Buddleja Alternifolia
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A New Application for Phylogenetic Marker Development Using Angiosperm Transcriptomes Author(S): Srikar Chamala, Nicolás García, Grant T
MarkerMiner 1.0: A New Application for Phylogenetic Marker Development Using Angiosperm Transcriptomes Author(s): Srikar Chamala, Nicolás García, Grant T. Godden, Vivek Krishnakumar, Ingrid E. Jordon- Thaden, Riet De Smet, W. Brad Barbazuk, Douglas E. Soltis, and Pamela S. Soltis Source: Applications in Plant Sciences, 3(4) Published By: Botanical Society of America DOI: http://dx.doi.org/10.3732/apps.1400115 URL: http://www.bioone.org/doi/full/10.3732/apps.1400115 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. ApApplicatitionsons Applications in Plant Sciences 2015 3 ( 4 ): 1400115 inin PlPlant ScienSciencesces S OFTWARE NOTE M ARKERMINER 1.0: A NEW APPLICATION FOR PHYLOGENETIC 1 MARKER DEVELOPMENT USING ANGIOSPERM TRANSCRIPTOMES S RIKAR C HAMALA 2,12 , N ICOLÁS G ARCÍA 2,3,4 * , GRANT T . G ODDEN 2,3,5 * , V IVEK K RISHNAKUMAR 6 , I NGRID E. -
Ethnobotanical Study on Wild Edible Plants Used by Three Trans-Boundary Ethnic Groups in Jiangcheng County, Pu’Er, Southwest China
Ethnobotanical study on wild edible plants used by three trans-boundary ethnic groups in Jiangcheng County, Pu’er, Southwest China Yilin Cao Agriculture Service Center, Zhengdong Township, Pu'er City, Yunnan China ren li ( [email protected] ) Xishuangbanna Tropical Botanical Garden https://orcid.org/0000-0003-0810-0359 Shishun Zhou Shoutheast Asia Biodiversity Research Institute, Chinese Academy of Sciences & Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences Liang Song Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences & Center for Intergrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences Ruichang Quan Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences & Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences Huabin Hu CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences Research Keywords: wild edible plants, trans-boundary ethnic groups, traditional knowledge, conservation and sustainable use, Jiangcheng County Posted Date: September 29th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-40805/v2 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published on October 27th, 2020. See the published version at https://doi.org/10.1186/s13002-020-00420-1. Page 1/35 Abstract Background: Dai, Hani, and Yao people, in the trans-boundary region between China, Laos, and Vietnam, have gathered plentiful traditional knowledge about wild edible plants during their long history of understanding and using natural resources. The ecologically rich environment and the multi-ethnic integration provide a valuable foundation and driving force for high biodiversity and cultural diversity in this region. -
Voorraad 25-2-2020
Voorraad 25 Voorraad boskoop.nl - boskoop.nl boskoop.nl - - - 2 - 2020 Rijneveld Rijneveld 115 2771 XV Boskoop www.bulk info@bulk anne@bulk Fax.: +31 (0) 172 213 402 Prijzen onder voorbehoud van fouten Prices subject to errors Handelvoorwaarden op onze website - conditions of sale on our website - Handelsbedingungen auf unsere Website ------------------------------------------------------------------------------------- - Planten kunnen worden besteld en opgahald. We kunnen helaas geen postpaketten meer versturen - Plants can be preordered and picked up. Unfortunately we cannot send any postparcels anymore Aantal Naam MvL Maat cm Prijs Quantety Name Rootball/pot. Hight cm kluit/pot 22 Abelia triflora 25-30 C2 € 19,70 124 Abies koreana 20/+ C2 € 11,25 13 Abies numidica 30-40 C3 € 22,50 5 Acaena magellanica plgd P9 € 5,00 1 Acer aff. davidii 50-60 C2 € 16,50 1 Acer aff. palmatum 60-80 KL € 21,85 1 Acer 'Ample Surprise' PBR 100-125 C25 € 75,00 2 Acer 'Ample Surprise' PBR 20-30 C3 € 27,50 1 Acer 'Ample Surprise' PBR 20-30 C3 € 27,50 3 Acer amplum 225-250 KL € 59,50 1 Acer campestre 'Huiber's Elegant' 160-180 C5 € 39,50 1 Acer cappadocicum 'Aureum' 140-160 C12 € 49,50 21 Acer cappadocicum 'Aureum' 40-60 P11 € 10,95 1 Acer carpinifolium SOL C100 € 412,50 2 Acer conspicuum 'Red Flamingo' 150-175 C7.5 € 52,00 1 Acer davidii 100-125 C3 € 18,75 1 Acer davidii 80-100 C10 € 19,95 2 Acer davidii 120-150 C5 € 30,00 30 Acer davidii ('Serpentine'-seedling) 80-120 C2 € 17,50 2 Acer davidii 'George Forrest' 100-125 C2 € 26,90 5 Acer davidii 'George Forrest' -
Wood Anatomy of Buddlejaceae Sherwin Carlquist Santa Barbara Botanic Garden
Aliso: A Journal of Systematic and Evolutionary Botany Volume 15 | Issue 1 Article 5 1996 Wood Anatomy of Buddlejaceae Sherwin Carlquist Santa Barbara Botanic Garden Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons Recommended Citation Carlquist, Sherwin (1996) "Wood Anatomy of Buddlejaceae," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 15: Iss. 1, Article 5. Available at: http://scholarship.claremont.edu/aliso/vol15/iss1/5 Aliso, 15(1), pp. 41-56 © 1997, by The Rancho Santa Ana Botanic Garden, Claremont, CA 91711-3157 WOOD ANATOMY OF BUDDLEJACEAE SHERWIN CARLQUIST' Santa Barbara Botanic Garden 1212 Mission Canyon Road Santa Barbara, California 93110-2323 ABSTRACT Quantitative and qualitative data are presented for 23 species of Buddleja and one species each of Emorya, Nuxia, and Peltanthera. Although crystal distribution is likely a systematic feature of some species of Buddleja, other wood features relate closely to ecology. Features correlated with xeromorphy in Buddleja include strongly marked growth rings (terminating with vascular tracheids), narrower mean vessel diameter, shorter vessel elements, greater vessel density, and helical thickenings in vessels. Old World species of Buddleja cannot be differentiated from New World species on the basis of wood features. Emorya wood is like that of xeromorphic species of Buddleja. Lateral wall vessel pits of Nuxia are small (2.5 ILm) compared to those of Buddleja (mostly 5-7 ILm) . Peltanthera wood features can also be found in Buddleja or Nuxia; Dickison's transfer of Sanango from Buddlejaceae to Ges neriaceae is justified. All wood features of Buddlejaceae can be found in families of subclass Asteridae such as Acanthaceae, Asteraceae, Lamiaceae, Myoporaceae, Scrophulariaceae, and Verbenaceae. -
Bosque Pehuén Park's Flora: a Contribution to the Knowledge of the Andean Montane Forests in the Araucanía Region, Chile Author(S): Daniela Mellado-Mansilla, Iván A
Bosque Pehuén Park's Flora: A Contribution to the Knowledge of the Andean Montane Forests in the Araucanía Region, Chile Author(s): Daniela Mellado-Mansilla, Iván A. Díaz, Javier Godoy-Güinao, Gabriel Ortega-Solís and Ricardo Moreno-Gonzalez Source: Natural Areas Journal, 38(4):298-311. Published By: Natural Areas Association https://doi.org/10.3375/043.038.0410 URL: http://www.bioone.org/doi/full/10.3375/043.038.0410 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. R E S E A R C H A R T I C L E ABSTRACT: In Chile, most protected areas are located in the southern Andes, in mountainous land- scapes at mid or high altitudes. Despite the increasing proportion of protected areas, few have detailed inventories of their biodiversity. This information is essential to define threats and develop long-term • integrated conservation programs to face the effects of global change. -
Buddleja Officinalis
Australia/New Zealand Weed Risk Assessment adapted for Florida. Data used for analysis published in: Gordon, D.R., D.A. Onderdonk, A.M. Fox, R.K. Stocker, and C. Gantz. 2008. Predicting Invasive Plants in Florida using the Australian Weed Risk Assessment. Invasive Plant Science and Management 1: 178-195. Buddleja officinalis (butterfly bush) Question number Question Answer Score 1.01 Is the species highly domesticated? n 0 1.02 Has the species become naturalised where grown? 1.03 Does the species have weedy races? 2.01 Species suited to Florida's USDA climate zones (0-low; 1- 2 intermediate; 2-high) 2.02 Quality of climate match data (0-low; 1-intermediate; 2-high) 2 2.03 Broad climate suitability (environmental versatility) 2.04 Native or naturalized in habitats with periodic inundation n 0 2.05 Does the species have a history of repeated introductions y outside its natural range? 3.01 Naturalized beyond native range n -2 3.02 Garden/amenity/disturbance weed n 0 3.03 Weed of agriculture n 0 3.04 Environmental weed n 0 3.05 Congeneric weed y 0 4.01 Produces spines, thorns or burrs n 0 4.02 Allelopathic n 0 4.03 Parasitic n 0 4.04 Unpalatable to grazing animals 4.05 Toxic to animals n 0 4.06 Host for recognised pests and pathogens y 1 4.07 Causes allergies or is otherwise toxic to humans n 0 4.08 Creates a fire hazard in natural ecosystems n 0 4.09 Is a shade tolerant plant at some stage of its life cycle n 0 4.1 Grows on infertile soils (oligotrophic, limerock, or excessively y draining soils) 1 4.11 Climbing or smothering growth habit -
Towards Resolving Lamiales Relationships
Schäferhoff et al. BMC Evolutionary Biology 2010, 10:352 http://www.biomedcentral.com/1471-2148/10/352 RESEARCH ARTICLE Open Access Towards resolving Lamiales relationships: insights from rapidly evolving chloroplast sequences Bastian Schäferhoff1*, Andreas Fleischmann2, Eberhard Fischer3, Dirk C Albach4, Thomas Borsch5, Günther Heubl2, Kai F Müller1 Abstract Background: In the large angiosperm order Lamiales, a diverse array of highly specialized life strategies such as carnivory, parasitism, epiphytism, and desiccation tolerance occur, and some lineages possess drastically accelerated DNA substitutional rates or miniaturized genomes. However, understanding the evolution of these phenomena in the order, and clarifying borders of and relationships among lamialean families, has been hindered by largely unresolved trees in the past. Results: Our analysis of the rapidly evolving trnK/matK, trnL-F and rps16 chloroplast regions enabled us to infer more precise phylogenetic hypotheses for the Lamiales. Relationships among the nine first-branching families in the Lamiales tree are now resolved with very strong support. Subsequent to Plocospermataceae, a clade consisting of Carlemanniaceae plus Oleaceae branches, followed by Tetrachondraceae and a newly inferred clade composed of Gesneriaceae plus Calceolariaceae, which is also supported by morphological characters. Plantaginaceae (incl. Gratioleae) and Scrophulariaceae are well separated in the backbone grade; Lamiaceae and Verbenaceae appear in distant clades, while the recently described Linderniaceae are confirmed to be monophyletic and in an isolated position. Conclusions: Confidence about deep nodes of the Lamiales tree is an important step towards understanding the evolutionary diversification of a major clade of flowering plants. The degree of resolution obtained here now provides a first opportunity to discuss the evolution of morphological and biochemical traits in Lamiales. -
Butterfly Bush Buddleja Davidii Franch
Weed of the Week Butterfly Bush Buddleja davidii Franch. Common Names: butterfly bush, orange-eye butterfly bush, summer lilac Native Origin: China Description: A perennial woody shrub with a weeping form that can grow 3-12 feet in height and has a spread of 4-15 feet. Opposite, lance-shaped leaves (6- 10 inches) with margins finely toothed grow on long arching stems. Leaves are gray-green above with lower surface white-tomentose. Small fragrant flowers are borne in long, erect or nodding spikes that are 8-18 inch with cone-shaped clusters that droop in a profusion of color. The flower clusters can be so profuse that they cause the branches to arch even more. Flower colors may be purple, white, pink, or red, and they usually have an orange throat in the center. It spreads by seeds that are produced in abundance and dispersed by the wind. Habitat: Butterfly bush likes well drained, average soil. They thrive in fairly dry conditions once established. Roots may perish in wet soil. Distribution: In the United States, it is recorded in states shaded on the map. Ecological Impacts: It has been planted in landscapes to attract butterflies, bees, moths and birds. It can escape from plantings and become invasive in a variety of habitats such as surface mined lands, coastal forest edges, roadsides, abandoned railroads, rural dumps, stream and river banks to displace native plants. Control and Management: • Manual- Hand pick seedlings or dig out where possible. Big plants may be difficult to dig out. • Chemical- Cut plants and treat stumps with any of several readily available general use herbicides such as triclopyr or glyphosate . -
Università Degli Studi Di Milano
UNIVERSITÀ DEGLI STUDI DI MILANO Dottorato in Scienze Farmacologiche Sperimentali e Cliniche XXXII ciclo Dipartimento di Scienze Farmacologiche e Biomolecolari VALIDATION OF PLANTS TRADITIONALLY USED FOR SKIN INFLAMMATION Settore Scientifico Disciplinare BIO/14 Saba KHALILPOUR Tutor: Prof. Mario DELL’AGLI Coordinatore: Prof. Alberico L. CATAPANO A.A. 2018 - 2019 1 TABLE OF CONTENTS TABLE OF CONTENTS .........................................................................................2 LIST OF ABBREVIATIONS ..................................................................................6 LIST OF SYMBOLS ...............................................................................................8 RIASSUNTO ...........................................................................................................9 ABSTRACT ...........................................................................................................12 CHAPTER ONE ....................................................................................................15 1. Introduction ...........................................................................................15 1.1 Basic structure and functions of the skin .........................................................15 1.1.1 Epidermis .................................................................................16 1.1.1.1 Keratinocytes ......................................................................18 1.1.1.2 Other cell types ..................................................................19 -
Orchids of Suspa-Kshamawoti, Dolakha -An Annotated Checklist
Banko Janakari, Vol 29 No. 2, 2019 Pp 28‒41 Karki & Ghimire https://doi.org:10.3126/banko.v29i2.28097 Orchids of Suspa-Kshamawoti, Dolakha -An annotated checklist S. Karki1* and S. K. Ghimire1 Suspa-Kshamawoti area of Dolakha district covers diverse vegetation types and harbors many interesting species of orchids. This paper documents 69 species of orchids covering 33 genera based on repeated field surveys and herbarium collections. Of them, 50 species are epiphytic (including lithophytes) and 19 species are terrestrial. Information regarding habit and habitat, phenology, host species and elevational range of distribution of each species are provided in the checklist. Keywords : Bulbophyllum, Nepal, Orchidaceae rchids are one of the most diverse and contributions on documentation of orchid flora are highly evolved groups of flowering made by Bajracharya (2001; 2004); Rajbhandari Oplants, and orchidaceae is the largest and Bhattrai (2001); Bajracharya and Shrestha family comprising 29,199 species and are (2003); Rajbhandari and Dahal (2004); Milleville globally distributed (Govaerts et al., 2017). Out and Shrestha (2004); Subedi et al. (2011); of them, two-third belong to epiphytes (Zotz and Rajbhandari (2015); Raskoti (2015); Raskoti and Winkler, 2013). In Nepal, orchidaceae is one of Ale (2009; 2011; 2012; 2019) and Bhandari et al. the major families amongst the higher flowering (2016 b; 2019). Suspa-Kshamawoti, the northern plants and comprises 502 taxa belonging to 108 part of the Dolakha district covers diverse genera, which forms around 8 percent of our flora vegetation and harbors some interesting species (Raskoti and Ale, 2019). The number of species of orchids. Bhandari et al. -
FSC Nettlecombe Court Nature Review 2014
FSC Nettlecombe Court Nature Review 2014 Compiled by: Sam Tuddenham Nettlecombe Court- Nature Review 2014 Introduction The purpose of this report is to review and share the number of different species that are present in the grounds of Nettlecombe Court. A significant proportion of this data has been generated by FSC course tutors and course attendees studying at Nettlecombe court on a variety of courses. Some of the data has been collected for the primary purpose of species monitoring for nationwide conservation charities e.g. The Big Butterfly Count and Bee Walk Survey Scheme. Other species have just been noted by members or staff when out in the grounds. These records are as accurate as possible however we accept that there may be species missing. Nettlecombe Court Nettlecombe Court Field Centre of the Field Studies Council sits just inside the eastern border of Exmoor national park, North-West of Taunton (Map 1). The house grid reference is 51o07’52.23”N, 32o05’8.65”W and this report only documents wildlife within the grounds of the house (see Map 2). The estate is around 60 hectares and there is a large variety of environment types: Dry semi- improved neutral grassland, bare ground, woodland (large, small, man –made and natural), bracken dominated hills, ornamental shrubs (lawns/ domestic gardens) and streams. These will all provide different habitats, enabling the rich diversity of wildlife found at Nettlecombe Court. Nettlecombe court has possessed a meteorological station for a number of years and so a summary of “MET” data has been included in this report. -
Trees, Shrubs, and Perennials That Intrigue Me (Gymnosperms First
Big-picture, evolutionary view of trees and shrubs (and a few of my favorite herbaceous perennials), ver. 2007-11-04 Descriptions of the trees and shrubs taken (stolen!!!) from online sources, from my own observations in and around Greenwood Lake, NY, and from these books: • Dirr’s Hardy Trees and Shrubs, Michael A. Dirr, Timber Press, © 1997 • Trees of North America (Golden field guide), C. Frank Brockman, St. Martin’s Press, © 2001 • Smithsonian Handbooks, Trees, Allen J. Coombes, Dorling Kindersley, © 2002 • Native Trees for North American Landscapes, Guy Sternberg with Jim Wilson, Timber Press, © 2004 • Complete Trees, Shrubs, and Hedges, Jacqueline Hériteau, © 2006 They are generally listed from most ancient to most recently evolved. (I’m not sure if this is true for the rosids and asterids, starting on page 30. I just listed them in the same order as Angiosperm Phylogeny Group II.) This document started out as my personal landscaping plan and morphed into something almost unwieldy and phantasmagorical. Key to symbols and colored text: Checkboxes indicate species and/or cultivars that I want. Checkmarks indicate those that I have (or that one of my neighbors has). Text in blue indicates shrub or hedge. (Unfinished task – there is no text in blue other than this text right here.) Text in red indicates that the species or cultivar is undesirable: • Out of range climatically (either wrong zone, or won’t do well because of differences in moisture or seasons, even though it is in the “right” zone). • Will grow too tall or wide and simply won’t fit well on my property.