Applications of Submarine Power Cables

Total Page:16

File Type:pdf, Size:1020Kb

Applications of Submarine Power Cables Power Systems For further volumes: http://www.springer.com/4622 Thomas Worzyk Submarine Power Cables Design, Installation, Repair, Environmental Aspects 123 Thomas Worzyk 370 30 Rödeby/Sweden [email protected] Office: ABB AB High Voltage Cables 371 23 Karlskrona/Sweden [email protected] ISSN 1612-1287 e-ISSN 1860-4676 ISBN 978-3-642-01269-3 e-ISBN 978-3-642-01270-9 DOI 10.1007/978-3-642-01270-9 Springer Dordrecht Heidelberg London New York Library of Congress Control Number: 2009927023 © Springer-Verlag Berlin Heidelberg 2009 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: deblik, Berlin Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Preface Submarine power cables have always been the unknown cousins of the submarine telecom cables. Telecom cables encircle the globe through all oceans in an enormous mesh, and have attracted public attention since the first Channel cable was laid in 1850. While the heroes of the first Atlantic telecom cable have been sung in numer- ous books, the feats of submarine power cable technology were rarely respected outside a small community. However, submarine power cables have their own characteristics and peculiari- ties. Cable design has developed during the decades. The evolution of manufacturing and installation technology allows for projects that, 20 years ago, were considered impossible. New performance records in system length, water depth, transmission power, or profits from the operation of submarine power cables are set every few years. Owing to this development, more submarine power cable projects are eco- nomically viable, or even possible. New applications for submarine power cables appear while known applications are pursued on a larger scale. Submarine power cables draw the attention of larger circles. Ten years ago only power utility engineers and cable ship crews were interested in submarine power cables. Possibly some fishermen uttered unprintable comments on them when they had entangled their fishing gear. Today, in the wake of new applications, submarine power cables have come into the focus of larger groups. The engineers of oil-and- gas companies have been interested a while, and increasing offshore activities, as well as the need for more power supply from shore to platform have promoted their involvement in the field. Most of all the fast development of offshore wind power brought submarine power cables to the attention of new quarters outside the power utilities. Investors and project developers need knowledge on the subject in order to analyse the technical and economical feasibility of offshore wind farms, as the cable costs can make up to forty per cent of the project costs, and cable installation can have a substantial impact on the overall schedule. Great commercial opportunities in power trading triggered the curiosity of Transmission System Operators (TSO) and power traders about opportunities and limitations of submarine power trans- mission lines. Regulators and authorities are getting more involved into submarine power cables, as permit applications continue to roll in. Also environmental groups and organisations now have to deal with submarine power cables, which sometimes are installed in sensitive areas. Satisfying enough, more students of all levels are v vi Preface getting involved into submarine power transmission as they study the possibilities of renewables. Even lawyers have developed an occupational interest in these cables. The idea to prepare this book actually came when I received many questions from the new audience, which demonstrated that there was need for a comprehen- sive introduction into the matter. For those who want to dig deeper into the issue it is not always easy to find relevant information. Much needed information about design and installation is scarce. Most textbooks on cables deal with land cables and leave only little space to submarine power cables, sometimes relegating them into their “Miscellaneous” chapter. Other cable textbooks are simply outdated neglecting state-of-the-art manufacturing and installation techniques. When I put this book together, I had to face several difficulties. Evaluating pub- lished reports and peer discussions, it became clear that the willingness for sharing experiences has decreased strongly. Information on submarine power cable opera- tions have been shared in journal papers quite openly until the 1990s, while reports about recent projects rarely address “lessons learned”. At a time when investor rela- tions, quarterly reports, and insurance issues prevail, few cable operators like to go public with accounts of detailed technical issues, problems, and fixes. However, the entire community of investors, grid operators, manufacturers, installers etc. would profit from an openhearted dialogue. This book aims at conveying a basic knowledge on the design, manufacture, and installation of submarine power cables. In 1903, cable engineer Dr. C. Baur wrote in the preface to his cable book: “the amount of knowledge related to the electric cable is so large that no single man can comprehend it”. This must be even more correct for submarine power cables. I must most humbly admit that I could only grasp and compile a fraction of the knowledge on the subject, relying on the assistance and help of many colleagues. For those who want to go further the reference lists may be helpful. I owe a lot of gratitude to those who assisted in the development of this book. Most of all, at this prominent place of the book, I want to take the opportunity to thank my dear wife for her enormous patience and my sons for their valuable input from their point of view. Acknowledgments I am indebted to many people and companies who helped me to bring this book on its way and into a reasonable form. I want to make a point of thanking all of them at this occasion. Although the production of this book was my private adventure, my employer ABB/Sweden provided me with a grant for literature and xerox copies. My col- leagues let me participate in their enormous and priceless knowledge and expe- rience, just to contribute to this book. Peter Sunnegardh, Anders Gustafsson and Johan Karlstrand supported me with their most valuable comments. Other cable manufactures gave me indepth information. I want to express my gratitude to Prysmian/Italy, Norddeutsche Seekabelwerke NSW/Germany and NKT Cables/Denmark for their generous assistance. The power utilities Statnett/Norway, Long Island Power Authority/USA, and Baltic Cable/Sweden contributed with information on cable service experiences and other. HT Suen, John Savio and Jan Brewitz were ever so cooperative. A book cannot be completed without the involvement of certain individuals who are conducive with illustrations, knowledge, anecdotes, good advice, or something else – or a bit of all of this. I would like to thank Lars Aksel Solberg and Janne Stark for a good story, Bill Burns for background info, Walter Paul and Jaeyoung (Jay) Lee for most interesting facts. Lydia Stark and Stephen Wigginton helped me to improve the writing language. The challenging task of transforming my writing into readable English was per- formed by Jochen U. Frankl, of Keryx Translations/Germany. A number of other companies helped me out with much needed photographs. Commercial and non-commercial marine organisations, from all around the world, have played a decisive role in the improvement of this book. The list is here: ABB Oy, Finland; ABB AB, Sweden; Baltic Cable AB, Sweden; Borealis, Swe- den; IHC Engineering Business Ltd, UK; International Cable Protection Committee, UK; LD Travocean, France; Long Island Power Authority, USA; Minerals Manage- ment Service, U.S. Department of the Interior, USA; National Institute of Water & Atmospheric Research Ltd, New Zealand; NKT Cables A/S, Denmark; NSW, Germany; Oceanteam Power and Umbilicals, UK; Prysmian, Italy; Statnett, Nor- way; Submarine Telecom Forum, UK; Trelleborg, UK; Woods Hole Oceanographic Institution, USA. vii Contents 1 Applications of Submarine Power Cables ......................... 1 1.1 Power Supply to Islands.................................... 1 1.2 Connection of Autonomous Grids . ..................... 3 1.3 OffshoreWindFarms...................................... 4 1.4 Supply of Marine Platforms . ............................ 5 1.5 Short-Haul Crossings . ................................... 6 1.6 Other Applications of Submarine Power Cables . .......... 6 References . .................................................. 7 2 Submarine Power Cables and Their Design Elements .............. 9 2.1 The Conductor . ....................................... 10 2.1.1 Solid Conductor . ............................ 10
Recommended publications
  • Offshore Wind Submarine Cable Spacing Guidance
    Offshore Wind Submarine Cable Spacing Guidance Contract # E14PC00005 United States Department of Interior Bureau of Safety and Environmental Enforcement December 2014, For Public Use Offshore Wind Submarine Cable Spacing Guidance Contract # E14PC00005 United States Department of Interior Bureau of Safety and Environmental Enforcement December 2014, For Public Use The authors gratefully acknowledge permission of the Crown Estate to base parts of this report on their study “Principles of Cable Routing and Spacing (2012)”, Reference ID 8 in this report Document Control Responsible for Job Title Name Date Signature Chris Sturgeon Cables specialist Jim Hodder Cables specialist Colin Poat Cables specialist Content 2014-12-15 Cables specialist Steven Drew Principal Environmental Consultant Rachel McCall EHS Senior Consultant Tanjia Maynard Checked EHS Senior Consultant Tanjia Maynard 2014-12-15 Approval Principal Engineer Jim Doane 2014-12-15 Copyright: PMSS © Document Reference: 734300670/140708 Signatures in this approval box have checked this document in line with the requirements of QP16 This report has been prepared by TÜV SÜD PMSS and Red Penguin Associates with all reasonable skill and care, within the terms of the contract with the Client. The report contains information from sources and data which we believe to be reliable but we have not confirmed that reliability and make no representation as to their accuracy or completeness. The draft report is confidential to the Client and TÜV SÜD PMSS accepts no responsibility to any third party to whom information in this report may be disclosed. No part of this document may be reproduced without the prior written approval of TÜV SÜD PMSS © TÜV SÜD PMSS 2014 Offshore Wind Submarine Cable Spacing Guidance 1 Bureau of Safety and Environmental Enforcement Table of Contents Abbreviations 2 1.
    [Show full text]
  • Development of Submarine MV AC Power Cable With
    B5.2 9th International Conference on Insulated Power Cables B5.2 Development of submarine MV-AC power cable with aluminum conductor Sven MUELLER-SCHUETZE, Heiner OTTERSBERG, Carsten SUHR, Ingo KRUSCHE, Norddeutsche Seekabelwerke GmbH/General Cable, Nordenham, Germany, [email protected], [email protected], [email protected], [email protected] Daniel ISUS FEU, General Cable, Manlleu, Spain, [email protected] ABSTRACT cables due to its very good conductivity. However, the high demand of copper material results in a very high A single armored MV-AC submarine power cable with an market value. This was set to above 6000 $/ton at the aluminum conductor was developed for offshore beginning of April 2015. renewable energy, interconnections between offshore platforms, islands and shore. For the cable design Aluminum has lower conductivity compared to copper process an intended installation in water depths up to 300 resulting in the need to select larger conductor cross m and the application of additional cable protection sections. Despite the larger conductor cross section, cost methods such as rock dumping for on-bottom stabilization reduction is achieved due to the lower material price of were considered. aluminum compared to copper. At the beginning of April 2015 the market value for aluminum was oscillating A type test has been successfully performed on 3x 800 around 1770 $/ton. Due to that market value difference mm² 19/33 (36) kV XLPE submarine power cable with an aluminum is a cost-effective replacement for copper as aluminum conductor. The qualification program was conductor material. During the selection conductor performed under consideration of the CIGRE Electra 171, material, both the electrical and mechanical material CIGRE TB 490, IEC 60502-2 and CENELEC HD620-10C properties were reviewed for all aluminum alloy standards.
    [Show full text]
  • Offshore Wind Submarine Cabling Overview Fisheries Technical Working Group
    OFFSHOREoverview WIND SUBMARINE CABLING Fisheries Technical Working Group Final Report | Report Number 21-14 | April 2021 NYSERDA’s Promise to New Yorkers: NYSERDA provides resources, expertise, and objective information so New Yorkers can make confident, informed energy decisions. Our Vision: New York is a global climate leader building a healthier future with thriving communities; homes and businesses powered by clean energy; and economic opportunities accessible to all New Yorkers. Our Mission: Advance clean energy innovation and investments to combat climate change, improving the health, resiliency, and prosperity of New Yorkers and delivering benefits equitably to all. Courtesy, Equinor, Dudgeon Offshore Wind Farm Offshore Wind Submarine Cabling Overview Fisheries Technical Working Group Final Report Prepared for: New York State Energy Research and Development Authority Albany, NY Morgan Brunbauer Offshore Wind Marine Fisheries Manager Prepared by: Tetra Tech, Inc. Boston, MA Brian Dresser Director of Fisheries Programs NYSERDA Report 21-14 NYSERDA Contract 111608A April 2021 Notice This report was prepared by Tetra Tech, Inc. in the course of performing work contracted for and sponsored by the New York State Energy Research and Development Authority (hereafter “NYSERDA”). The opinions expressed in this report do not necessarily reflect those of NYSERDA or the State of New York, and reference to any specific product, service, process, or method does not constitute an implied or expressed recommendation or endorsement of it. Further, NYSERDA, the State of New York, and the contractor make no warranties or representations, expressed or implied, as to the fitness for particular purpose or merchantability of any product, apparatus, or service, or the usefulness, completeness, or accuracy of any processes, methods, or other information contained, described, disclosed, or referred to in this report.
    [Show full text]
  • Nordic HVDC Interconnectors' Statistics 2013
    European Network of Transmission System Operators for Electricity NORDIC HVDC UTILIZATION AND UNAVAILABILITY STATISTICS 2013 03.11.2014 REGIONAL GROUP NORDIC ENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • [email protected] • www.entsoe.eu European Network of Nordic HVDC Utilization and Unavailability Statistics 2013 Transmission System Operators for Electricity 1 SUMMARY ........................................................................................................ 3 2 INTRODUCTION AND BACKGROUND .................................................................... 4 3 SCOPE ............................................................................................................. 5 4 METHODS, DEFINITIONS AND CALCULATIONS ...................................................... 6 5 TECHNICAL DETAILS OF THE HVDC LINKS ........................................................ 10 6 PRESENTATION OF THE RESULTS FOR 2013 ..................................................... 11 6.1 OVERVIEW ............................................................................................................................ 12 6.2 SEPARATE PRESENTATIONS OF ALL LINKS ................................................................................ 14 6.2.1 BALTIC CABLE HVDC LINK ..................................................................................................... 15 6.2.2 ESTLINK 1 HVDC LINK ..........................................................................................................
    [Show full text]
  • Annual Report 2012
    Annual Report 2012 Aastaaruanne 2012 Kaane kujundus alles tuleb Creating New Energy! We will release the Group’s consolidated interim reports for the financial year 2013 as follows: Corporate • 1st quarter – 30 April 2013 Social Responsibility 2012 • 2nd quarter – 31 July 2013 • 3rd quarter – 31 October 2013 The audited results for the financial year 2013 will be released on 28 February 2014 Click here to read the Corporate Social Responsibility Report www.energia.ee/en/investor Contents Address by the Chairman of the Management Board 5 In Brief 7 Strategy 11 Business Environment 15 Financial Results 22 Environment 45 Corporate Governance 49 Consolidated Financial Statements 71 Consolidated Financial Statements Consolidated Income Statement 71 23 Trade and Other Payables 131 24 Deferred Income 131 Consolidated Statement of Comprehensive Income 72 25 Provisions 132 26 Revenue 134 Consolidated Statement of Financial Position 73 27 Other Operating Income 134 Consolidated Statement of Cash Flows 74 28 Raw Materials and Consumables Used 135 29 Payroll Expenses 135 Consolidated Statement of Changes in Equity 75 30 Other Operating Expenses 136 31 Net Financial Income (-expense) 136 Notes to the Consolidated Financial statements 76 32 Corporate Income Tax 136 1 General Information 76 33 Cash Generated From Operations 137 2 Summary of Principal Accounting and Reporting Policies 76 34 Off-balance Sheet Assets, Contingent Liabilities and Commitments 137 3 Financial risk management 97 35 Assets and Liabilites of Disposal Group Classified as Held
    [Show full text]
  • Submarine Cables, There's Power Under Water!
    Submarine cables, there's power under water! Marco Marelli, SC B1 Chair (IT) [email protected] Submarine power cables are now among the most important key enablers for the energy transition. Power generation from Renewable Energy Sources (RES) and interconnection among networks are, in fact ,the two main areas where energy links across water is developing massively and – as such – are driving the recent technological evolution. Figure 1 – Laying activities for Submarine cables (source TB 610) In recent years the number and size of installed offshore wind farms have increased rapidly and more and larger farms are being planned. Other types of offshore generation are expected to come in the near future, such as tidal and wave energy generation. Submarine cables are and will be an essential part of this development where they are used as array cables between the generators, as export cables to connect the offshore generation farms with the onshore transmission grid, and even as part of interconnections between different synchronous systems, countries, or price areas . Another important factor for the energy transition is the implementation of a large electrical grid. The number of HVDC interconnectors in the construction stage is larger than ever before. Also, there are many projects in progress at various preliminary stages (planning, studies, …), and they are typically very long and with higher power ratings, thus pushing voltages to new levels with new cable technologies. Typical drivers are the “political” change toward green energy production as well as the differential cost of energy between countries/areas that make viable and desirable the interchange of energy in parallel or in substitution of new generation plants.
    [Show full text]
  • Methodology for Calculating Nordic System Price
    Nordic System Price Methodology for calculation Nordic System Price Methodology REVISION HISTORY: REVISION DATE DESCRIPTION OF CHANGES REQUESTED BY NO. 1.0 1.1.2020 Initial release Camilla Berg 1.1 1.5.2020 Added sections on review and on procedure for cessation 1.2 15.8.2020 Updated with new name Nord Pool EMCO 1.3 5.11.2020 Updated with Nord Link Cable Hans Randen 2 Nordic System Price Methodology Table of Contents 1. INTRODUCTION .......................................................................................................................4 1.1 PURPOSE AND SCOPE ............................................................................................................4 1.2 REVISIONS ...........................................................................................................................4 2. DETERMINATION OF SYSTEM PRICE.....................................................................................5 2.1. THE RELATED DAY-AHEAD MARKET AND RELEVANT REGULATION.............................5 2.2. DEFINITION AND DESCRIPTION ..........................................................................................5 2.3. CURRENCY ...........................................................................................................................6 2.4. INPUT DATA FOR NORDIC SYSTEM PRICE ........................................................................7 2.5. SYSTEM PRICE CALCULATION ...........................................................................................8 3. DAILY PROCEDURE FOR CALCULATION
    [Show full text]
  • Interstate DC Line Performance Assessment Methods
    Interstate DC Line Performance Assessment Methods Mario Turcik, Artjoms Obushevs, Irina Oleinikova Institute of Physical Energetics, Laboratory of Power System Mathematical Simulation market and ensure process of market development. Abstract--The Article is focused on interconnection of power Furthermore, Nordel provide opportunity for cooperation systems via High Voltage Direct Current (HVDC) submarine between TSOs in Nordic and transmission system operators cables, its transmission capacity allocation and utilization. out of Association what makes a contribution to a numbers of Sufficiency of transmission capability on market formation and physical interconnections between the Nordel region and operation are investigated as well as role of Power Exchange (PX) and trading principles for HVDC interconnections. Model of neighboring countries. Due to harmonization of rules and Nordic power system and PX data are used for legislation in different counties associated in Nordel was technical/economic calculation and analysis based on market formulated common code for Nordic grid – The Nordic Grid areas price differences and power flows through inter-state Code (NGC). The NGC consists of four main Articles: 1) connections. Planning Code, 2) Operational Code (System Operation Agreement), 3) Connection Code 4) Data Exchange Code Index Terms-- Electricity market, HVDC technology, power flow. (Data Exchange Agreement between the Nordic transmission system operators (TSOs) The purpose of the Nordic Grid Code is to achieve coherent and coordinated Nordic operation and I. INTRODUCTION planning between the companies responsible for operating the transmission systems, in order to establish the best possible Cooperation between Transmission System Operators conditions for development of a functioning and effectively 1 (TSOs) of interconnected countries Norway, Sweden, Finland integrated Nordic power market.
    [Show full text]
  • The Norned Hvdc Link – Cable Design and Performance
    ReturnClose and to SessionReturn THE NORNED HVDC LINK – CABLE DESIGN AND PERFORMANCE Thomas WORZYK, ABB Power Systems, Sweden, [email protected] Mats SJÖBERG, ABB Power Systems, Sweden, [email protected] Jan-Erik SKOG, Statnett, Norway, [email protected] Kees KOREMAN, TenneT, The Netherlands, [email protected] ABSTRACT The NorNed link is the longest submarine power cable +450 kV system ever with a distance of 580 km. The bipolar HVDC DC-cable system with ± 450 kV dc represents the state-of-the-art of “classic” HVDC technology while modern production and installation technology helped to push forward the limit of Eemshaven -450 kV Feda HVDC power transmission. This paper describes some of the characteristics of the power cables in the NorNed link. Figure 1. NorNed main circuit configuration KEYWORDS NorNed, HVDC, mass-impregnated cable, submarine cable. CABLE ROUTE INTRODUCTION The challenging cable route includes the following components: The cables for NorNed were supplied by two manufacturers. o Trenched land cable in the Netherlands Technical data given in this paper relate to the cables o Submarine cable in the tidal flats off the Netherlands, supplied from one manufacturer for approx. 70% of the with strict environmental installation requirements, and cable route. risks of moving sands changing the thermal cable ambient o Long portions of flat sea bottom with boulder fields with NORNED HVDC CABLE LINK water depth <100 m The NorNed link connects the Dutch to the Norwegian o The Norwegian trench with up to 400 m of water national power grid. Since these grids belong to different o Steep tunnels in Norway power frequency control areas in Europe (UCPTE and Nordel, resp.) they are asynchronous.
    [Show full text]
  • Submarine Power Cables Submarine Power Cables
    Submarine Power Cables Submarine Power Cables Since decades Nexans‘ plant in Han- The properties of cross-linked poly- a lead sheath. Their construction is nover is specialised in the design, ethylene (XLPE) and ethylene propylene therefore of lighter weight permitting production and installation of low and rubber (EPR) insulated cables longer continuous delivery lengths and medium voltage submarine power cab- Cross linked polyethylene and EPR have easier handling during transportation les required for river or lake crossings, proven as excellent cable insulating com- and laying. The bending radius is power supply to islands and platforms pounds for submarine power cables. small. The solid dielectric and the hea- for offshore oil and gas production and The main reasons are the outstanding vy steelwire armouring are superior to offshore wind mill parks. electrical and mechanical properties of the paper insulated and lead sheathed Numerous successfully completed these materials. Compared to oil filled cables and are much less sensitive to projects with our cables in Europe and paper insulated submarine cables, severe stresses to which submarine cab- overseas have proven the capability of XLPE and EPR insulated cables offer the les are subjected during transportation, Nexans ‘s highly skilled technical staff following advantages: laying and operation. to cope with submarine cable design, • XLPE and EPR are solid dielectrics. They • The main electrical and mechanical production, transportation and laying are maintenance free, no supervision characteristics of XLPE and EPR insula- problems. and control of the oil level in the cable ted medium voltage cables compared The experience gained by Nexans in systems is necessary.
    [Show full text]
  • [email protected] Norned – World's Longest Power Cable J.E
    21, rue d’Artois, F-75008 PARIS B1_106_2010 CIGRE 2010 http : //www.cigre.org NorNed – World’s longest power cable J.E. SKOG H. van ASTEN T. WORZYK T. ANDERSRØD Statnett TenneT ABB Nexans Norway The Netherlands Sweden Norway SUMMARY The NorNed cable was commissioned on 6 May 2008 after three years of intensive engineering and construction. It was important for this efficient implementation that a core project team had been maintained over a relatively long period, preparing all licences, all major supply contracts, etc. The paper will describe the way of detailed engineering, manufacturing and installing altogether 1160 km of high voltage cable, some of it in form of a two core cable and a major part as ordinary single- core cable. The strict magnetic compass deviation requirements as well as environmental concerns related to the magnetic field set up by a single cable led to the special two-core mass-impregnated cable used in the NorNed project. In the northerly deeper part of the cable route ordinary single-core cable was applied. The North Sea is a rough working place and the work scope offshore was far beyond all other known submarine power cable projects. How NorNed managed the resulting challenges is being described. The extensive offshore jointing activities have resulted in experiences which are important for future projects of a similar kind. After having been laid, the cables were protected by water jet trenching over close to 97% of the cable route. The rest, including the crossings, has been given protection by rock dumping. Following successful after installation test NorNed experienced two offshore cable failures and had to mobilise extra vessel spreads in order to get the situation restored.
    [Show full text]
  • Feasibility Analysis of Turkey-North Cyprus Submarine
    FEASIBILITY ANALYSIS OF TURKEY-NORTH CYPRUS SUBMARINE ELECTRIC INTERCONNECTOR CABLE INCLUDING EXTERNALITIES A THESIS SUBMITTED TO THE BOARD OF GRADUATE PROGRAMS OF MIDDLE EAST TECHNICAL UNIVERSITY, NORTHERN CYPRUS CAMPUS BY AHMAD RASHEED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN SUSTAINABLE ENVIRONMENT AND ENERGY SYSTEMS AUGUST 2019 Approval of the Board of Graduate Programs _______________________ Prof. Dr. Gürkan Karakaş Chair person I certify that this thesis satisfies all the requirements as a thesis for the degree of Master of Science. ______________________ Asst. Prof. Dr. Ceren İnce Program Coordinator This is to certify that we have read this thesis and that in our opinion it is fully adequate, in scope and quality, as a thesis for the degree of Master of Science. _______________________ Assoc. Prof. Dr. Murat Fahrioğlu Supervisor Examining Committee Members Assoc. Prof. Dr. Murat Fahrioğlu EEE Program METU NCC __________________ Asst. Prof. Dr. Hayriye Kahveci PSIR Program METU NCC __________________ Assoc. Prof. Dr. Hasan Güngör Dept. of Eco. EMU __________________ DECLARATION I hereby declare that all the information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work. Name, Surname: Signature : i ABSTRACT FEASIBILITY ANALYSIS OF TURKEY-NORTH CYPRUS SUBMARINE ELECTRIC INTERCONNECTOR CABLE INCLUDING EXTERNALITIES Rasheed, Ahmad M.Sc. Sustainable Environment and Energy Systems Supervisor: Assoc. Prof. Dr. Murat Fahrioğlu August 2019, 78 pages Heavy dependency of electrical industry on fossil fuels have led to overexploitation of natural resources, which causes emission of greenhouse gases and climatic change.
    [Show full text]