Charles Mitter,1,∗ Donald R. Davis,2 and Michael P. Cummings3 1Department of Entomology, University of Maryland, College Park, Maryland 20742; email: [email protected] 2Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560 3Laboratory of Molecular Evolution, Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland 20742 Annu. Rev. Entomol. 2017. 62:265–83 Keywords Annu. Rev. Entomol. 2017.62. Downloaded from www.annualreviews.org The Annual Review of Entomology is online at Hexapoda, insect, systematics, classification, butterfly, moth, molecular ento.annualreviews.org systematics This article’s doi: Access provided by University of Maryland - College Park on 11/20/16. For personal use only. 10.1146/annurev-ento-031616-035125 Abstract Copyright c 2017 by Annual Reviews. Until recently, deep-level phylogeny in Lepidoptera, the largest single ra- All rights reserved diation of plant-feeding insects, was very poorly understood. Over the past ∗ Corresponding author two decades, building on a preceding era of morphological cladistic stud- ies, molecular data have yielded robust initial estimates of relationships both within and among the ∼43 superfamilies, with unsolved problems now yield- ing to much larger data sets from high-throughput sequencing. Here we summarize progress on lepidopteran phylogeny since 1975, emphasizing the superfamily level, and discuss some resulting advances in our understanding of lepidopteran evolution. -
Bosco Palazzi
SHILAP Revista de Lepidopterología ISSN: 0300-5267 ISSN: 2340-4078 [email protected] Sociedad Hispano-Luso-Americana de Lepidopterología España Bella, S; Parenzan, P.; Russo, P. Diversity of the Macrolepidoptera from a “Bosco Palazzi” area in a woodland of Quercus trojana Webb., in southeastern Murgia (Apulia region, Italy) (Insecta: Lepidoptera) SHILAP Revista de Lepidopterología, vol. 46, no. 182, 2018, April-June, pp. 315-345 Sociedad Hispano-Luso-Americana de Lepidopterología España Available in: https://www.redalyc.org/articulo.oa?id=45559600012 How to cite Complete issue Scientific Information System Redalyc More information about this article Network of Scientific Journals from Latin America and the Caribbean, Spain and Journal's webpage in redalyc.org Portugal Project academic non-profit, developed under the open access initiative SHILAP Revta. lepid., 46 (182) junio 2018: 315-345 eISSN: 2340-4078 ISSN: 0300-5267 Diversity of the Macrolepidoptera from a “Bosco Palazzi” area in a woodland of Quercus trojana Webb., in southeastern Murgia (Apulia region, Italy) (Insecta: Lepidoptera) S. Bella, P. Parenzan & P. Russo Abstract This study summarises the known records of the Macrolepidoptera species of the “Bosco Palazzi” area near the municipality of Putignano (Apulia region) in the Murgia mountains in southern Italy. The list of species is based on historical bibliographic data along with new material collected by other entomologists in the last few decades. A total of 207 species belonging to the families Cossidae (3 species), Drepanidae (4 species), Lasiocampidae (7 species), Limacodidae (1 species), Saturniidae (2 species), Sphingidae (5 species), Brahmaeidae (1 species), Geometridae (55 species), Notodontidae (5 species), Nolidae (3 species), Euteliidae (1 species), Noctuidae (96 species), and Erebidae (24 species) were identified. -
Influence of Habitat and Bat Activity on Moth Community Composition and Seasonal Phenology Across Habitat Types
INFLUENCE OF HABITAT AND BAT ACTIVITY ON MOTH COMMUNITY COMPOSITION AND SEASONAL PHENOLOGY ACROSS HABITAT TYPES BY MATTHEW SAFFORD THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in Entomology in the Graduate College of the University of Illinois at Urbana-Champaign, 2018 Urbana, Illinois Advisor: Assistant Professor Alexandra Harmon-Threatt, Chair and Director of Research ABSTRACT Understanding the factors that influence moth diversity and abundance is important for monitoring moth biodiversity and developing conservation strategies. Studies of moth habitat use have primarily focused on access to host plants used by specific moth species. How vegetation structure influences moth communities within and between habitats and mediates the activity of insectivorous bats is understudied. Previous research into the impact of bat activity on moths has primarily focused on interactions in a single habitat type or a single moth species of interest, leaving a large knowledge gap on how habitat structure and bat activity influence the composition of moth communities across habitat types. I conducted monthly surveys at sites in two habitat types, restoration prairie and forest. Moths were collected using black light bucket traps and identified to species. Bat echolocation calls were recorded using ultrasonic detectors and classified into phonic groups to understand how moth community responds to the presence of these predators. Plant diversity and habitat structure variables, including tree diameter at breast height, ground cover, and vegetation height were measured during summer surveys to document how differences in habitat structure between and within habitats influences moth diversity. I found that moth communities vary significantly between habitat types. -
Lepidoptera: Noctuoidea: Erebidae) and Its Phylogenetic Implications
EUROPEAN JOURNAL OF ENTOMOLOGYENTOMOLOGY ISSN (online): 1802-8829 Eur. J. Entomol. 113: 558–570, 2016 http://www.eje.cz doi: 10.14411/eje.2016.076 ORIGINAL ARTICLE Characterization of the complete mitochondrial genome of Spilarctia robusta (Lepidoptera: Noctuoidea: Erebidae) and its phylogenetic implications YU SUN, SEN TIAN, CEN QIAN, YU-XUAN SUN, MUHAMMAD N. ABBAS, SAIMA KAUSAR, LEI WANG, GUOQING WEI, BAO-JIAN ZHU * and CHAO-LIANG LIU * College of Life Sciences, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China; e-mails: [email protected] (Y. Sun), [email protected] (S. Tian), [email protected] (C. Qian), [email protected] (Y.-X. Sun), [email protected] (M.-N. Abbas), [email protected] (S. Kausar), [email protected] (L. Wang), [email protected] (G.-Q. Wei), [email protected] (B.-J. Zhu), [email protected] (C.-L. Liu) Key words. Lepidoptera, Noctuoidea, Erebidae, Spilarctia robusta, phylogenetic analyses, mitogenome, evolution, gene rearrangement Abstract. The complete mitochondrial genome (mitogenome) of Spilarctia robusta (Lepidoptera: Noctuoidea: Erebidae) was se- quenced and analyzed. The circular mitogenome is made up of 15,447 base pairs (bp). It contains a set of 37 genes, with the gene complement and order similar to that of other lepidopterans. The 12 protein coding genes (PCGs) have a typical mitochondrial start codon (ATN codons), whereas cytochrome c oxidase subunit 1 (cox1) gene utilizes unusually the CAG codon as documented for other lepidopteran mitogenomes. Four of the 13 PCGs have incomplete termination codons, the cox1, nad4 and nad6 with a single T, but cox2 has TA. It comprises six major intergenic spacers, with the exception of the A+T-rich region, spanning at least 10 bp in the mitogenome. -
Moths of Trinity River National Wildlife Refuge
U.S. FishFish & & Wildlife Wildlife Service Service Moths of Trinity River National Wildlife Refuge Established in 1994, the 25,000-acre Givira arbeloides Trinity River National Wildlife Refuge Prionoxystus robiniae is a remnant of what was once a much Carpenterworm Moth larger, frequently flooded, bottomland hardwood forest. You are still able to Crambid Snout Moths (Crambidae) view vast expanses of ridge and swale Achyra rantalis floodplain features, numerous bayous, Garden Webworm Moth oxbow lakes, and cypress/tupelo swamps Aethiophysa invisalis along the Trinity River. It is one of Argyria lacteella only 14 priority-one bottomland sites Milky Urola Moth identified for protection in the Texas Carectocultus perstrialis Bottomland Protection Plan. Texas is Reed-boring Crambid Moth home to an estimated 4,000 species of Chalcoela iphitalis moths. Most of the nearly 400 species of Sooty-winged Chalcoela moths listed below were photographed Chrysendeton medicinalis around the security lights at the Refuge Bold Medicine Moth Headquarters building located adjacent Colomychus talis to a bottomland hardwood forest. Many Distinguished Colomychus more moths are not even attracted to Conchylodes ovulalis lights, so additional surveys will need Zebra Conchylodes to be conducted to document those Crambus agitatellus species. These forests also support a Double-banded Grass-veneer wide diversity of mammals, reptiles, Crambus satrapellus amphibians, and fish with many feeding Crocidophora tuberculalis on moths or their larvae. Pale-winged Crocidophora Moth Desmia funeralis For more information, visit our website: Grape leaf-folder www.fws.gov/southwest Desmia subdivisalis Diacme elealis Contact the Refuge staff if you should Paler Diacme Moth find an unlisted or rare species during Diastictis fracturalis your visit and provide a description. -
Moths Postfire to Feb16 2021 by Family
Species present after fire - by family Scientific Name Common Name Taxon Family Name Anthela acuta Common Anthelid Moth Anthelidae Anthela ferruginosa Anthelidae Anthela ocellata Eyespot Anthelid Moth Anthelidae Labdia chryselectra Cosmopterigidae Limnaecia sp. Cosmopterigidae Limnaecia camptosema Cosmopterigidae Macrobathra alternatella Cosmopterigidae Macrobathra astrota Cosmopterigidae Macrobathra leucopeda Cosmopterigidae Ptilomacra senex Cossidae Achyra affinitalis Cotton Web Spinner Crambidae Culladia cuneiferellus Crambidae Eudonia aphrodes Crambidae Hednota sp. Crambidae Hednota bivittella Crambidae Hednota pleniferellus Crambidae Heliothela ophideresana Crambidae Hellula hydralis cabbage centre grub Crambidae Hygraula nitens Pond moth Crambidae Metasia capnochroa Crambidae Metasia dicealis Crambidae Metasia liophaea Crambidae Musotima nitidalis Golden-brown Fern Moth Crambidae Musotima ochropteralis Australian maidenhair fern moth Crambidae Nacoleia oncophragma Crambidae Nacoleia rhoeoalis Crambidae Scoparia chiasta Crambidae Scoparia emmetropis Crambidae Scoparia exhibitalis Crambidae Scopariinae Moss-eating Crambid Snout Moths Crambidae Tipanaea patulella White Rush Moth Crambidae Agriophara confertella Depressariidae Eupselia beatella Depressariidae Eupselia carpocapsella Common Eupselia Moth Depressariidae Eutorna tricasis Depressariidae Peritropha oligodrachma Depressariidae Phylomictis sp. Depressariidae Amata nigriceps Erebidae Cyme structa Erebidae Dasypodia cymatodes Northern wattle moth Erebidae Dasypodia selenophora Southern -
Euteliidae & Nolidae
Cornell University Insect Collection Euteliidae Curated by Kyhl A. Austin Determined species and subspecies: 85 Updated: May 2020 Cornell University Insect Collection Euteliidae: Euteliinae, Stictopterinae Curated by Kyhl A. Austin Determined species and subspecies: 85 Updated: May 2020 CUIC Euteliidae May 2020 Euteliidae Family Subfamily Genus species subspecies (Author Date) Zoogeographic Region Euteliidae Euteliinae Anuga constricta Guenée 1852 ORI Anuga multiplicans Walker 1858 ORI Aplotelia tripartita (Semper 1900) ORI Atacira grabczewskii (Püngeler 1904) PAL Chlumetia transversa (Walker 1863) ORI Eutelia abscondens Walker 1858 NEO Eutelia ablatrix (Guenée 1852) NEO Eutelia adulatrix (Hübner [1813]) PAL Eutelia auratrix (Walker 1858) NEO Eutelia blandiatrix Guenée 1852 PAL/ORI Eutelia discitriga Walker 1865 ETH Eutelia furcata (Walker 1865) NEA Eutelia geyeri (Felder & Rogenhofer 1874) PAL Eutelia haxairei Barbut & Lalanne-Cassou 2005 NEO Eutelia leighi Hampson 1905 ETH Eutelia leucodelta Hampson 1905 ETH Eutelia piratica (Schaus 1940) NEO Eutelia porphyrina (Warren 1914) AUS Eutelia pulcherrimus (Grote 1865) NEA Eutelia pyrastis Hampson 1905 NEO Eutelia snelleni (Saalmüller 1881) ETH Marathyssa basalis Walker 1865 NEA Marathyssa cuneata (Saalmüller 1891) ETH Marathyssa inficita (Walker 1865) NEA Marathyssa minus Dyar 1921 NEA Paectes abrostolella (Walker 1866) NEA Paectes abrostoloides (Guenée 1852) NEA Paectes acutangula Hampson 1912 NEA Paectes albescens Hampson 1912 NEO Paectes arcigera (Guenée 1852) NEO Paectes areusa (Walker -
Moth Records
MOTHS of the University of Guelph Arboretum Contributions by Candice Talbot (2012-2014) and Andrew Bendall (2013-present) Other contributors: Andalyne Tofflemire, Chris Earley, Fiona Reid, Mike Kent The 2018 edition of the Arboretum list contains 851 species of moth. Most adults were seen at or near the J.C. Taylor Nature Centre, being attracted to the white building lights, or to a black light and sheet hung by the building, or to painted bait on nearby trees. Semi-regular monitoring was started by Candice Talbot in the spring of 2012, with a small number of incidental observations pre-dating that time. First record dates, where known, are shown at right as YYYYMMDD. Those with an asterisk represent a first documented sighting if the date of an earlier record was not available. We now follow the taxonomy outlined in Pohl, Patterson & Pelham (2016) Annotated taxonomic checklist of the Lepidoptera of North America, North of Mexico, and adopt their revised numbering system for all valid North American species. Identifications are made (with varying degrees of certainty) from photographs using a variety of published print and online resources for comparison. This is a work in progress and identifications are revisited from time to time. We acknowledge that definitive identification of some species is not possible without dissection of the genitalia or, in the case of some microlepidoptera, rearing larvae collected from the host plant. Our uncertainty is indicated in various ways, including the use of [t] for a tentative identification, by indicating a group of species that can't be separated from external features, or by identifying to genus only. -
LUTZ KOBES and HETEROCERA SUMATRANA – an Appreciation.1
© Münchner Ent. Ges., download www.zobodat.at Mitt. Münch. Ent. Ges. 108 31-38 München, 1.11.2018 ISSN 0340-4943 LUTZ KOBES and HETEROCERA SUMATRANA – an appreciation.1 Jeremy D. HOLLOWAY In the present article, the scientific achievements of the lepidopterist Lutz W. R. KOBES (* 26.08.1933 † 21.07.2016) are acknowledged. In his covering letter to me in his last Heterocera Sumatrana (HS) volume (14), Lutz wrote “Thank you for your advice and help to avoid pitfalls, also for your encouraging me to proceed, although a lot of initial HS- collaborants have vanished in the meanwhile”. I don’t see Lutz “vanishing”, as his memory will persist with his family, friends and university colleagues. It will also last in the legacy of the Heterocera Sumatrana series of publications. Although Edi Diehl provided the initial stimulus and collected most of the vast amount of material in the field, it was Lutz who received the boxes from Sumatra, ensured that the specimens were prepared and labelled for study, sorted them and then distributed them amongst members of the HS research team. He was also mainly responsible for seeing through the results of their labours to publication in the HS series, being editor in chief until 2008. His contribution to the series as a researcher and author is also predominant. Lutz described 170 of the 229 new taxa published in the series: well over half! I think my own collaboration with Lutz dated from 1981 when we met in London and began to exchange information on Bornean and Sumatran noctuid moths; the faunas have much in common. -
Regional and National Trends in Lepidoptera Collecting in the United States Since 1800
REGIONAL AND NATIONAL TRENDS IN LEPIDOPTERA COLLECTING IN THE UNITED STATES SINCE 1800 By Erica E. Fischer A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of Entomology—Master of Science ABSTRACT REGIONAL AND NATIONAL TRENDS IN LEPIDOPTERA COLLECTING IN THE UNITED STATES SINCE 1800 By Erica E. Fischer Though natural history collections began as private demonstrations of wealth and knowledge, they are now places of public learning and depositories of biodiversity. Insects have been collected for their beauty and small size since the beginnings of natural history collections, making them ideal for studies of long-term collecting patterns. This thesis project characterizes collecting efforts focused on butterflies and moths within the United States, both at the institutional and national level. The A. J. Cook Arthropod Research Collection (ARC) at Michigan State University contains 96,618 databased Lepidoptera specimens, predominantly collected in the state of Michigan. The ARC has a long history of involvement by avocational collectors, both in terms of specimen donation and curation. Their contributions grew significantly in the 1950s. However, the number of specimens added annually by both professionals and non-professionals has decreased greatly since 1970. More than 1 million Lepidoptera specimens held in various US collections were also used to examine trends in Lepidoptera collecting nationally. Collecting has been inconsistent over time and markedly on the decline since the 1990s. States are not evenly represented in this dataset, mirroring the inconsistency seen in county representation among Michigan specimens in the ARC. This uneven distribution is at least partially associated with a lack of funding for databasing and other areas of curatorial effort for insect collections, in addition to a decrease in natural history education in K-12 and undergraduate curriculums. -
Appendix 5: Fauna Known to Occur on Fort Drum
Appendix 5: Fauna Known to Occur on Fort Drum LIST OF FAUNA KNOWN TO OCCUR ON FORT DRUM as of January 2017. Federally listed species are noted with FT (Federal Threatened) and FE (Federal Endangered); state listed species are noted with SSC (Species of Special Concern), ST (State Threatened, and SE (State Endangered); introduced species are noted with I (Introduced). INSECT SPECIES Except where otherwise noted all insect and invertebrate taxonomy based on (1) Arnett, R.H. 2000. American Insects: A Handbook of the Insects of North America North of Mexico, 2nd edition, CRC Press, 1024 pp; (2) Marshall, S.A. 2013. Insects: Their Natural History and Diversity, Firefly Books, Buffalo, NY, 732 pp.; (3) Bugguide.net, 2003-2017, http://www.bugguide.net/node/view/15740, Iowa State University. ORDER EPHEMEROPTERA--Mayflies Taxonomy based on (1) Peckarsky, B.L., P.R. Fraissinet, M.A. Penton, and D.J. Conklin Jr. 1990. Freshwater Macroinvertebrates of Northeastern North America. Cornell University Press. 456 pp; (2) Merritt, R.W., K.W. Cummins, and M.B. Berg 2008. An Introduction to the Aquatic Insects of North America, 4th Edition. Kendall Hunt Publishing. 1158 pp. FAMILY LEPTOPHLEBIIDAE—Pronggillled Mayflies FAMILY BAETIDAE—Small Minnow Mayflies Habrophleboides sp. Acentrella sp. Habrophlebia sp. Acerpenna sp. Leptophlebia sp. Baetis sp. Paraleptophlebia sp. Callibaetis sp. Centroptilum sp. FAMILY CAENIDAE—Small Squaregilled Mayflies Diphetor sp. Brachycercus sp. Heterocloeon sp. Caenis sp. Paracloeodes sp. Plauditus sp. FAMILY EPHEMERELLIDAE—Spiny Crawler Procloeon sp. Mayflies Pseudocentroptiloides sp. Caurinella sp. Pseudocloeon sp. Drunela sp. Ephemerella sp. FAMILY METRETOPODIDAE—Cleftfooted Minnow Eurylophella sp. Mayflies Serratella sp.