Geometric and Topological Methods in Protein Structure Analysis

Total Page:16

File Type:pdf, Size:1020Kb

Geometric and Topological Methods in Protein Structure Analysis GEOMETRIC AND TOPOLOGICAL METHODS IN PROTEIN STRUCTURE ANALYSIS by Yusu Wang Department of Computer Science Duke University Date: Approved: Prof. Pankaj K. Agarwal, Supervisor Prof. Herbert Edelsbrunner, Co-advisor Prof. John Harer Prof. Johannes Rudolph Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Computer Science in the Graduate School of Duke University 2004 ABSTRACT GEOMETRIC AND TOPOLOGICAL METHODS IN PROTEIN STRUCTURE ANALYSIS by Yusu Wang Department of Computer Science Duke University Date: Approved: Prof. Pankaj K. Agarwal, Supervisor Prof. Herbert Edelsbrunner, Co-advisor Prof. John Harer Prof. Johannes Rudolph An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Computer Science in the Graduate School of Duke University 2004 Abstract Biology provides some of the most important and complex scientific challenges of our time. With the recent success of the Human Genome Project, one of the main challenges in molecular biology is the determination and exploitation of the three-dimensional structure of proteins and their function. The ability for proteins to perform their numerous functions is made possible by the diversity of their three-dimensional structures, which are capable of highly specific molecular recognition. Hence, to attack the key problems involved, such as protein folding and docking, geometry and topology become important tools. Despite their essential roles, geometric and topological methods are relatively uncommon in com- putational biology, partly due to a number of modeling and algorithmic challenges. This thesis describes efficient computational methods for characterizing and comparing molecu- lar structures by combining both geometric and topological approaches. Although most of the work described here focuses on biological applications, the techniques developed can be applied to other fields, including computer graphics, vision, databases, and robotics. Geometrically, the shape of a molecule can be modeled as (i) a set of weighted points, representing the centers of atoms and their van der Waals radii; (ii) as a polygonal curve, corresponding to a protein backbone or a DNA strand; or (iii) as a polygonal mesh cor- responding to a molecular surface. Each such representation emphasizes different aspects of molecular structures at various scales, the choice of which depends on the underlying applications. Characterizing molecular shapes represented in various ways is an important step toward better understanding or manipulating molecular structures. In the first part of the thesis, we study three geometric descriptions: the writhing number of DNA strands, the level-of-details representation of protein backbones via simplification, and the elevation of molecular surfaces. The writhing number of a curve measures how many times a curve coils around itself iii in space. It describes the so-called supercoiling phenomenon of double stranded DNA, which influences DNA replication, recombination, and transcription. It is also used to characterize protein backbones. This thesis proposes the first subquadratic algorithm for computing the writhing number of a polygonal curve. It also presents an algorithm that is easy to implement and runs in near-linear time on inputs that are typical in practice, including DNA strands, which is significantly faster than the quadratic time needed by algorithms used in current DNA simulation softwares. The level-of-detail (LOD) representation of protein backbone helps to extract its main features. We compute LOD representations via curve simplification under the so-called Frechet´ error measure. This measure is more desirable than the widely used Hausdorff error measure in many situations, especially if one wants to preserve global features of a curve (e.g, the secondary structure elements of a protein backbone) during simplifica- tion. In this thesis, we present a simple approximation algorithm to simplify curves under Frechet´ error measure, which is the first simplification algorithm with guaranteed quality that runs in near-linear time in dimensions higher than two. We propose a continuous elevation function on the surface of a molecule to capture its geometric features such as protrusions and cavities. To define the function, we follow the example of elevation as defined on Earth, but we go beyond this simpler concept to accommodate general 2-manifolds. Our function is invariant under rigid motions. It scales with the surface and provides beyond the location, also direction and size of shape features. We present an algorithm for computing the points with locally maximum elevation. These points corresponds to locally most significant features. This succinct representation of features can be applied to aligning shapes and we will present one such application in the second part of the thesis. The second part of the thesis focuses on molecular shape matching algorithms. The importance of shape matching, both similarity matching and complementarity matching, iv arises from the general belief that the structure of a protein decides its function. Efficient algorithms to measure the similarity between shapes help identify new types of protein architecture, discover evolutionary relations, and provide biologists with computational tools to organize the fast growing set of known protein structures. By modeling a molecule as the union of balls, we study the similarity between two such unions by (variants of) the widely used Hausdorff distance, and propose algorithms to find (approximately) the best translation under Hausdorff distance measure. Complementarity matching is crucial to understand or simulate protein docking, which is the process where two or more protein molecules bind to form a compound structure. From a geometric perspective, protein docking can be considered as the problem of search- ing for configurations with maximum complementarity between two molecular surfaces. Using the feature information generated by the elevation function, we describe an efficient algorithm to find promising initial relative placements of the proteins. The outputs can later be refined to locate docking positions independently using a heuristic that improves the fit locally, using geometric but possibly also chemical and biological information. v And indeed there will be time To wonder, “ Do I dare? ” and “Do I dare? ” Time to turn back and descend the stair, With a bald spot in the middle of my hair ¡ ¡ Do I dare Disturb the universe? — T. S. Eliot, The love-song of J. Alfred Prufrock vi Acknowledgements I came to take of your wisdom: And behold I have found that which is greater than wisdom. — Kahlil Gibran, The prophet It is not without regret that I am writing this acknowledgment — while being grateful for all those who made my life in the past few years a joyful and fruitful one, I know sadly that our lives will part soon. The path towards obtaining a PhD was a struggle for me in many ways. I can’t imagine how it would have been without their support. It has been a great opportunity to have worked under the supervision of Profs. Pankaj K. Agarwal and Herbert Edelsbrunner. The experience helped shape my attitude and ap- proaches towards research both in computational geometry and in general. Pankaj led me into the world of computational geometry with his broad knowledge. Besides sup- port and guidance, he gave me great freedom in doing research, and is always patient and understanding. It is hard to overestimate how much I have benefited from the numerous discussions with him. Herbert showed me the “friendly” side of computational topology, with his deep insights accompanied by illustrative explanation. His philosophy and vision in research have greatly influenced me. I am deeply indebted to both of them for their guidance and inspiration throughout the course of this dissertation. I would also like to thank Profs. John Harer and Johannes Rudolph not only for being on my committee of this thesis, but also for various discussions and collaborations. Support for this work was provided by NSF under the grant NSF-CCR-00-86013 (the BioGeometry project). The Duke CS department is a wonderful place. In particular, I wish to thank Drs Lars Arge and Ron Parr who are always open and ready to help on my career concerns. Dr. Sariel Har-Peled, now a post-postdoc (well, an assistant professor) in UIUC, has been a tremendous mentor and friend for me, especially during a period when I was swinging vii among various career choices, and at a time when I was learning to walk on the ropes of research. I learned from him to have an approximate perspective towards problems both in computer science and in life. I would like to thank all the graduate students and postdocs in the theory group who provided a vibrant research environment that I have enjoyed and benefited from so much, especially Nabil Mustafa, Hai Yu, Peng Yin, and Vijay Natarajan. I had a lot of fun both in research and in life with friends such as Vicky Choi, David Cohen-Steiner, Ho-lun Cheng, Ashish Gehani, Sathish Govindarajan, Jingquan Jia, Tingting Jiang, Dmitriy Morozov, Nabil Mustafa, Vijay Natarajan, Jeff Phillips, Nan Tian, Eric Zhang, Hai Yu, and Haifeng Yu. Those inspiring discussions with Nabil, Sathish and David will always mark my mem- ories of the PhD life. Special thanks to my best friend Peng Yin. His humor, energy, understanding and advices accompany me to this day. I also want to thank his wife Xia Wu for kindly feeding me uncountable times. I wish to thank all staffs in the department for being so friendly and helpful, especially Ms. Celeste Hodges and Ms. Diane Riggs. Last, but not least, I would like to thank my family for their love, support and confi- dence in me. My parents and grandparents encouraged me to pursue my own dream from the childhood, and have never tried to pressure me into any life that others may consider as successful. My sister and brother-in-law have always been there for me, full of under- standing and support.
Recommended publications
  • Sweeping the Sphere
    Sweeping the Sphere Joao˜ Dinis Margarida Mamede Departamento de F´ısica CITI, Departamento de Informatica´ Faculdade de Ciencias,ˆ Universidade de Lisboa Faculdade de Cienciasˆ e Tecnologia, FCT Campo Grande, Edif´ıcio C8 Universidade Nova de Lisboa 1749-016 Lisboa, Portugal 2829-516 Caparica, Portugal [email protected] [email protected] Abstract—We introduce the first sweep line algorithm for and Hong [5], [6], which is O(n log n) worst case optimal, computing spherical Voronoi diagrams, which proves that where n is the number of sites. An asymptotically slower Fortune’s method can be extended to points on a sphere alternative in the worst case is the randomized incremental surface. This algorithm is similar to Fortune’s plane sweep algorithm, sweeping the sphere with a circular line instead of algorithm of Clarkson and Shor [7], whose expected running a straight one. time is O(n log n). The well-known Quickhull algorithm of Like its planar counterpart, the novel linear-space algorithm Barber et al. [8] can be seen as an efficient variation of the has worst-case optimal running time. Furthermore, it copes previous algorithm. very well with degeneracies and is easy to implement. Experi- A different approach is to adapt the randomized incremen- mental results show that the performance of our algorithm is very similar to that of Fortune’s algorithm, both with synthetic tal algorithm that computes the planar Delaunay triangula- data sets and with real data. tion [9], [10]. The essential operation used in the incremental The usual solutions make use of the connection between step, which checks if a circle defined by three sites contains a convex hulls and spherical Delaunay triangulations.
    [Show full text]
  • Uwaterloo Latex Thesis Template
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Waterloo's Institutional Repository Approximation Algorithms for Geometric Covering Problems for Disks and Squares by Nan Hu A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Mathematics in Computer Science Waterloo, Ontario, Canada, 2013 c Nan Hu 2013 I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Abstract Geometric covering is a well-studied topic in computational geometry. We study three covering problems: Disjoint Unit-Disk Cover, Depth-(≤ K) Packing and Red-Blue Unit- Square Cover. In the Disjoint Unit-Disk Cover problem, we are given a point set and want to cover the maximum number of points using disjoint unit disks. We prove that the problem is NP-complete and give a polynomial-time approximation scheme (PTAS) for it. In Depth-(≤ K) Packing for Arbitrary-Size Disks/Squares, we are given a set of arbitrary-size disks/squares, and want to find a subset with depth at most K and maxi- mizing the total area. We prove a depth reduction theorem and present a PTAS. In Red-Blue Unit-Square Cover, we are given a red point set, a blue point set and a set of unit squares, and want to find a subset of unit squares to cover all the blue points and the minimum number of red points.
    [Show full text]
  • Visibility Graphs and Cell Decompositions
    Visibility Graphs and Cell Decompositions CIS 390 Kostas Daniilidis With material from Chapter 5 - Roadmaps Principles of Robot Motion: Theory, Algorithms, and Implementation by Howie ChosetÂet al. The MIT Press © 2005 For polygonal obstacles in 2D • Assume robot is a point • Any shortest path from start to goal among a set of disjoint polygonal obstacles is a polygonal path whose inner vertices are convex vertices of the obstacles (imagine a tight rope from start to end) Visibility graph • Vertices: all vertices of the polygonal obstacles plus the start and the goal • Edges: all line segments between vertices that do not intersect obstacles • It is not a planar graph: edges are crossing (not at vertices) Visibility graph construction • Brute force O(n^3) algorithm visits – all n vertices – applies a rotational plane sweep that connects with all other n vertices – and determines whether each segment intersects any of the O(n) edges • We can do better by sorting the vertices. Sweep Line Algorithm • Input: A set of vertices {νi} (whose edges do not intersect) and a vertex ν • Output: A subset of vertices from {νi} that are within line of sight of ν • 1: For each vertex vi, calculate αi, the angle from the horizontal axis to the line segment • ννi. • 2: Create the vertex list E , containing the αi 's sorted in increasing order. • 3: Create the active list S, containing the sorted list of edges that intersect the horizontal • half-line emanating from ν. • 4: for all αi do • 5: if νi is visible to ν then • 6: Add the edge (ν, νi )to the visibility graph.
    [Show full text]
  • Sweep Line Algorithm
    Sweep Line Algorithm • Event C: Intersection point – Report the point. – Swap the two intersecting line segments in the sweep line status data structure. – For the new upper segment: test it against its predecessor for an intersection. – Insert intersection point (if found) into event queue. – Similar for new lower segment (with successor). • Complexity: – k such events – O(lg n) each – O(k lg n) total. Jacobs University Visualization and Computer Graphics Lab CH08-320201: Algorithms and Data Structures 550 Example a3 b4 Sweep Line status: s3 e1 s4 s0, s1, s2, s3 Event Queue: a2 a4 b3 a4, b1, b2, b0, b3, b4 s2 b1 b0 s1 b2 s0 a1 a0 Jacobs University Visualization and Computer Graphics Lab CH08-320201: Algorithms and Data Structures 551 Example a3 b4 Actions: s3 Insert s4 to SLS e1 s4 Test s4-s3 and s4-s2. a2 a4 b3 Add e1 to EQ s2 b1 Sweep Line status: b0 s1 b2 s0, s1, s2, s4, s3 s0 a1 a0 Event Queue: b1, e1, b2, b0, b3, b4 Jacobs University Visualization and Computer Graphics Lab CH08-320201: Algorithms and Data Structures 552 Example a3 b4 Actions: s3 e1 s4 Delete s1 from SLS Test s0-s2. a2 a4 b3 Add e2 to EQ s2 Sweep Line status: e2 b0 b1 s1 b2 s0, s2, s4, s3 s0 a1 a0 Event Queue: e1, e2, b2, b0, b3, b4 Jacobs University Visualization and Computer Graphics Lab CH08-320201: Algorithms and Data Structures 553 Example a3 b4 Actions: s3 e1 s4 Swap s3 and s4 in SLS Test s3-s2.
    [Show full text]
  • Parallel Range, Segment and Rectangle Queries with Augmented Maps
    Parallel Range, Segment and Rectangle Queries with Augmented Maps Yihan Sun Guy E. Blelloch Carnegie Mellon University Carnegie Mellon University [email protected] [email protected] Abstract The range, segment and rectangle query problems are fundamental problems in computational geometry, and have extensive applications in many domains. Despite the significant theoretical work on these problems, efficient implementations can be complicated. We know of very few practical implementations of the algorithms in parallel, and most implementations do not have tight theoretical bounds. In this paper, we focus on simple and efficient parallel algorithms and implementations for range, segment and rectangle queries, which have tight worst-case bound in theory and good parallel performance in practice. We propose to use a simple framework (the augmented map) to model the problem. Based on the augmented map interface, we develop both multi-level tree structures and sweepline algorithms supporting range, segment and rectangle queries in two dimensions. For the sweepline algorithms, we also propose a parallel paradigm and show corresponding cost bounds. All of our data structures are work-efficient to build in theory (O(n log n) sequential work) and achieve a low parallel depth (polylogarithmic for the multi-level tree structures, and O(n) for sweepline algorithms). The query time is almost linear to the output size. We have implemented all the data structures described in the paper using a parallel augmented map library. Based on the library each data structure only requires about 100 lines of C++ code. We test their performance on large data sets (up to 108 elements) and a machine with 72-cores (144 hyperthreads).
    [Show full text]
  • Variations of Enclosing Problem Using Axis Parallel Square(S): a General Approach
    American Journal of Computational Mathematics, 2014, 4, 197-205 Published Online June 2014 in SciRes. http://www.scirp.org/journal/ajcm http://dx.doi.org/10.4236/ajcm.2014.43016 Variations of Enclosing Problem Using Axis Parallel Square(s): A General Approach Priya Ranjan Sinha Mahapatra Department of Computer Science and Engineering, University of Kalyani, Kalyani, India Email: [email protected] Received 16 December 2013; revised 6 January 2014; accepted 15 January 2014 Copyright © 2014 by author and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract Let P be a set of n points in two dimensional plane. For each point pP∈ , we locate an axis- parallel unit square having one particular side passing through p and enclosing the maximum number of points from P . Considering all points pP∈ , such n squares can be reported in On( log n) time. We show that this result can be used to (i) locate m (> 2) axis-parallel unit squares which are pairwise disjoint and they together enclose the maximum number of points from P (if exists) and (ii) find the smallest axis-parallel square enclosing at least k points of P , 2 ≤≤kn. Keywords Axis-Parallel Unit Square, Sweep Line Algorithm, Maximium Enclosing Problem, K-Enclosing Problem 1. Introduction Given a set P= { pp12,,, pn } points in a plane, enclosing problem in computational geometry is concerned with finding the smallest geometrical object of a given type that encloses all the points of P . Some well known instances of the enclosing problem are finding minimum enclosing circle [1], minimum area triangle [2], minimum area rectangle [3], minimum bounding box [4], and smallest width annulus [5].
    [Show full text]
  • Geometric Search·Intersection
    6.3 Geometric Search Overview Geometric objects. Points, lines, intervals, circles, rectangles, polygons, ... This lecture. Intersection among N objects. Example problems. • 1D range search. • 2D range search. • Find all intersections among h-v line segments. ‣ range search • Find all intersections among h-v rectangles. ‣ space partitioning trees ‣ intersection search th Algorithms in Java, 4 Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2009 · January 26, 2010 8:49:21 AM 2 1d range search Extension of ordered symbol table. • Insert key-value pair. • Search for key k. • Rank: how many keys less than k? • Range search: find all keys between k1 and k2. Application. Database queries. ‣ range search ‣ space partitioning trees insert B B ‣ intersection search Geometric interpretation. insert D B D Keys are point on a line. insert A A B D • insert I A B D I • How many points in a given interval? insert H A B D H I insert F A B D F H I insert P A B D F H I P count G to K 2 search G to K H I 3 4 1d range search: implementations 1d range search: BST implementation Ordered array. Slow insert, binary search for lo and hi to find range. Range search. Find all keys between lo and hi? Hash table. No reasonable algorithm (key order lost in hash). • Recursively find all keys in left subtree (if any could fall in range). • Check key in current node. • Recursively find all keys in right subtree (if any could fall in range). data structure insert rank range count range search searching in the range [F..T] red keys are used in compares ordered array N log N log N R + log N but are not in the range S hash table 1 N N N E X A R BST log N log N log N R + log N C H M L P black keys are N = # keys in the range R = # keys that match Range search in a BST BST.
    [Show full text]
  • CSC-758: Computational Geometry Course Description
    UNIVERSITY OF NEVADA LAS VEGAS Department of Computer Science CSC-758: Computational Geometry Course Description Computational geometry deals with the development and analysis of algorithms having geometric flavor. Knowledge of elementary data structures (arrays, heaps, balanced trees, etc) and algorithmic tools (asymptotic analysis, space time complexity, divide and conquer, dynamic programming, etc) are prerequisites for this course. Student Learning Outcomes The learning outcomes for the course. • Elementary geometric methods: points, lines and polygons. Line segments intersection. Simple closed path, inclusion in a polygon, inclusion in a convex polygon, range search, point location in planar subdivision and duality. • Convex hull: Graham's scan, Jarvin's march, divide and conquer approach, on-line algorithms, approximate algorithms, convex hull of simple polygons, lower bound proofs and diameter of a point set. • Proximity: Closest pair, triangulation, divide and conquer approach for closest pair, Voronoi diagram and their properties, dual of Voronoi diagram, construction of Voronoi diagram, Euclidean minimum spanning tree, gaps and covers. • Intersections: convex polygons, polygons, star polygons, line segments, half planes and plane sweep paradigm. • Mesh generation algorithms: Delaunay triangulation, quad-trees, and Quadrangulations. • Visibility and path planning: visibility properties of polygons, visibility graphs, applications of computational geometry in robotics, shortest s-t path inside a simple polygon, shortest s-t path
    [Show full text]
  • 18.415 Advanced Algorithms Contents
    18.415 Advanced Algorithms Notes from Fall 2020. Last Updated: November 27, 2020. Contents Introduction 6 1 Lecture 1: Fibonacci Heaps7 1.1 MST problem review.................................7 1.2 Using d-heaps for MST................................8 1.3 Introduction to Fibonacci Heaps...........................8 2 Lecture 2: Fibonacci Heaps, Persistent Data Structs 12 2.1 Fibonacci Heaps Continued.............................. 12 2.2 Applications of Fibonacci Heaps........................... 14 2.2.1 Further Improvements............................ 15 2.3 Introduction to Persistent Data Structures...................... 15 3 Lecture 3: Persistent Data Structs, Splay Trees 16 3.1 Persistent Data Structures Continued........................ 16 3.2 The Planar Point Location Problem......................... 17 3.3 Introduction to Splay Trees.............................. 19 4 Lecture 4: Splay Trees 20 4.1 Heuristics of Splay Trees............................... 20 4.2 Solving the Balancing Problem............................ 20 4.3 Implementation and Analysis of Operations..................... 21 4.4 Results with the Access Lemma........................... 23 5 Lecture 5: Splay Updates, Buckets 25 5.1 Wrapping up Splay Trees............................... 25 5.2 Buckets and Indirect Addressing........................... 26 5.2.1 Improvements................................. 27 5.2.2 Formalization with Tries........................... 27 5.2.3 Laziness wins again.............................. 28 1 6 Lecture 6: VEB queues, Hashing 29 6.1 Improvements
    [Show full text]
  • A Divide and Conquer Algorithm for Rectilinear Region Coverage
    Proceedings of the 2004 IEEE Conference on Robotics, Automation and Mechatronics Singapore, 1-3 December, 2004 A Divide and Conquer Algorithm for Rectilinear Region Coverage Amit Agarwal, Meng-Hiot Lim, Lip Chien Woon Intelligent Systems Center, Techno Plaza Nanyang Technological University Singapore 639798 {pg0212208t, emhlim, 810301075597}@ntu.edu.sg Ablitract-We give algorithm to generate coverage motion an a example, see [6]). Due to this, scalable efficient algorithms plan for a single unmanned reconnaissance aerial vehicle that treat the region to be covered as an undivided whole will over rectilinear polygonal region. is (URAV) a holed The URAV likely remain elusive (unless P=NP). Thus, an alternative equipped with a stabilized downward-looking sensor which has a solution strategy is needed. In this work, we describe a divide- square footprint of a fixed area. The algorithm is based on the and-conquer algorithm for covering a rectilinear polygon. principle of divide-and-conquer. In the tirst step, we generate the More specifically, our algorithm is invariant to the presence of lexicographically maximum area rectangle partition of the hole(s) in the polygon . The underlying polygon need not be polygon. We outline a sweep line based algorithm to compute this horizontally (or, vertically) convex. Henceforth, except in the partition. Next, we find a coverage motion plan for movement of Section II, unless stated otherwise, the terms 'holed rectilinear the sensor over each rectangle in the partition. Plans for adjacent polygon' and 'polygon' are used interchangeably and both refer rectangles are finally to complete plan for t simple holed rectilinear polygon. merged generate a he to a region.
    [Show full text]
  • CMSC 754 Computational Geometry1
    CMSC 754 Computational Geometry1 David M. Mount Department of Computer Science University of Maryland Spring 2012 1Copyright, David M. Mount, 2012, Dept. of Computer Science, University of Maryland, College Park, MD, 20742. These lecture notes were prepared by David Mount for the course CMSC 754, Computational Geometry, at the University of Maryland. Permission to use, copy, modify, and distribute these notes for educational purposes and withoutfeeisherebygranted,providedthatthiscopyrightnoticeappear in all copies. Lecture Notes 1 CMSC 754 Lecture 1: Introduction to Computational Geometry What is Computational Geometry? “Computational geometry” is a term claimed by a number of different groups. The term was coined perhaps first by Marvin Minsky in his book “Perceptrons”, which was about pattern recognition, and it has also been used often to describe algorithms for manipulating curves and surfaces in solid modeling. Its most widely recognized use, however, is to describe the subfield of algorithm theory that involves the design and analysis of efficient algorithms for problems involving geometric input and output. The field of computational geometry developed rapidly in the late 70’s and through the 80’s and 90’s, and it still continues to develop. Historically, computational geometry developed as a generalization of the study of algorithms for sorting and searching in 1-dimensional spacetoproblemsinvolvingmulti-dimensionalinputs. Because of its history, the field of computational geometry has focused mostly on problems in 2-dimensional space and to a lesser extent in 3-dimensional space. When problems are considered in multi-dimensional spaces, it is usually assumed that the dimension of the space is a smallconstant(say,10orlower).Nonetheless,recent work in this area has considered a limited set of problems in very high dimensional spaces, particularly with respect to approximation algorithms.
    [Show full text]
  • CMSC 754 Computational Geometry1
    CMSC 754 Computational Geometry1 David M. Mount Department of Computer Science University of Maryland Spring 2007 1 Copyright, David M. Mount, 2007, Dept. of Computer Science, University of Maryland, College Park, MD, 20742. These lecture notes were prepared by David Mount for the course CMSC 754, Computational Geometry, at the University of Maryland. Permission to use, copy, modify, and distribute these notes for educational purposes and without fee is hereby granted, provided that this copyright notice appear in all copies. Computational Geometry Notes Introduction 1 Introduction to Computational Geometry What is Computational Geometry? Computational geometry is a term claimed by a number of different groups. The term was coined perhaps first by Marvin Minsky in his book “Perceptrons”, which was about pattern recognition, and it has also been used often to describe algorithms for manipulating curves and surfaces in solid modeling. Its most widely recognized use, however, is to describe the subfield of algorithm theory that involves the design and analysis of efficient algorithms for problems involving geometric input and output. The field of computational geometry developed rapidly in the late 70’s and through the 80’s and 90’s, and it still continues to develop. Historically, computational geometry developed as a generalization of the study of algorithms for sorting and searching in 1-dimensional space to problems involving multi-dimensional inputs. Because of its history, the field of computational geometry has focused mostly on problems in 2-dimensional space and to a lesser extent in 3-dimensional space. When problems are considered in multi-dimensional spaces, it is usually assumed that the dimension of the space is a small constant (say, 10 or lower).
    [Show full text]