Electrodeless High Intensity Discharge Lamp Having a Boron Sulfide Fill

Total Page:16

File Type:pdf, Size:1020Kb

Electrodeless High Intensity Discharge Lamp Having a Boron Sulfide Fill Patentamt Europaisches |||| ||| 1 1|| ||| ||| ||| || || || ||| ||| || || || (19) J European Patent Office Office europeen des brevets (11) EP 0 788 1 40 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication:ation: (51) |nt. CI.6: H01 J 61/16, H01 J 65/04 06.08.1997 Bulletin 1997/32 (21) Application number: 97100888.3 (22) Date of filing : 21 .01 .1 997 (84) Designated Contracting States: • Butler, Scott J. BE DE FR GB IT NL North Oxford, MA 01 537 (US) • Bochinski, Jason R. (30) Priority: 01.02.1996 US 595475 Springfield, OR 97477 (US) (71) Applicant: OSRAM SYLVANIA INC. (74) Representative: Pokorny, Gerd Danvers, MA 01 923 (US) OSRAM GmbH, Postfach 2216 34 (72) Inventors: 80506 Munchen (DE) • Lapatovich, Walter P. Marlborough, MA 01752 (US) (54) Electrodeless high intensity discharge lamp having a boron sulfide fill (57) An electrodeless high intensity discharge lamp including a sealed light-transmissive lamp envelope, a volatilizable chemical fill and inert an gas or nitrogen 12 within the envelope. The primary active component of the fill is boron sulfide. The inert gas or nitrogen within the envelope assists in starting the lamp, and is at sub- f KJ atmospheric pressure. The lamp envelope is coupled to | applicator | — rj a high frequency source to produce a light emit- \\ power ^ ting plasma discharge within the envelope. V\ \ FIG. I CM < O CO CO o Q_ LU Printed by Rank Xerox (UK) Business Services 2.14.11/3.4 1 EP 0 788 140 A2 2 Description amount of a metal halide and emitting light over a broad spectral range. CROSS-REFERENCE TO RELATED APPLICATIONS These and still further objects, features, and advan- tages of the present invention will become apparent The present application contains subject matter s upon consideration of the following description. related to U.S. Application Serial No. [Attorney's Docket No. 92-3-336], commonly assigned and filed concur- SUMMARY OF THE INVENTION rently herewith. Application [92-3-336] is incorporated herein by reference. The present invention provides an electrodeless 10 high intensity discharge lamp having a boron sulfide- BACKGROUND OF THE INVENTION based fill which may be energized by high frequency power, e.g., microwave power supplied to the lamp to The present invention relates to electrodeless dis- produce a light emitting plasma discharge without the charge light sources, and particularly to electrodeless need for mercury in the lamp. In some embodiments of lamps having a fill energized by high frequency, e.g., 15 the lamp a small amount of mercury may be included in microwave power. the lamp envelope to improve resistive heating of the Until recently, all commercially available high inten- lamp. However, an emission may be produced in the sity discharge (HID) lamps contained mercury or mer- lamp in accordance with the invention without the pres- cury salts, with other metal salts added to enhance or ence of mercury or mercury compounds. tailor the spectral output. Over the past several years, 20 In one embodiment, the invention is an electrode- environmental concerns have led to attempts to pro- less high intensity discharge lamp including a sealed duce mercury-free HID lamps. Of particular concern light-transmissive envelope, a volatilizable chemical fill has been the discarding of spent lamps, releasing mer- within the envelope, an inert gas or nitrogen within the cury into the environment. envelope to assist in starting the lamp, and means for One example of a mercury-free lamp which has 25 coupling high frequency power to the envelope to pro- been developed is a mercury-free high pressure sodium duce a light emitting plasma discharge within the enve- lamp having a fill of sodium and a high pressure (above lope. The fill includes boron sulfide as a primary active atmospheric) of an inert gas. Some examples of sodium component. The inert gas or nitrogen is at a pressure of halide and oxyhalide lamps are described in U.S. Pat- less than 760 torr at ambient temperature. In a narrower ents Nos. 4,672,267, 4,801 ,846, and 5,070,277. Like all 30 embodiment, the lamp is a mercury-free electrodeless lamps containing reactive chemical fills, these lamps high intensity discharge lamp. In another narrower are subject to wall reactions which can affect the optical embodiment, the lamp may include as a secondary properties of the arc lamp and alter the chemistry from active component an amount of a metal halide, e.g., that initial to the lamp. sodium iodide, lithium iodide, scandium iodide, or com- In another type of mercury-free lamp sulfur, sele- 35 binations thereof, within the envelope sufficient to aug- nium, or compounds thereof are included in the lamp fill, ment the emission wavelength of the fill during and are excited by electromagnetic power in excess of operation of the lamp. about 50 watts/cc, preferably in excess of 100 watts/cc. In another embodiment, the invention is a mercury- Other known electrodeless lamps containing metal hali- free electrodeless high intensity discharge lamp includ- des or oxyhalides have good color rendering properties 40 ing a sealed light-transmissive envelope, a volatilizable and high lumen output. However, most of these also chemical fill within the light-transmissive envelope, include mercury. xenon gas within the light transmissive envelope to Accordingly, it is an object of the present invention assist in starting the lamp, and means for coupling high to provide an electrodeless high intensity discharge frequency power at about 13 - 6000 MHz to the light lamp that overcomes the disadvantages of prior art 45 transmissive envelope to produce a light emitting lamps. plasma discharge within the light transmissive enve- It is another object of the present invention to pro- lope. The fill includes boron sulfide as a primary active vide an electrodeless high intensity discharge lamp hav- component, the amount of the primary active compo- ing a boron sulfide-based fill. nent being about 1 - 10 mg for each cm3 of volume It is yet another object of the invention to provide an so within the light transmissive envelope. The xenon gas is electrodeless high intensity discharge lamp having a at a pressure of about 20 - 200 torr at ambient tempera- boron sulfide-based fill which is free of mercury. ture. In a narrower embodiment, the fill further includes It is still another object of the invention to provide an a secondary active component selected from sodium electrodeless high intensity discharge lamp having a iodide, lithium iodide, scandium iodide, and combina- boron sulfide-based fill which is free of both mercury ss tions thereof. and metal halides. It is a further object of the invention to provide a BRIEF DESCRIPTION OF THE DRAWINGS mercury-free electrodeless high intensity discharge lamp having a boron sulfide-based fill including a small For a better understanding of the present invention, 2 3 EP 0 788 140 A2 4 together with other objects, advantages, and capabili- duce a light emitting plasma discharge within the ties thereof, reference is made to the following Descrip- envelope. tion and appended Claims, together with the Drawing in In this embodiment, no mercury or mercury com- which: pounds are introduced to the lamp envelope. In other 5 embodiments a small amount of mercury may be added Figure 1 is a cross-sectional schematic elevation to improve resistive heating of the lamp, typically about view of a spherical electrodeless high intensity dis- 1 - 35 mg/cm3 of volume of the light transmissive enve- charge lamp capsule in accordance with one lope. However, the presence of mercury or mercury embodiment of the present invention; compounds is not required to produce an emission in Figure 2 is an emission spectrum for a boron sulfide to the lamps described herein. fill for a lamp in accordance with another embodi- The inert gas or nitrogen mentioned above is ment of the present invention. present within the envelope at subatmospheric pres- sure (less than 760 torr at ambient temperature) to facil- DETAILED DESCRIPTION OF THE PREFERRED itate starting of the lamp, i.e., establishing the light EMBODIMENTS 75 emitting plasma discharge within the envelope. These gases may be any of the Group VIII inert gas elements, An exemplary embodiment of the electrodeless HID nitrogen, or a combination of these. The preferred inert lamp in accordance with the present invention is a mer- gas is argon, krypton, or xenon; most preferred is cury-free electrodeless HID lamp including a volatiliza- xenon. The preferred pressure for the inert gas is about ble chemical fill and an inert gas or nitrogen sealed 20 1 - 700 torr, more preferred is about 20 - 700 torr, most within a light-transmissive envelope. The primary active preferred is about 20 - 200 torr. At 20 - 200 torr, the inert component of the fill is boron sulfide. By the term "active gas is readily ionized by the available high frequency component" is meant a volatilizable light emitting com- power, and rapidly transits to a thermal arc. At lower ponent, the primary active component being the compo- pressure the inert gas is easier to ionize, but transition nent having the most predominant spectral emission. 25 to the thermal arc is slower and the lamp requires a Also included in the term "active component", as used longer warm-up time. At higher pressure the inert gas is herein, are precursors of the desired active component, more difficult to ionize, requiring a higher power applica- e.g., boron sulfide compound. The precursors are intro- tion to establish the thermal arc. duced to the lamp envelope to produce, e.g., the The amount of volatilizable active fill components desired boron sulfide compound by chemical reaction 30 within the envelope depends on the volume of the enve- during operation of the lamp.
Recommended publications
  • Effective Application of Plasma Lighting Facility Based on Electrodeless Sulfur Lamp for Electrical Regeneration
    EFFECTIVE APPLICATION OF PLASMA LIGHTING FACILITY BASED ON ELECTRODELESS SULFUR LAMP FOR ELECTRICAL REGENERATION Tetyana I. Frolova Kharkiv National University of Radio Electronics, 14 Nauky Ave., Kharkiv, 61166 UKRAINE Today, due to the intensive depletion of fossil resources on Earth, there is a need to use renewable energy sources. The most interesting is the photoelectric conversion of solar energy into electrical energy. Although the Sun is the largest source of energy on Earth and supplies 99.98% of the total energy of our planet, however, the intensity and spectral distribution of its radiation depends on geographical location, climatic, weather, and seasonal conditions, etc. Therefore, in the process of our life, artificial light sources are often used. Modern light sources must satisfy a number of parameters, combining high luminous efficiency and efficiency of generated radiation (a wide range of spectral distribution and color rendering), durability and environmental friendliness with low cost and variety of applications fields. The plasma lighting facility with a sulfur lamp is a powerful light source having a quasi-solar emission spectrum and providing light fluxes of 140 klm, and a color temperature of about 6400 K. Also the electrodeless lamp with microwave excitation has the ability to control the radiation power, which allows imitating the modes of sunrise and sunset. Electrodeless sulfur lamps can be used together with other electronic devices for creating the power energy-efficient lighting systems. It is proposed to use a lighting facility based on an electrodeless sulfur lamp with microwave excitation combine with solar batteries that are located indoors (for example, greenhouses).
    [Show full text]
  • Industrial Lighting a Primer
    Industrial Lighting A Primer All through history people have sought better ways to illuminate their work. Even the cavemen needed torches to allow them to draw on the walls of their underground caverns. Fire brought both light and heat for thousands of years before crude lamps of animal fat gave way to the candle for general indoor illumination used around the world. Roman Grease Lamp An offshoot of the common candlestick became what we now call the Lacemakers Globe. This quite possibly could qualify as the world’s first industrial light source! It was observed that when a candle flame was aligned behind a rounded glass bottle filled with water, a magnifying and focusing effect was produced, in addition to simply lighting up a small area. This was high technology of the first order! No longer did the lacemaker have to pack it in when the sun went down, for soon the new Lacemaker’s Globe became fairly common in European Cottage Industry, enabling the production of lace at a greater rate than ever before. It is also not too much of a stretch to conclude that the repetitive patterns of the lacemaker could be looked upon as a forerunner to the theory of mass production, along with the pin makers who toiled away in the ‘second tier’ of the feeble light pool cast by the globe, hammering heads onto straightened bits of wire in order to make the common pin. This was mighty slim pickings by today’s standards to be sure, but just a few hundred years ago it represented a revolutionary increase in handiwork production after the sun went down, for the very first time in history.
    [Show full text]
  • !History of Lightingv2.Qxd
    CONTENTS Introduction 3 The role of lighting in modern society 3 1. The oldest light sources 4 Before the advent of the lamp 4 The oldest lamps 4 Candles and torches 5 Further development of the oil lamp 6 2. Gaslight 9 Introduction 9 Early history 9 Gas production 10 Gaslight burners 10 The gas mantle 11 3. Electric lighting before the incandescent lamp 14 Introduction 14 Principle of the arc lamp 15 Further development of the arc lamp 16 Applications of the arc lamp 17 4. The incandescent lamp 20 The forerunners 20 The birth of the carbon-filament lamp 22 Further development of the carbon-filament lamp 25 Early metal-filament lamps 27 The Nernst lamp 28 The birth of the tungsten-filament lamp 29 Drawn tungsten filaments 30 Coiled filaments 30 The halogen incandescent lamp 31 5. Discharge lamps 32 Introduction 32 The beginning 32 High-voltage lamps 33 Early low-pressure mercury lamps 34 The fluorescent lamp 35 High-pressure mercury lamps 36 Sodium lamps 37 The xenon lamp 38 6. Electricity production and distribution 39 Introduction 39 Influence machines and batteries 39 Magneto-electric generators 40 Self-exciting generators 41 The oldest public electricity supply systems 41 The battle of systems 42 The advent of modern a.c. networks 43 The History of Light and Lighting While the lighting industry is generally recognized as being born in 1879 with the introduction of Thomas Alva Edison’s incandescent light bulb, the real story of light begins thousands of years earlier. This brochure was developed to provide an extensive look at one of the most important inventions in mankind’s history: artificial lighting.
    [Show full text]
  • Humphry Davy and the Arc Light
    REMAKING HISTORY By William Gurstelle Humphry Davy and the Arc Light » Thomas Edison did not invent the first electric BRILLIANT light.* More than 70 years before Edison’s 1879 MISTAKES: Humphry Davy, incandescent lamp patent, the English scientist chemist, inventor, Humphry Davy developed a technique for produc- and philosopher: ing controlled light from electricity. “I have learned Sir Humphry Davy (1778–1829) was one of the more from my failures than from giants of 19th-century science. A fellow of the my successes.” prestigious Royal Society, Davy is credited with discovering, and first isolating, elemental sodium, potassium, calcium, magnesium, boron, barium, and strontium. A pioneer in electrochemistry, he appeared between the electrode tips, Davy had to also developed the first medical use of nitrous oxide separate the carbon electrodes slightly and care- and invented the miner’s safety lamp. The safety fully in order to sustain the continuous, bright arc lamp alone is directly responsible for saving of electricity. Once that was accomplished, he found hundreds, if not thousands, of miners’ lives. the device could sustain the arc for long periods, But it is his invention of the arc lamp for which we even as the carbon rods were consumed in the heat remember him here. Davy’s artificial electric light of the process. consisted of two carbon rods, made from wood Davy’s arc lamp of 1807 was not economically charcoal, connected to the terminals of an enormous practical until the cost of producing a 50V-or-so collection of voltaic cells. (In Davy’s day, thousands power supply became reasonable.
    [Show full text]
  • High Performance Flash and Arc Lamps Catalog
    Europe: Saxon Way, Bar Hill, Cambridge, CB3 8SL Tel: +44 (0)1954 782266 Fax: +44 (0)1954 782993 USA: 44370 Christy St., Freemont, CA 94538, USA Tel: (800) 775-OPTO Tel: (510) 979-6500 Fax: (510) 687-1344 USA: 35 Congress Street, Salem, MA 01970, USA Tel: (978) 745-3200 Fax: (978) 745-0894 Asia: 47 Ayer Rajah Cresent, 06-12, Singapore 139947 Tel: +65-775-2022 Fax: +65-775-1008 Japan: 18F, Parale Mitsui Building 8, Higashida-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa-ken, 210-0005 Japan Tel: 81 44 200 9150 Fax: 81 44 200 9160 www.perkinelmer.com/opto Optoelectronics Lighting Imaging Telecom High Performance Flash and Arc Lamps Lighting Imaging Teleco m Introduction This publication is divided into two sections: Past, Present and Future Part 1 – Technical Information Solid state laser systems have historically used pulsed and CW (DC) xenon or krypton filled arc lamps as exci- Part 2 – Product Range tation for pump sources. When in 1960, at Hughes Research Labs, the first practical pulsed laser system Part 1 is intended to give the necessary technical infor- was demonstrated by mation to manufacturers, designers and researchers to T. H. Maiman the technology and understanding enable them to select the correct flashlamp for their involved in the manufacture and operation of application and also to give an insight into the design flashlamps was of a very basic nature. Up to procedures necessary for correct flashlamp operation. that time (1960) the major use of flashlamps was pho- Part 2 is a guide to the wide, varied and complex range tography and related applications.
    [Show full text]
  • History of Electric Light
    SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 76. NUMBER 2 HISTORY OF ELECTRIC LIGHT BY HENRY SGHROEDER Harrison, New Jersey PER\ ^"^^3^ /ORB (Publication 2717) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION AUGUST 15, 1923 Zrtie Boxb QSaftitnore (prcee BALTIMORE, MD., U. S. A. CONTENTS PAGE List of Illustrations v Foreword ix Chronology of Electric Light xi Early Records of Electricity and Magnetism i Machines Generating Electricity by Friction 2 The Leyden Jar 3 Electricity Generated by Chemical Means 3 Improvement of Volta's Battery 5 Davy's Discoveries 5 Researches of Oersted, Ampere, Schweigger and Sturgeon 6 Ohm's Law 7 Invention of the Dynamo 7 Daniell's Battery 10 Grove's Battery 11 Grove's Demonstration of Incandescent Lighting 12 Grenet Battery 13 De Moleyns' Incandescent Lamp 13 Early Developments of the Arc Lamp 14 Joule's Law 16 Starr's Incandescent Lamp 17 Other Early Incandescent Lamps 19 Further Arc Lamp Developments 20 Development of the Dynamo, 1840-1860 24 The First Commercial Installation of an Electric Light 25 Further Dynamo Developments 27 Russian Incandescent Lamp Inventors 30 The Jablochkofif " Candle " 31 Commercial Introduction of the Differentially Controlled Arc Lamp ^3 Arc Lighting in the United States 3;^ Other American Arc Light Systems 40 " Sub-Dividing the Electric Light " 42 Edison's Invention of a Practical Incandescent Lamp 43 Edison's Three-Wire System 53 Development of the Alternating Current Constant Potential System 54 Incandescent Lamp Developments, 1884-1894 56 The Edison " Municipal
    [Show full text]
  • Miniature and Low Wattage HID Lamps?
    Miniature HID Lamps? Page 1 of 4 Miniature and Low Wattage HID Lamps? I know that some of us want a more energy efficient flashlight or a more energy efficient bicycle headlight or the like. And some of us wonder why commercial products to satisfy those desires aren't out there? As for flashing a xenon strobe rapidly with low energy flashes - there is a bit of a problem. Performance of xenon flashtubes largely gets better with higher flash energy and worse with lower flash energy. If the energy is high enough to give satisfactory improvement of energy efficiency over halogen lamps, any economical flashtube including all made of glass as opposed to quartz will not survive such flashing repeated rapidly enough to appear to glow continuously. NOTE - It takes 50-60 flashes per second to avoid flicker! Movies avoid flicker at 24 frames/second by having the "on" fraction of each cycle being about 80 percent of the cycle as opposed to the fraction of 1 percent that a fast xenon strobe would have. (NOTE - someone tells me that movie projectors "blink" twice per frame for 48 "blinks" per second, and this may well be true for just some projectors.) You need the off time to be under 20 or preferably under about 16 milliseconds to make the light appear continuous. Further discussion of this is in a separate file on making xenon glow continuously. Now back to miniature HID lamps: One obstacle is the thermal conduction loss from the arc. This is surprisingly proportional to the overall length of the arc and surprisingly independent of the width of the arc or the gas/vapor pressure or the power.
    [Show full text]
  • What Makes the Powerarc a Better Illuminator
    ELEMENTAL ANALYSIS FLUORESCENCE GRATINGS & OEM SPECTROMETERS What makes the PowerArc OPTICAL COMPONENTS CUSTOM SOLUTIONS PARTICLE CHARACTERIZATION a better Illuminator RAMAN / AFM-RAMAN / TERS SPECTROSCOPIC ELLIPSOMETRY SPR IMAGING A 75 Watt Xenon Arc Lamp Illuminator Provides the Same Power Output as a 450 Watt Xenon Arc Lamp in a Vertical Lamp Housing! Users of old style vertical arc lamp housings are throwing Please note that the PowerArc™ series of lamp housings away as much as 90% of the lamps output, due to are designed for lamps from 75 watts to 150 watts. poor collection efficiency. These old style vertical lamp Please also refer to our KiloArc™ light source for ultra high housings have a collection lens in front of the arc lamp and intensity requirements with 1,000 watt arc lamps. sometimes, but not always, a back reflector behind them. The problem with this old design is that only the light that Arc Lamp Housing actually strikes these optical elements is delivered outside At the heart of the PowerArc™ lamp housing is a of the lamp housing. All other photons emitted by the lamp proprietary on-axis ellipsoidal reflector. Our reflectors are wasted, simply heating the inside of the lamp housing. collect up to 70% of the radiant energy from the arc lamp, Conversely the unique PowerArc™ lamp housing has an versus only 12% for typical condenser systems in vertical enveloping ellipsoidal reflector that collects virtually all of lamp housings. The ellipse literally wraps around the arc the light emitted by the lamp arc, delivering those photons lamp, collecting 5 to 6 times more output power than a to a secondary focal point outside of the lamp housing, conventional system.
    [Show full text]
  • Basic Physics of the Incandescent Lamp (Lightbulb) Dan Macisaac, Gary Kanner,Andgraydon Anderson
    Basic Physics of the Incandescent Lamp (Lightbulb) Dan MacIsaac, Gary Kanner,andGraydon Anderson ntil a little over a century ago, artifi- transferred to electronic excitations within the Ucial lighting was based on the emis- solid. The excited states are relieved by pho- sion of radiation brought about by burning tonic emission. When enough of the radiation fossil fuels—vegetable and animal oils, emitted is in the visible spectrum so that we waxes, and fats, with a wick to control the rate can see an object by its own visible light, we of burning. Light from coal gas and natural say it is incandescing. In a solid, there is a gas was a major development, along with the near-continuum of electron energy levels, realization that the higher the temperature of resulting in a continuous non-discrete spec- the material being burned, the whiter the color trum of radiation. and the greater the light output. But the inven- To emit visible light, a solid must be heat- tion of the incandescent electric lamp in the ed red hot to over 850 K. Compare this with Dan MacIsaac is an 1870s was quite unlike anything that had hap- the 6600 K average temperature of the Sun’s Assistant Professor of pened before. Modern lighting comes almost photosphere, which defines the color mixture Physics and Astronomy at entirely from electric light sources. In the of sunlight and the visible spectrum for our Northern Arizona University. United States, about a quarter of electrical eyes. It is currently impossible to match the He received B.Sc.
    [Show full text]
  • Apparatus for Producing Light by Exciting An
    Europäisches Patentamt *EP000819317B1* (19) European Patent Office Office européen des brevets (11) EP 0 819 317 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.7: H01J 65/04, F21S 2/00, of the grant of the patent: H05B 41/24 14.11.2001 Bulletin 2001/46 (86) International application number: (21) Application number: 96908743.6 PCT/US96/03262 (22) Date of filing: 11.03.1996 (87) International publication number: WO 96/28840 (19.09.1996 Gazette 1996/42) (54) APPARATUS FOR PRODUCING LIGHT BY EXCITING AN ELECTRODELESS LAMP WITH MICROWAVE ENERGY AND APPARATUS FOR PRODUCING HIGH INTENSITY VISIBLE LIGHT APPARAT ZUR ERZEUGUNG SICHTBAREN LICHTS MITTELS ERREGUNG EINER ELEKTRODENLOSEN LAMPE DURCH MIKROWELLENENERGIE UND APPARAT ZUR ERZEUGUNG SICHTBAREN LICHTS HOHER INTENSITÄT APPAREIL POUR PRODUIRE DE LA LUMIERE PAR EXCITATION D’UNE LAMPE SANS ELECTRODE AU MOYEN D’ ENERGIE HYPERFREQUENCE ET APPAREIL POUR PRODUIRE DE LA LUMIERE VISIBLE A HAUTE INTENSITE (84) Designated Contracting States: • TURNER, Brian AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC Damascus, Maryland 20782 (US) NL PT SE (74) Representative: (30) Priority: 09.03.1995 US 402065 Schwepfinger, Karl-Heinz, Dipl.-Ing. Prinz & Partner GbR (43) Date of publication of application: Manzingerweg 7 21.01.1998 Bulletin 1998/04 81241 München (DE) (73) Proprietor: FUSION LIGHTING, INC. (56) References cited: Rockville, MD 20855 (US) EP-A- 0 450 131 DE-A- 4 307 946 JP-A- 56 126 250 US-A- 4 749 915 (72) Inventors: US-A- 4 887 192 US-A- 4 975 625 • SIMPSON, James, E.
    [Show full text]
  • Xenon Arc Lamp
    INSTRUMENTAL TECHNIQUE PRESENTATION Xenon arc lamp Madhuri Jash 01/08/2015 What is Xenon arc lamp? Xenon arc lamp is a gas discharge lamp where electric power is converted into light by an arc discharge in a xenon atmosphere at high pressure. Why we use xenon here because xenon has the highest overall conversion efficiency. History of arc lamp Carbon arc lamp was the first electric light invented by Humphry Davy in the early 1800s. This was the first widely-used and commercially successful form of electric lamp. 1875 Pavel Yablochkov had developed the Yablochkov Candle which was the first reliable carbon arc lamp and was used in Paris. 1870s-1890s Elihu Thomson and E.W. Rice Jr improved many parts of the arc light system both in DC and AC power. Then xenon short-arc lamps were invented in the 1940s in Germany and introduced in 1951 by Osram. First launched in the 2 kW size and now it is upto 15 kW. Xenon arc lamp construction .There is a fused quartz envelope with thoriated tungsten electrodes. Fused quartz is the only economically feasible material currently available that can withstand the high pressure. .the tungsten electrodes are welded to strips of pure molybdenum metal or Invar alloy, which are then melted into the quartz to form the envelope seal. .Because of the very high power levels involved, large lamps are water-cooled, An O- ring seals off the tube, so that the naked electrodes do not contact the water. .In order to achieve maximum efficiency, the xenon gas inside short-arc lamps is maintained at an extremely high pressure — up to 30 atmospheres — which poses safety concerns, large xenon short-arc lamps are normally shipped in protective shields.
    [Show full text]
  • Innovative Solutions for Acoustic Resonance Characterization in Metal Halide Lamps
    En vue de l'obtention du DOCTORAT DE L'UNIVERSITÉ DE TOULOUSE Délivré par : Institut National Polytechnique de Toulouse (INP Toulouse) Discipline ou spécialité : Génie Électrique Présentée et soutenue par : Mme FANG LEI le mercredi 24 janvier 2018 Titre : Innovative Solutions for Acoustic Resonance Characterization in Metal Halide Lamps Ecole doctorale : Génie Electrique, Electronique, Télécommunications (GEET) Unité de recherche : Laboratoire Plasma et Conversion d'Energie (LAPLACE) Directeur(s) de Thèse : M. PASCAL MAUSSION M. GEORGES ZISSIS Rapporteurs : M. BABAK NAHID-MOBARAKEH, UNIVERSITÉ LORRAINE M. MOUNSIF ECH CHERIF EL KETTANI, UNIVERSITE DU HAVRE Membre(s) du jury : Mme BETTY SEMAIL, UNIVERSITE LILLE 1, Président M. GEORGES ZISSIS, UNIVERSITE TOULOUSE 3, Membre M. PASCAL DUPUIS, UNIVERSITE TOULOUSE 3, Membre M. PASCAL MAUSSION, INP TOULOUSE, Membre Abstract Metal halide lamp is one kind of the most compact high-performance light sources. Because of their good color rendering index and high luminous efficacy, these lamps are often preferred in locations where color and efficacy are important, such as supermarkets, gymnasiums, ice rinks and sporting arenas. Unfortunately, acoustic resonance phenomenon occurs in metal halide lamps and causes light flicker, lamp arc bending and rotation, lamp extinction and in the worst case, arc tube explosion, when the lamps are operated in high-frequency bands. This thesis takes place in the context of developing electronic ballasts with robust acoustic resonance detection and avoidance mechanisms. To this end, several envelope detection methods such as the multiplier circuit, rectifier circuit, and lock-in amplifier, are proposed to characterize fluctuations of acoustic resonance. Furthermore, statistical criteria based on the standard deviation of these fluctuations are proposed to assess acoustic resonance occurrence and classify its severity.
    [Show full text]